-
스마트 수중터널 시스템 연구센터, 7일 개소식 가져
KAIST는 7일 오전 대전 본교 응용공학동 1층에서 신성철 총장(우측 줄 맨 안쪽)과 홍기훈 한국해양과학기술원장 등 주요 내·외빈 인사들이 참석한 가운데 ‘스마트 수중터널 시스템 연구센터’개소식을 가졌다.
우리대학은 7일 오전 대전 본교 응용공학동 1층에서 ‘스마트 수중터널 시스템 연구센터(센터장 이행기 교수·건설및환경공학과)’ 개소식을 가졌다. 개소식에는 신성철 총장을 비롯해 홍기훈 한국해양과학기술원장, 박중곤 한국연구재단 공학단장(경북대 교수·화학공학과), 이행기 센터장 등 내·외빈 100여명이 참석했다.
선도연구센터(ERC, Engineering Research Center) 지원사업은 한국연구재단이 이공계 분야에서 우수연구 집단을 발굴·육성을 통해 세계적 수준의 경쟁력을 갖추도록 하는 한편 국가기초연구역량을 향상시키고자 지원하는 사업이다. 2017년 선도연구센터(ERC) 지원사업에 선정된 ‘스마트 수중터널 시스템 연구센터’는 향후 7년간 수심 100m 이상 적용이 가능한 수중터널 시스템 개발을 목표로 삼고 있다.
이를 달성하기 위해 주요 연구주제로 △수중터널 시스템전용 구조해석프로그램 및 통합설계기술 개발 △수중 고 내구성 건설재료 및 수중 시공통합시스템 개발 △지능형 수중터널 안전·유지 관리통합시스템 원천·응용기술 등을 핵심기술로 정했다. ‘스마트 수중터널 시스템 연구센터’는 또 향후 세계 해양건설 분야를 선도할 다양한 원천·응용기술 개발은 물론 해당 분야 석·박사급 전문연구인력 양성에도 주력할 방침이다.
이행기 센터장은 개소식에서 “구조·재료·시공·해양 등 여러 분야에서 전문성을 갖춘 교내 연구진과의 협력을 기반으로 수중터널 시스템과 관련한 다양한 원천·응용기술을 개발해 기술 자립화 달성에 기여함은 물론 이를 통해 수중터널 및 차세대 수중 건설기술 분야의 세계적인 연구 허브 역할을 담당할 것”이라고 밝혔다.
2017.09.07
조회수 10695
-
김일두 교수, 동물 단백질 촉매로 활용한 질병진단센서 개발
〈 김 일 두 교수 〉
우리 대학 신소재공학과 김일두 교수 연구팀이 동물의 단백질을 촉매로 활용해 호흡으로 질병을 진단할 수 있는 센서를 개발했다.
이는 사람의 날숨에 포함된 다양한 질병과 관련된 바이오마커 가스들에 대한 패턴 인식을 통해 질병을 조기 모니터링 할 수 있는 기술이다.
이번 기술은 다양한 단일 금속입자 뿐만 아니라 어떠한 조합의 이종입자도 2 nm 크기로 합성할 수 있는 장점을 갖는다. 연구팀은 기존에도 호흡으로 질병을 진단하는 센서를 개발했으나 이번 기술은 더욱 정확하고 높은 감도를 갖는다는 특징이 있다.
김상준, 최선진 박사가 1저자로 참여한 이번 연구 결과는 미국 화학회의 화학분야 국제 학술지 ‘어카운트 오브 케미칼 리서치(Accounts of Chemical Research)’ 7월호 표지논문으로 선정됐고, 독일 와일리 국제 학술지인 ‘어드밴스드 머터리얼즈(Advanced Materials)’에도 게재가 확정됐다.
혈액 체취나 영상 촬영 없이 내뱉는 숨(호기)만으로 각종 질병 여부를 파악하는 호흡 지문 센서 기술은 핵심 미래 기술이다. 호기 속 특정 가스들의 농도변화를 체크해 건강 이상 여부를 판단할 수 있다.
호기가스 성분에는 수분 외에도 수소, 아세톤, 톨루엔, 암모니아, 황화수소, 일산화질소 등이 포함된다. 이 가스들은 천식, 폐암, 1형 당뇨병, 구취 등 특정 질병 환자에게서 높은 농도로 배출되는 바이오마커 가스이다.
호흡을 이용한 질병 진단은 마치 음주측정기처럼 테들라(Tedlar) 백에 포집된 날숨 가스를 소형 센서 장치로 주입한 후 빠른 속도로 분석되기 때문에 쉽고 간편하게 질병을 진단할 수 있다. 또한 질병 대사가 일어나는 시점에서 검출이 가능해 조기 진단이 가능하다.
하지만 매우 경미한 수준인 10억분의 1(ppb)에서 100만분의 1(ppm) 수준으로 발생하는 가스를 호흡 속에서 정확히 분석하기 위해서는 기술의 진보가 필요하다. 특히 수분을 포함한 수백 종의 방해 가스는 특정 질병 관련 바이오마커 가스를 선택적으로 분석하는 저항 변화식 센서의 취약점으로 남아 있다.
기존의 가스 센서는 백금, 팔라듐 등 특정 촉매를 결합해 감지 특성을 높이려고 시도했으나 ppb 농도에서는 생체지표 가스 감지 특성이 높지 않다는 한계가 있었다.
연구팀은 기존 센서의 한계 극복을 위해 동물의 조직에 존재하는 나노크기의 단백질을 희생층으로 이용해 속이 비어있는 단백질 껍질 안에 석출된 이종촉매(Heterogeneous catalyst) 입자를 합성하는데 성공했다.
이번 연구에 사용된 나노크기의 단백질은 주기율표에 존재하는 원소물질을 조합해 어떠한 형태의 이종촉매도 다양하게 구현할 수 있다는 큰 장점을 갖는다.
특히 이종 원소간 조성비를 쉽게 조절할 수 있고 금속간화합물도 제조할 수 있어 신조성을 갖는 촉매 합성 측면에서 매우 획기적인 방법이다.
예를 들어 백금이 기준 촉매일 때 백금팔라듐(PtPd), 백금니켈(PtNi), 백금루테늄(PdRu), 백금이트륨(PtY3) 등 다양한 이종 합금촉매로 확장할 수 있다.
