-
네이버·인텔과 AI 반도체 신 생태계 조성 공동 협력
챗GPT가 촉발한 생성형 인공지능(AI)*이 세계적으로 열풍을 일으키는 가운데 새로운 인공지능 반도체의 생태계 구축을 위해 KAIST(총장 이광형)가 네이버(NAVER) 및 인텔(intel)과 손잡고 상호 보유 중인 역량과 강점을 한 곳에 집중한 ‘NAVER · intel · KAIST AI 공동연구센터(NIK AI Research Center)’를 설립한다.
업계에서는 이들 세 기관의 전략적인 제휴가 인공지능 반도체·인공지능 서버와 데이터센터의 운영에 필요한 오픈소스용 소프트웨어 개발 등 인공지능 분야에서 각자 보유하고 있는 하드웨어 및 소프트웨어 기술과 역량을 융합해서 새로운 인공지능 반도체 생태계를 구축하는 한편 시장과 기술 주도권 확보를 위해 선제적인 도전에 나선 것으로 보고 있다.
특히 첨단 반도체 CPU 설계부터 파운드리까지 하는 세계적인 반도체 기업 인텔이 기존의 중앙처리장치(CPU)를 넘어 인공지능 반도체 ‘가우디(GAUDI)’**를 최적의 환경에서 구동하기 위해 오픈소스용 소프트웨어 개발 등을 목적으로 국내 대학에 공동연구센터를 설립하고 지원하는 것은 우리 대학이 처음이다.
우리 대학은 네이버클라우드(대표: 김유원)와 대전 KAIST 본원에서 인공지능 반도체·인공지능 서버와 클라우드·데이터센터 등의 성능개선과 최적의 구동을 위한 오픈소스용 첨단 소프트웨어 개발 등을 위해 ‘NAVER · intel · KAIST AI 공동연구센터(NIK AI Research Center)’ 설립과 운영을 주요 내용으로 하는 업무협약(MOU)을 체결했다고 30일 밝혔다.
우리 대학 관계자는 “인텔이 인공지능과 반도체 분야 오픈소스용 소프트웨어 개발파트너로 네이버와 KAIST를 선택한 것은 전략적으로 매우 큰 의미가 있다”라고 강조했다.
이 관계자는 특히 “네이버클라우드가 지닌 컴퓨팅·데이터베이스·인공지능 등 네이버 클라우드 플랫폼(NAVER Cloud Platform) 기반의 다양한 인공지능 서비스 역량과 인텔의 차세대 인공지능 칩 기술, 그리고 KAIST가 갖추고 있는 세계적 수준의 전문인력과 소프트웨어 연구 능력이 결합해 인공지능 반도체 분야에서 기존과는 다른 창조적이면서도 혁신적인 생태계 조성을 성공적으로 이뤄낼 것”이라고 기대했다.
이날 협약식 행사에는 이광형 총장을 비롯해 이균민 교학부총장, 이상엽 연구부총장, 전기및전자공학부 김정호 교수 등 주요 보직교수가, 네이버클라우드 김유원 대표이사와 하정우 AI 이노베이션 센터장, 이동수 하이퍼스케일 AI 담당 이사 등 주요 경영진이 참석했다.
우리 대학과 네이버클라우드는 이번 MOU 체결을 계기로 올 상반기 중에 KAIST에 ‘NAVER · intel · KAIST AI 공동연구센터(NIK AI Research Center)’를 설치하고 7월부터 본격적인 연구에 들어갈 계획이다.
우리 대학에서는 고대역폭메모리(HBM)*** 등 인공지능 반도체 설계와 인공지능 응용설계(AI-X) 분야에서 세계적인 석학으로 꼽히는 전기및전자공학부 김정호 교수가, 네이버클라우드 측에서는 인공지능 반도체 설계 및 인공지능 소프트웨어 전문가인 이동수 이사가 공동연구센터장을 맡는다. 또 KAIST 전산학부 성민혁 교수와 네이버클라우드 권세중 리더가 각각 부센터장으로서 공동연구센터를 이끈다.