연구팀은 개발된 이종촉매 입자를 넓은 비표면적과 다공성 구조를 갖는 금속산화물 나노섬유에 결착시켜 특정 생체지표 기체에만 선택적으로 반응하는 감지소재를 개발했다. 이종촉매가 결착된 나노섬유 센서는 기존에 촉매 활성이 가장 뛰어나다고 알려진 백금이나 팔라듐 촉매보다 약 3~4배 이상 감지 특성이 향상됨을 확인했다.
특히 아세톤이나 황화수소 가스는 1ppm에서 감도가 100배 수준으로 바뀌는 최고 수준의 감도 특성이 관찰됐다.
연구팀은 다양한 종류의 감지 소재가 적용된 복합 센서 배치(sensor array) 시스템을 이용해 사람의 지문을 인식하듯 개개인의 호흡을 패턴 인식해 일반인도 쉽게 건강 이상을 판별할 수 있는 질병진단 플랫폼을 개발했다.
16종의 다른 선택성을 갖는 센서를 어레이화하는데 성공했으며, 환자의 건강상태에 따라 날숨 농도변화가 다르게 나타나기 때문에 날숨 속 가스 정보를 지문처럼 패턴화하여 개인의 건강 변화를 지속적으로 모니터링 하는 헬스케어 기기에 적용할 수 있다.
김 교수는 “기존에 센서에 사용된 적이 없는 2 nm 크기의 이종촉매를 단백질을 이용하여 적용함으로써, 질병과 연관된 생체지표 가스에 고감도 및 고 선택성으로 반응하는 센서소재 라이브러리를 구현할 수 있다”며 “앞으로 다양한 촉매 군을 확보하면 수많은 질병을 진단할 수 있는 센서를 개발할 수 있다”고 말했다.
또한 “호흡으로 질병을 진단하는 센서는 누구나 손쉽게 스스로 진단할 수 있는 자가 진단 기기의 시작으로 의료비 지출 상승을 막고 지속적 건강관리에 큰 도움이 될 것이다”고 말했다.
이번 기술과 관련된 특허들은 지난 3월과 6월 각각 벤처기업과 중소기업에 기술이전 됐다.
본 연구는 미래창조 과학부 웨어러블 플랫폼소재 기술센터 과제와 바이오의료기술개발사업 과제의 지원으로 이루어졌다.
□ 그림 설명
그림1. 어카운트 오브 케미칼 리서치 표지 이미지
그림2. 다종 입자 촉매
그림3. 함금촉매 합성
그림4. 다종센서 어레이_날숨 분석 센서
2017.07.18
조회수 27532
-
신성철 총장, 글로벌 대학평가기관 THE의 Research Excellence Summit 기조연설
신성철 총장은 4일 오전 대만 타이중 밀레니엄호텔에서 열린 글로벌 대학평가기관인 THE(타임스고등교육) 주관의 ‘리서치 엑설런스 서밋(Research Excellence Summit)’ 기조연설에서 4차 산업혁명 시대를 특징짓는 초연결화, 초지능화, 융복합화의 3가지 메가트렌드를 설명하고 “향후 과학기술의 변화의 폭과 속도는 우리의 상상을 초월하며 인류사회에 엄청난 변화를 가져올 것”이라고 예측하면서 4차 산업혁명에 대비하기 위한 대학의 교육·연구·기술사업화 분야에서의 혁신적 방안을 제시해 세계 유수대학의 총장 및 대학 관계자들부터 큰 반향을 불러 일으켰다.
신 총장은 우선 교육혁신의 경우 4차 산업혁명 시대에는 창의력과 협업능력·의사소통 능력을 겸비한 인재양성의 필요성과 중요성을 강조하면서 이 같은 인재양성을 위해서는 “기초과학․공학교육 및 인문사회교육 강화를 통한 전뇌교육이 필요하다”고 지적하고 이를 위해 학부 무학과 교육과정의 도입을 제안했다. 신 총장은 또 수업방식에도 근본적 변화가 필요하다며 “팀 기반학습·프로젝트 기반학습·플립(Flip) 학습방법 등을 통해 교수강의 중심교육에서 질문․토론 위주의 학생중심교육으로 패러다임이 전환돼야한다”고 강조했다.
신성철 총장은 특히 기능면에서 인간이 도저히 경쟁할 수 없는 로보사피엔스(인공지능 로봇)와 공생해야 할 다음세대 교육의 궁극적 목표는 통찰력·지혜·감동·배려 등 ‘가치 중심의 교육’이 돼야 한다고 역설했다.
한편, 연구혁신을 위해서는 초학제간 융·복합 연구, 학문의 세대를 초월한 협업연구, 인류난제 및 거대과학 분야에서의 국제 공동연구 중요성을 구체적인 사례를 들어가며 제시했다. 신 총장은 이와 함께 4차 산업혁명 시대의 핵심 분야인 인공지능 기반 융·복합 연구의 중요성을 강조하며 KAIST에서 진행 중인 ‘닥터 M 프로젝트’·‘휴보 프로젝트’·‘군집드론 조정 프로젝트’등 여러 융·복합 연구프로젝트 소개를 통해 타 대학 관계자들로부터 많은 주목을 받았고 강연 후에는 국제 공동연구 제안까지 받았다.
신 총장은 이밖에 “기술사업화가 미래 대학의 새로운 사명이 되어 대학이 R&DB 의 허브 역할을 해야 한다”고 강조한 뒤 KAIST의 사회적 기업가정신(Entrepreneurship) 교육, 교수와 학생들에 대한 창업지원 체제 및 창업 현황을 소개해 갈채를 받았다.
마지막으로 신 총장은 “지금 한국정부는 4차 산업혁명을 국가의 새로운 도전이자 기회로 인식하고 있다”며 “한국정부가 역점을 두고 추진 중인 4차 산업혁명의 성공을 위해서 한국 대학의 혁신적 변화가 중요하며 이를 위해 한국의 대표적 대학인 KAIST가 대한민국의 새로운 미래를 만들어 가기 위해 선도적 역할과 사명을 다할 것”이라고 강조하고서 기조연설을 마쳤다.
2017.07.06
조회수 11779
-
한순규 교수, 천연 물질인 플루게닌C 합성에 성공
우리 대학 화학과 한순규 교수 연구팀이 새로운 방식의 화학반응을 이용해 자연 상태에서 존재하는 천연물을 인위적으로 제작하는 데 성공했다.
연구팀은 분자 간 화학반응의 일종인 라우훗-쿠리어 반응(Rauhut-Currier 반응, RC 반응)을 이용해 이합체 천연물인 플루게닌 C를 합성했다.
전상빈 석박사통합과정이 1저자로 참여한 이번 연구는 화학 분야의 국제 학술지 ‘미국화학회지(JACS : Journal of the American Chemical Society)’ 5월 10일자에 게재됐다.
천연물 전합성(Total Synthesis)은 순차적 화학반응을 통해 자연에 존재하는 천연 물질을 실험실에서 인위적으로 합성해내는 연구 분야이다.
이 과정은 각 단계의 화학반응이 모두 성공적으로 이뤄져야만 목표하는 분자에 도달할 수 있어 높은 수준의 인내심, 창의성 등이 요구된다. 학계에서는 천연물 전합성 학자를 가리켜 ‘분자를 다루는 예술가’로 부르기도 한다.
이번 연구는 분자 간 라우훗-쿠리어 반응을 전합성에 응용한 최초의 사례이다. 라우훗-쿠리어 반응은 1963년 라우훗과 쿠리어에 의해 보고된 반응으로 친핵체 촉매에 의해 진행되는 현상이다.
기존의 분자 간 라우훗-쿠리어 반응은 150도 이상의 고온 및 고농도 용액에서 유독한 촉매를 통해 비 선택적으로 진행된다는 한계가 있어 천연물 전합성에 적합하지 않았다.
연구팀은 문제 해결을 위해 반응물 내부에 친핵체를 위치시켰다. 이를 통해 상온의 옅은 용액에서 촉매 없이 간단한 염기성 시료를 첨가시키는 것만으로도 라우훗-쿠리어 반응을 이끌어 낼 수 있음을 확인했다.
연구팀은 이 반응 조건을 이용해 시중에서 구입 가능한 아미노산 유도체를 12단계를 거쳐 플루게닌 C라는 천연물질로 합성하는 데 성공했다.
한 교수는 “이번 연구는 라우훗-쿠리어 반응의 효율성과 선택성을 획기적으로 향상시킨 발견이다”며 “기존에는 합성할 수 없었던 다양한 천연물, 신약 또는 유기재료를 합성할 수 있는 길이 열렸다”고 말했다.
이번 연구는 KAIST의 정착 연구비, 하이리스크하이리턴(HRHR) 및 RED&B(Research, Education, Development & Business) 과제, 한국연구재단의 신진연구자 지원사업, 기초과학연구원 분자활성 촉매반응 연구단의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 대표적인 이합체-소중합체 세큐리네가 알칼로이드
그림2. 플루게닌 C의 합성 경로
2017.05.19
조회수 16656
-
2017 KAIST 리서치 데이, 23일 개최
‘2017 KAIST 리서치 데이(Research Day)’ 행사가 23일 오전 10시 30분부터 KI빌딩 1층 퓨전홀에서 열린다. 이 행사는 우리대학이 최근의 주요 연구 성과를 소개하는 한편 제4차 산업혁명 관련 R&D 분야에 대한 정보와 지식, 노하우 등을 공유함으로써 융합연구를 활성화한다는 취지로 2016년 5월 처음 마련했다.
작년에 이어 올해 두 번째를 맞는 이날 행사는 △연구부문 우수교원 및 우수 연구 성과 포상 △수상자 강연 △첸 쉐이(CHEN Shiyi) 중국 남방과학기술대(SUSTech, Southern University of Science and Technology) 총장 특별강연 등의 순으로 진행된다.
우선 2017년 연구대상은 건설및환경공학과 손훈 교수가, 연구상 수상자로는 기계공학과 오준호 삼성 지정석좌교수와 생명화학공학과 이상엽 특훈교수가 각각 선정됐다. 이노베이션상은 물리학과 박용근 교수, 융합연구상은 물리학과 이용희 교수와 신소재공학과 신종화 교수가 각각 수상한다.
대표 연구 성과로는 △3차원 홀로그래픽 현미경(박용근 교수·물리학과) △맞춤형 단백질 변형기술(박희성·화학과) △찔러도 피가 나지 않는 무출혈 주사바늘(이해신·화학과) △이동식 펄스에코 레이저 초음파 전파영상화 시스템(이정률·항공우주공학과) △복굴절을 이용한 3차원 깊이 측정기술(김민혁·전산학부) 등 자연과학분야 4건, 생명과학분야 1건, 공학분야 5건 등 모두 10건이 선정됐다.
우리대학은 이날 행사에서 이들 10선에 뽑힌 연구 성과물에 대해 시상하는 한편 동영상을 통해 참석자들에게 소개하는 시연회도 갖는다. 이와 함께 오후 2시부터는 첸 쉐이(CHEN Shiyi) 중국 남방과학기술대(SUSTech, Southern University of Science and Technology) 총장이 ‘4차 산업혁명과 사회적 가치창출을 위한 기업가 정신’이란 주제로 특별 강연회를 가질 예정이다. 교수와 학생 등 우리대학 구성원은 물론 일반시민들까지 누구든 사전신청 없이 이 행사에 참여할 수 있다.
2017.05.18
조회수 18150
-
미국 프린스턴대 등 해외 유명대학과 핀테크 국제컨퍼런스 매년 순회 개최
우리대학이 미국 프린스턴大를 비롯해 중국 칭화大, 프랑스 에드헥(EDHEC: Ecole des Hautes Etudes Commerciales du Nord) 비즈니스 스쿨 등 세계 유수의 명문대로 꼽히는 3개 대학과 함께 올해부터 매년 핀테크(FinTech) 국제컨퍼런스를 공동 개최키로 합의했다.
☞ 에드헥(EDHEC) 비즈니스 스쿨: 1906년 설립된 EDHEC은 비즈니스 및 경영을 전문으로 하는 프랑스 Grandes Ecoles 중 하나로 상위 3대 비즈니스 스쿨로 꼽히고 있음. AACSB·EQUIS·AMBA의 인증을 받아 트리플 크라운을 수상한 최초의 기관 중 하나로 니스(Nice)에 위치함.
☞ 핀테크(FinTech): 금융(financial)과 기술(technique)의 합성어로, 정보기술(IT)을 기반으로 하는 새로운 형태의 금융 기술.
우리대학은 4개 대학이 매년 번갈아 가면서 주관하는 핀테크 컨퍼런스 시리즈에 우리나라를 비롯해, 미국, 중국, 프랑스 등 전 세계 학계·산업계·규제당국 관계자들이 참석해 자산운용산업의 핀테크, 즉 로보어드바이저(Robo Advisor) 산업에 관해 논의하는 메머드급 국제학술행사의 장이 될 것으로 기대하고 있다.
로보어드바이저는 로봇(Robot)과 자문가(Adviser)의 합성어로 자동화한 컴퓨터 프로그램이 펀드나 채권․주식 등 각종 금융 데이터를 분석하여 적절한 투자 자산운용 계획을 추천해서 수익을 올리게 해주는 첨단 서비스다.
올해는‘개인투자자를 위한 자산관리시스템(Wealth Management Systems for Individual Investors)’이란 주제로 4월 26일과 27일 이틀에 걸쳐 미국 프린스턴大에서 열리는데 우리대학에서는 김우창 교수(산업및시스템공학과·KAIST 자산운용미래기술센터장)가 대표로 참석한다.
특히 이번 컨퍼런스에는 ‘컴퓨터 과학의 노벨상’이라 불리는 2000년도튜링상(Turing Award) 수상자인 앤드류 야오(Andrew Yao) 칭화大 핀테크센터장과 세계 최대의 자산운용사인 뱅가드그룹(Vanguar Group) 창업자이자 회장과 명예회장을 지내면서 ‘월스트리트의 성인’으로 추앙받고 있는 존 보글(John Bogle) 보글금융시장연구센터 대표, 밴드하임 금융센터 설립멤버인 존 멀비(John Mulvey) 프린스턴大 교수 등 세계적으로 쟁쟁한 전문가와 학자들이 주요 연설자로 나서 로보어드바이저와 관련된 최신 연구결과를 발표하고 기술발전 동향 등에 관해 집중 조명한다.
☞ 튜링상(Turing award): 미국계산기학회(ACM)가 영국의 수학자 튜링(Alan Turing)을 기념하여 계산기 과학 분야에서 많은 공헌을 한 개인에게 수여하는 상. 1966년에 제정됐으 며 컴퓨터 과학분야 인사들에게는 최대의 영광으로 인식되고 있음. ACM 연례 회의에서 시상식을 하는데 여기서 수상자가 기념 강연을 하는 것이 관례임.
이밖에 중국 알리바바그룹 자회사 알리페이의 운영사인 앤트 파이낸셜(Ant Financial)과 미국에 본사를 두고 있는 세계적인 금융투자회사인 메릴린치 등이 참여해 자사의 로보어드바이저 시스템을 전시하고 시연할 예정이다. 한편 이번 컨퍼런스에는 KAIST 산업및시스템공학과(학과장: 이태억) 외에 美 프린스턴大에서 밴드하임 금융센터(Bendheim Center for Finance)와 금융공학과(Department of Operations Research and Financial Engineering), 그리고 중국 칭화大 핀테크센터, 프랑스 에드헥(EDHEC)의 리스크 인스티튜트(Risk Institute)가 공동 주최자로 참여하며 삼성자산운용(대표 구성훈)이 공식 파트너로 행사를 후원한다.
2017.04.20
조회수 17787
-
핵비확산교육연구센터, 제4기 핵비확산 하계 장학생 선발 완료
우리학교 핵비확산교육연구센터 (NEREC: Nuclear Nonproliferation Education and Research Center, 센터장 : 임만성 교수·원자력및양자공학과, 현 KUSTAR-KAIST 교육연구원장) 는 최근 대전을 비롯, 서울·경주 등 국내와 중국·일본 등 해외에서 진행예정인 ‘ 제 4 기 핵비확산 하계장학생 프로그램’ 에 참여할 장학생 선발을 완료했다.
이 프로그램은 핵비확산 분야 글로벌 인재를 발굴 및 양성하고 국제사회에서 우리나라의 핵투명성을 제고하기 위해 매년 30여명의 국내·외 대학 (원) 생을 선발해 핵비확산과 관련한 세계 각국의 기술과 정책을 조명하고 실제 연구수행의 기회를 제공하는 교육훈련 프로그램이다.
2014 년 첫 시작한 이후 지난 3 년간 공학, 자연과학, 사회과학을 포함한 여러 전공분야의 국내·외 명문대학 (원)생 71 명을 수료자로 배출했다.
올해 제 4 기 핵비확산 하계장학생 프로그램에는 전 세계 37 개국에서 150 여명의 학생들이 지원해 5 대 1 의 경쟁률을 보였는데 미 하버드대와 조지아공대·터프츠대·조지타운대, 영국 옥스퍼드대·케임브리지대, 러시아 모스크바공학물리대학 MEPhI, 중국 후단대, 일본 동경공업대, 그리고 우리나라 KAIST 와 서울대 등 총 16 개국 26 개 대학 (원) 에서 30 명 (원자력 전공 15 명, 국제정치학 및 기타 인문사회 전공 15 명 ) 의 학생을 최종 선발했다.
핵비확산교육연구센터는 오는 7월 10일부터 8월 18일까지 6주간 진행예정인 하계프로그램 기간 동안 이들 장학생을 대상으로 원자력에너지·북핵문제 및 핵비확산 관련 강의는 물론 국내·외 현장탐방과 핵비확산 국제학회 참여 등의 기회를 제공할 예정이다.
2017.04.19
조회수 10796
-
최시영 교수, 물리적 힘을 이용해 안정화된 에멀전 개발
우리 대학 생명화학공학과 최시영 교수 연구팀이 디플리션 힘이라고 불리는 물리적인 힘을 이용해 새로운 방식의 안정적인 에멀젼을 제작하는 데 성공했다.
생명화학공학과 연구조교수인 김규한 박사가 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 2월 1일자 온라인 판에 게재됐다.
특히 이 연구는 우리 대학 의 ‘학부생 연구 참여 프로그램(URP : Undergraduate research program)’을 통해 학부생인 김수빈 학생이 2저자로 참여해 의미를 더했다.
우리가 흔히 화장품 종류로 알고 있는 에멀전은 물속에 기름방울들이(또는 기름 속에 물방울이) 안정적으로 분산된 구조를 뜻한다. 그리고 피커링 에멀전은 계면활성제 대신 고체 입자를 사용해 안정화된 에멀전을 뜻한다.
일반적으로 물과 기름은 섞이지 않는다고 알려져 있지만 지금까지는 적정량의 계면활성제를 넣고 물과 기름을 섞어 적절히 분산시켰다. 이를 통해 에멀전을 제작했고 이는 마요네즈, 선크림, 로션 등 산업 전반에 유용하게 사용되고 있다.
그러나 지금까지 피커링 에멀전은 고체 입자 표면에 화학적인 처리를 통해 흡착력을 증대시켜 안정화하는 방식을 택했다. 이는 처리과정이 복잡하고 적용 범위가 매우 좁아 유용하게 사용되지 못했다.
연구팀은 피커링 에멀전의 표면을 화학적으로 처리하는 대신 수나노미터 크기의 작은 고분자 입자를 더 큰 고체 입자(수십 나노미터에서 수 마이크로미터 수준)와 함께 섞었다. 이를 통해 디플리션 힘(depletion force)을 유발했고 물리적인 힘을 통해 에멀전을 안정화시키는 데 성공했다.
디플리션 힘이란 많은 수의 작은 입자들이 자신들의 자유로운 공간을 많이 확보하기 위해 다른 큰 입자들을 뭉치게 만드는 힘을 뜻한다. 크기가 큰 입자끼리 서로 끌림을 유도하는 것이다.
그동안 디플리션 힘은 고체와 고체 입자끼리만 적용됐다. 그러나 연구팀은 작은 입자로 고분자, 큰 입자로 고체 입자와 기름방울을 사용해 고체와 액체 사이에서도 디플리션 힘이 적용됨을 증명했다.
작은 입자 크기 역할을 하는 고분자를 삽입함으로써 친수성을 갖는 고체 입자가 기름방울 표면에 흡착되는 것을 향상시켰고, 입자 표면으로부터 분리되는 것을 방지해 안정적인 상태를 유지할 수 있었다.
연구팀은 안정적인 고내부상 피커링 에멀전을 통해 다양한 종류의 다공성 고분자 물질을 쉽게 제작할 수 있음을 확인했다. 이 다공성 고분자는 넓은 표면적을 이용해 분리막이나 조직공학, 약물 전달체 및 센서 등에 적용 가능할 것으로 기대된다.
1저자인 김규한 연구교수는 “그동안 고체 콜로이드 입자들 사이에서만 이용되던 디플리션 힘을 고체 입자와 액체 방울 사이에서 구현한 첫 번째 예로서 그 학술적인 의미가 있다”고 말했다.
최 교수는 “학술적 의미를 넘어 산업 및 국가 경쟁력에 기여할 수 있는 기술이다”며 “화학적인 힘이 아닌 물리적 힘을 이용해 안정적인 에멀젼을 형성하기 때문에 고체 입자와 고분자 종류에 관계없이 사용 가능하고, 특수 목적에 맞는 맞춤형 다공성 물질 제작이 가능하다”고 말했다.
이번 연구는 한국연구재단 이공분야 기초연구사업 (대통령 post-doc. 펠로우십, 리서치 펠로우십, 중견연구자 지원사업)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 이번 기술을 통해 제작한 다공성 고분자 구조체의 내부 사진들
그림2. 고내부상 피커링 에멀젼의 유변학적 특성 측정 및 시스템의 가공성을 보여주는 사진
그림3. 안정한 피커링 에멀젼 시스템을 나타내는 사진들
2017.02.07
조회수 15803
-
2017년 총장 신년사
친애하는 KAIST 가족 여러분,
2017년 정유년(丁酉年) 새해가 밝았습니다. 새해 복 많이 받으시고, 댁내 건강과 행복이 가득하기를 기원합니다. 새해에도 여러분의 꿈이 이루어지고, 국민들로부터 큰 사랑과 믿음을 받고 있는 우리 KAIST가 그 성원에 보답할 수 있는 한해가 되기를 바랍니다.
2013년 총장으로 부임하며 Quantum Jump 전략을 수립하고, 전반기(2013~14)에는 ‘하나된 KAIST’를 만들어 구성원의 역량을 결집하고 후반기(2015~16)에는 ‘질적성장을 통해 혁신하는 KAIST’를 만들어 크게 도약하고자 노력했습니다. 지난 4년간 우리는 성장통을 지혜롭게 극복하며 눈부신 발전을 거듭했고, 명실상부한 ‘Students-Centered, Faculty-Driven, World’s Most Innovative Research University’로 발돋움 했습니다.
우리학교의 수월성을 달성하기 위한 ‘창의’와 ‘도전’은 국가발전의 원동력이 되어 왔습니다. 교육·연구·시스템의 지속적인 혁신, 창업문화의 확산, 대학의 사회적 책무를 다하고자 하는 노력들은 학교의 질적성장을 이끌어 왔습니다.
KAIST의 교육은 끊임없이 발전하고 있습니다. 세계적인 대학의 위상에 걸맞는 교육시스템을 마련하고자 세차례에 걸친 고강도 학사조직개편 끝에 미래지향적인 교육 플랫폼이 완성되었습니다. KAIST의 교육은 넓은 학문단위의 학사교육과 융합전공의 대학원교육이 효율적으로 운영될 수 있는 체제에 더하여 학문적 수월성과 창의성이 조화를 이루는 융합형 교육시스템입니다. 우리 학생들은 이러한 π(파이)형 교육시스템 속에서 학사과정간 학문적 기반의 공통점을 바탕으로 기초를 튼튼히 하고, 석‧박사 교육과정간 융합 전공교육과 연구를 통해 지혜와 지식을 체득하고 졸업 후 사회에 진출했을 때 대체불가능한 우수한 인재로 성장하고 있습니다.
새로 도입된 융합 Capstone Design 교과과정은 국내 공학교육의 패러다임을 현장중심형 교육으로 새롭게 바꾸는 계기를 마련했습니다. 본 과정을 통해 우리 학생들은 사회가 필요로 하는 과제를 직접 기획하고 도출된 문제를 해결해 봄으로써 창의성, 실무능력, 팀워크 및 리더십을 갖추게 될 것입니다.
우리학교는 Education 3.0을 통해 수요자 중심의 교육시스템을 선도하고 있습니다. 학생들은 강의 전에 제공받은 온라인 콘텐츠로 자기주도 사전학습을 수행하고, 수업시간에는 지식전달식 강의 대신 배움의 주체가 되어 팀원들과 협력학습을 하며 전공지식과 문제해결 및 소통능력 등을 체득하게 됩니다. 우리학교는 자체적으로 개발한 온라인 공개강좌 서비스인 KOOC(KAIST MOOC)을 개방함으로써 KAIST의 우수한 교육을 국내‧외에 무상으로 제공하며 대학의 사회적 책무를 다하고 있습니다.
KAIST의 연구역량은 세계적인 대학들과 어깨를 나란히 하고 있습니다. 우리학교의 혁신적인 교육 및 연구역량은 이미 QS, THE 등 세계 유수의 기관들로부터 널리 인정받고 있으며, 로이터통신은 매년 세계가 놀랄만한 연구성과를 발표하고 있는 우리학교를 ‘세계 혁신대학 6위’로 선정한바 있습니다. KAIST가 지금과 같이 지속적으로 발전하기 위해서는 단기적인 소나기 정책에 의한 연구보다는 늘 한 곳에서 샘솟는 샘물같이 지속가능한 연구를 수행할 수 있어야 합니다. 특히, 인류발전에 공헌할 수 있는 아이디어가 지속적으로 창출되고, 그 연구를 안정적으로 뒷받침 할 수 있는 재원이 마련되어야 하며, 누구나 꿈을 가지고 도전하며 도전의 성공여부 보다는 그 도전의 성실성이 평가되는 연구문화가 구축되어야 할 것입니다. KAIST 그랜드챌린지30 프로젝트와 같이 선도적인 연구지원제도를 신설한 것도 우리 KAIST가 앞장서서 인류가 당면한 거대한 문제들을 해결하고, 혁신적인 연구문화를 확산시키기 위함입니다.
생명과학분야의 글로벌 경쟁력을 확보하기 위해 그동안 KAIST 융합의과학대학원(세종)을 설립하기 위해 노력해왔습니다. 수년간 추진하였던 「KAIST 융합의과학대학원(세종) 설립사업」 예비타당성조사가 많은 분들의 노력으로 조만간 긍정적인 결과를 얻어 2018년부터 정부예산이 반영될 것으로 기대합니다. 우리학교는 융합의과학대학원을 시작으로 세종시에 KAIST의 혁신적인 교육·연구시스템을 구축하게 될 것이고, 융합생명과학분야의 경쟁력있는 교육‧연구역량을 갖추게 될 것입니다.
우리학교는 그동안 우리나라 대학사회의 창업문화를 선도하고 확산하는데 최선을 다해왔습니다. 학생들이 기업가정신을 함양할 수 있는 기회를 널리 제공하고 교원들의 창업활동을 장려함으로써 KAIST의 우수한 교육과 혁신적인 연구성과가 경제적‧사회적 가치로 연결될 수 있도록 노력했습니다. 과학기술 분야의 우수한 인재들이 창업인재로 성장할 수 있도록 지원하는 전담조직인 KAIST 창업원(Institute for Startup KAIST)을 설치하여 창의적인 아이디어가 사업화에 이르는 전 과정을 지원하고 있습니다. 또한 K-School을 설립하여 다양한 학과가 공동으로 운영하는 창업맞춤형 교육프로그램인 창업융합전문석사 과정을 운영하고 있습니다. 그 외에도 창업원 판교센터, KAIST 사회적기업가 MBA(SEMBA) 등 우리학교는 창업과 관련한 다양한 프로그램을 설치‧운영하며 캠퍼스 내 창업분위기를 조성하는 것은 물론 KAIST가 주축이 되어 전국적으로 창업문화가 확산될 수 있도록 노력한 결과 국내대학 창업지수 1위로 선정되는 등 가시적인 성과를 거두고 있습니다.
KAIST의 시스템 혁신은 항상 국내외의 여러 기관으로부터 주목을 받았습니다. 국내 대학 최초로 도입된 테뉴어제도는 세부적인 보완을 통해 정착단계에 접어들었으며, 영어강의와 성적연계 등록금 제도 등은 구성원들의 적극적인 의견수렴과 전문가그룹의 심도있는 검토를 통해 보완‧발전되었습니다.
2013년 심도있는 경영진단을 바탕으로 행정조직의 대대적인 개편이 있었습니다. 기능통합과 의사결정 체계의 간소화를 목표로 단행된 행정조직개편은 KAIST 행정을 ‘변화에 유연히 대응하는 전략적 조직’, ‘핵심기능 중심의 효율적인 조직’, ‘적절하고 명확하게 역할이 부여된 합리적인 조직’, ‘고객지향적인 고객친화적 조직’으로 변화시켰습니다. 또한, 행정발전교육센터를 신설하여 적극투자함으로써 행정분야에서 근무하는 직원들이 지속적으로 자기계발을 할 수 있도록 장려하고, 행정업무에 실질적으로 도움을 줄 수 있는 강좌를 개설하여 행정역량을 제고함으로써 행정서비스의 질을 향상할 수 있도록 했습니다.
구성원들간 원활한 소통이 이루어질 수 있도록 다양한 채널을 설치하고 의견을 청취하는데 많은 노력을 기울였습니다. 우리나라 대학 최초로 총장자문기구로 옴부즈퍼슨 제도를 도입하여 학내에서 발생하는 다양한 고충을 청취하고 중재하였고, 고객만족센터를 설치하여 구성원에게 제공되는 학교서비스의 질을 제고하였으며, 인권윤리센터를 신설하여 인권‧윤리 침해 예방 및 신속한 피해구제를 통해 구성원의 인권을 보호하고 평등하고 다양성이 존중되는 캠퍼스 문화를 조성하였습니다. 총장과 학교 구성원간의 소통은 특정한 시간이나 특별한 기회를 만들어 하는 것이 아니라 상시 자연스럽게 이루어져야 합니다. 총장실 개방, 찾아가는 커피아워, 학부 및 대학원생 초청 간담회, 구성원과의 이메일 교환 등을 통해 여러분의 작은 목소리에도 귀를 기울이려고 적극적으로 노력했고, 교내를 오가며 우연히 만나 나눈 대화들 또한 학교를 운영하는데 큰 도움이 되었습니다.
우리학교는 대전시민들로부터 큰 사랑과 관심을 받고 있습니다. 대전광역시청, 유성구청, 충남대학교 등 지역의 여러 기관들과 긴밀히 소통하며 더불어 사는 길을 마련하고자 노력했습니다. 그 결과, 충남대학교와 우리학교 사이에 위치한 담을 허물고 열린길을 만들었고, 카이스트교를 개통하여 대전시민들에게 한발짝 더 다가가는 계기를 마련하였습니다. 한마음봉사단, 학생들의 김장봉사, 지역의 소외계층을 위한 교육봉사 등을 통해 KAIST가 먼저 지역사회에 다가가는 활동을 장려하고 지원하였으며 이러한 활동은 앞으로도 적극적으로 활성화되어야 할 것입니다.
지난 4년간 지속적인 인프라 개선사업을 추진하여 세계적인 대학의 명성에 걸맞는 교육과 연구를 지원하고 양질의 생활환경을 제공할 수 있는 인프라가 구축되었습니다. 현재 정문술 2관 신축공사가 마무리 되었고, 학술문화창의관 신축과 중앙도서관 리모델링 사업이 진행 중입니다. 우리 캠퍼스는 Startup KAIST Studio 2 신축, 의학연구동(약국) 신축, International Village C동 리모델링, 반도체동(새늘동) 리모델링, 대강당 리모델링, 기계공학동 리모델링, Startup Village 리모델링, 서울캠퍼스 해정사와 8‧9호관 리모델링, 노천극장 리모델링, 화암기숙사 리모델링(예정), 에코 캠퍼스 구축(소나무 이식 등), 안전한 캠퍼스 구축(도로 및 보행자도로 개선 등) 등 신축공사와 노후건물 및 시설의 보수공사 등으로 빠르게 변화하였습니다. 인프라 확충사업 외에도, 문지캠퍼스에 IBS 사업단, 녹색교통대학원 등을 이전하여 기존 스페이스를 효율적으로 사용할 수 있는 방안에 대해 다양한 논의가 진행되고 있습니다.
국제화를 추구하고 다양성을 존중하는 문화는 앞으로 우리학교가 지속적으로 발전하는 원동력이 될 것입니다. 그동안 외국인 교원 10%, 외국인 학생 10%, 여성 교원 10%를 목표로 삼고 우수한 인재를 유치하기 위해 최선을 다한 결과 이제는 10:10:10 이니셔티브(Initiative)를 20:20:20 이니셔티브(Initiative)로 그 목표를 수정할 단계에 이르렀습니다. 나눔관 공동 Kitchen 환경개선, 교내 PODCAST를 통한 외국인 구성원들과의 소통, 할랄푸드 카페테리아(Hallal Food Cafeteria) 오픈, Bilingual 캠퍼스 구축사업, 해외 유수대학들과의 공동학위 프로그램 개설, 해외 인턴십 프로그램 확충, 젠더평등을 위한 제도개선, 여성휴게실 및 육아시설 개선 등 지금까지 우리가 기울였던 노력은 앞으로도 반드시 지속되어야 할 것입니다.
KAIST에 대한 국내외적 관심은 앞으로 더욱 커질 것으로 생각됩니다. 최근 4년간의 학부 지원자 경쟁률 추이가 가파르게 상승하고 있으며, 매우 우수한 학생들이 매년 입학하고 있습니다. 새내기는 물론 재학생들의 학교생활 만족도 또한 지속적으로 향상되면서 학생들의 학교에 대한 관심과 사랑으로 이어지고 있습니다. 최근 재학생, 동문, 학부모 등 우리학교와 직접적으로 관계된 분들의 기부가 급격히 늘어나는 새로운 기부문화가 형성되었고, 지난 4년간 기부건수는 2만 6천여건에 이르며 기부금 총액은 708억여원에 달합니다.국내외의 유수 기관에서 KAIST를 벤치마킹하기 위해 많은 분들이 찾아오고 있고, 몇몇 국가에서는 KAIST 분교를 자국에 설치해 달라는 요청을 한바 있습니다. 이러한 변화는 Happy Campus를 만들기 위한 우리 구성원들의 부단한 노력의 결과라고 생각합니다.
사랑하는 KAIST 가족 여러분,
2017년 신년사는 제가 KAIST 총장으로서 여러분께 드리는 마지막 신년사 입니다. 이사회에서 신임 총장 선임절차가 진행중이며, 2017년 2월 23일 이취임식을 끝으로 저는 여러분과 함께 했던 4년간의 KAIST 생활을 마치고 정들었던 교정을 떠납니다.
KAIST 총장으로서 제게 허락하는 시간까지 단 한 명의 구성원이라도 소외되지 않고 Happy Campus에서 꿈을 펼칠 수 있도록 최선을 다해 노력하겠습니다. 여러분과 함께 했던 지난 4년은 제게 큰 행복이자 영광이었습니다. KAIST를 세계 최고의 대학으로 성장시키고 해피 캠퍼스를 구축하기 위해 각자의 분야에서 헌신해 준 KAIST 전체 가족 여러분께 진심으로 감사드립니다.
여러분은 KAIST의 미래이자 대한민국을 이끌어가는 원동력입니다. 그동안 일구어낸 성과를 바탕으로 각자의 위치에서 인류와 국가의 발전에 공헌 할 수 있는 더욱 큰 꿈을 꾸고 그 꿈을 이루기 위해 최선을 다해주시길 바랍니다.
2017년은 우리 KAIST 가족 여러분의 모든 꿈이 실현되는 희망찬 한 해가 되기를 기원합니다. ‘제4차 산업혁명의 허브(hub)’이자 ‘Students-Centered, Faculty-Driven World’s Best Research University’를 향한 여러분의 도전을 응원합니다.
감사합니다.
2017년 1월 1일
KAIST 총장 강성모
2017.01.02
조회수 23033
-
윤성준 박사과정, 램리서치코리아 논문공모전 대상 수상
〈 윤성준 박사과정(우)과 서인학 램리서치 코리아 대표이사(좌) 〉
우리 대학 전기및전자공학과 윤성준 박사과정(지도교수 조병진)이 제6회 ‘램리서치 코리아(Lam Research Korea) 대학(원)생 논문공모전’에서 대상을 수상했다.
지난 12월 16일 컨벤션 벨라지움 센터에서 열린 본 시상식에서는 대상 1팀 외에 최우수상 및 우수상 등 총 4팀이 수상했다.
윤성준 박사과정은 이번 공모전에서 7 나노미터 이하급 반도체 노드에서 적용 가능한 다공성 절연물질의 표면 실링 기법 (Pore Sealing of Porous Ultra-Low-k Dielectrics by iCVD Process) 이라는 주제의 연구를 통해 수상했다.
윤 박사과정의 연구는 그동안 반도체 칩의 신호지연을 개선시키기 위한 다공성 초절연물질의 도입을 지연시킨 주된 이유인 공정상의 어려움을 해결할 수 있다는 점을 인정받았다.
향후 반도체 공정에서 다공성 초절연물질의 사용은 필수적이기에 이 연구가 반도체 기술 발전에 큰 기여를 할 것으로 평가됐다.
윤성준 씨는 “그 동안의 연구가 반도체 산업계에서 가치를 인정받아 매우 기쁘다”며 “앞으로도 꾸준한 연구를 통해 반도체 기술 발전에 기여하겠다” 고 말했다.
2011 년에 시작된 램리서치 코리아 대학(원)생 논문 공모전은 반도체 산업의 육성과 우수인재 발굴을 위해 시작됐다.
공모전을 통해 대학생들의 참신한 아이디어 발굴, 창의적인 시야와 생각을 독려하기 위해 장학금을 수여한다.
램리서치 코리아는 1980년에 설립돼 전 세계 반도체 장비 업계를 선도는 글로벌 반도체 장비 업체로 식각, 세정, 증착 장비를 주력으로 개발 및 판매하고 있다. 작년 매출액 기준 글로벌 반도체 장비 2위를 달성했다.
2017.01.02
조회수 13624
-
나석주 교수, 훔볼트 연구상 수상
〈 나 석 주 교수 〉
우리 대학 기계공학과 나석주 교수가 독일 알렉산더 폰 훔볼트(Alexander von Humboldt) 재단에서 수여하는 2016년도 훔볼트연구상(Humboldt research award)을 수상했다.
훔볼트연구상은 근본적인 발견이나 새로운 이론, 통찰력을 통해 관련 연구 분야에 중요한 영향을 주고, 앞으로도 최첨단의 연구를 할 것으로 기대되는 연구자에게 주어진다.
독일을 제외하면 국적과 연구 분야에 관계없이 누구나 추천받을 수 있고 독일 내 우수한 연구자에 의해 100명 내외로 추천이 가능하며, 수상자 수는 대략 1년에 65명 내외이다.
상금은 6만 유로이고 수상자는 본인이 선택하는 독일내의 연구기관에서 1년까지 머무르며 공동연구를 수행할 수 있다.
나석주 교수는 2017년 7월부터 2018년 2월 28일까지 독일 베를린에 소재한 독일연방재료시험연구소(BAM)에서 M. Rethmeier 교수의 연구그룹과 함께 레이저 용접 및 SLM(Selective Laser Melting)공정의 수치해석에 관한 연구를 수행할 예정이다.
2016.12.14
조회수 9577
-
전상용, 임성갑 교수, 신경세포의 안정적 배양 가능한 플랫폼 개발
우리 대학 생명과학과 전상용 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 신경세포를 장기적, 안정적으로 배양할 수 있는 아세틸콜린 유사 고분자 박막 소재를 개발했다.
특히 이 연구는 KAIST의 ‘학부생 연구 참여 프로그램(URP : Undergraduate research program)’을 통해 유승윤 학부생이 참여해 더욱 큰 의미를 갖는다.
유승윤 학부생을 포함해 백지응 박사과정, 최민석 박사가 공동 1저자로 참여한 이번 연구 성과는 나노분야 학술지 ‘에이시에스 나노(ACS Nano)’ 10월 28일자 온라인 판에 게재됐다.
신경세포는 알츠하이머, 파킨슨병, 헌팅턴병 등의 신경퇴행성 질환 및 신경 기반 바이오센서 등 전반적인 신경관련 응용연구에 꼭 필요한 요소이다.
대부분의 신경 질환이 노인성, 퇴행성이기 때문에 신경세포가 오래됐을 때 어떤 현상이 발생하는지 관찰할 수 있어야 한다. 하지만 신경세포는 장기 배양이 어려워 퇴행 상태가 되기 전에 세포가 죽게 돼 관찰이 어려웠다.
기존에는 특정 수용성 고분자(PLL)를 배양접시 위에 코팅하는 방법을 통해 신경세포를 배양했다. 그러나 이 방법은 장기적, 안정적인 세포 배양이 불가능하기 때문에 신경세포를 안정적으로 장기 배양할 수 있는 새로운 플랫폼이 필요하다.
연구팀은 문제 해결을 위해 ‘개시제를 이용한 화학 기상 증착법(iCVD : initiated chemical vapor deposition)’을 이용했다. iCVD는 기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법으로, 기존 세포 배양 기판 위에 손쉽게 얇고 안정적인 박막을 형성시킬 수 있다.
연구팀은 이러한 기체상 공정의 장점을 이용해 신경세포를 장기적으로 배양할 수 있는 기능을 가진 공중합체 고분자 박막을 합성하는 데 성공했다. 새로 합성된 이 고분자 박막은 신경전달물질로 알려진 아세틸콜린과 유사한 물질로 이뤄져 있다.
또한 신경세포가 고분자 박막에서 배양될 수 있는 최적화된 조건을 발견했고, 이 조건에서 생존에 관여하는 여러 신경관련 유전자를 확인했다.
연구팀은 생명과학과 손종우 교수 연구팀의 도움을 통해 새로 배양된 신경세포가 기존의 신경세포보다 전기생리학적 측면 및 신경전달 기능적 측면에서 안정화됨을 확인했다.
연구팀은 “신경세포를 장기적으로 배양할 수 있는 이 기술은 향후 신경세포를 이용한 바이오센서와 신경세포 칩 개발의 핵심 소재로 활용될 것이다”며 “다양한 신경 관련 질병의 원리를 이해할 수 있는 역할을 할 것으로 기대된다”고 말했다.
이번 연구는 한국보건산업진흥원과 한국연구재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 본 연구에서 개발된 표면(pGD3) 및 폴리라이신 코팅 위에서 장시간 배양된 신경세포
그림2. 신경전달물질 유사 작용기를 도입한 표면 형성 과정
2016.11.17
조회수 18481