공동연구센터의 운영 기간은 3년인데 연구성과와 참여기관의 필요에 따라 연장한다. KAIST에 설치되는 공동연구센터가 핵심 연구센터로서 기능과 역할을 맡는 데 KAIST에서 인공지능과 소프트웨어 분야 전문가인 20명 내외의 교수진과 100여명의 석·박사 대학원생들이 연구진으로 참여한다.
초기 2년간은 인텔의 하바나랩스가 개발한 인공지능 학습 및 추론용 칩(Chip) ‘가우디(GAUDI)’를 위한 플랫폼 생태계 공동 구축을 목적으로 20~30개 규모의 산학 연구과제를 진행한다.
자연어 처리, 컴퓨터 비전과 머신러닝 등 주로 인공지능 분야 오픈소스용 소프트웨어 개발 위주로 연구가 이뤄지는데 자율 주제 연구가 50%, 인공지능 반도체의 경량화 및 최적화에 관한 연구가 각각 30%와 20%를 차지한다.
이를 위해 네이버와 인텔은 네이버 클라우드 플랫폼 기반의 ‘가우디2(GAUDI2)’를 우리 대학 공동연구센터에 제공하며 KAIST 연구진은 ‘가우디2’를 이용한 논문 등 연구 실적을 매년 공개한다.
이 밖에 인공지능·클라우드 등 각자가 보유한 역량 외에 공동 연구에 필요한 각종 인프라 시설(Infrastructure)과 장비 등을 공유하는 한편 연구 인력의 상호 교류를 위해 공동연구센터에 필요한 공간과 행정인력을 지원하는 등 다양한 협력 활동을 전개할 방침이다.
우리 대학 김정호 교수는 “KAIST는 가우디 시리즈의 활용을 통해 인공지능 개발, 반도체 설계와 운영 소프트웨어 개발 등에서 기술 노하우를 확보할 수 있다”라면서, “특히 대규모 인공지능 데이터센터 운영 경험과 향후 연구개발에 필요한 인공지능 컴퓨팅 인프라를 확보할 수 있다는 점에서 이번 공동연구센터 설립이 매우 큰 의미가 있다”라고 강조했다.
네이버클라우드 이동수 이사는 “네이버클라우드는 KAIST와 함께 다양한 연구를 주도해 나가며 하이퍼클로바X 중심의 인공지능 생태계가 확장되기를 기대한다”라며, “공동연구센터를 통해 국내 인공지능 연구가 보다 활성화되고 인공지능 칩 생태계의 다양성이 확보되기를 바란다”라고 말했다.
2024.04.30
조회수 2275
-
인공지능으로 파킨슨병 맞춤형 치료 가능
파킨슨병 같은 만성 퇴행성 뇌 질환의 경우, 생존 환자의 뇌세포에 직접 접근이 제한적이기 때문에, 뇌 질환 환자의 세포 데이터를 토대로 환자 질병의 메커니즘 하위 유형을 인공지능으로 예측하는 것은 시도된 바가 없다.
우리 대학 뇌인지과학과 최민이 교수 연구팀이 영국 프랜시스 크릭 연구소(Francis Crick Institute)와의 공동 연구로 파킨슨병 환자의 개인별 질병 하위 유형을 예측하는 인공지능 기반의 플랫폼을 개발했다고 15일 밝혔다.
최민이 교수 연구팀이 개발한 플랫폼은 파킨슨병 환자의 역분화 만능 줄기세포(hiPSC)에서 분화된 신경 세포의 핵, 미토콘드리아, 리보솜 이미지 정보만 학습해 파킨슨 환자의 병리적 하위 유형을 정확하게 예측한다.
이 기술을 활용하면 환자별로 다르게 나타나는 파킨슨병 양상을 겉으로 보이는 발현형이 아닌 생물학적 메커니즘별로 분류할 수 있다. 이를 통해 원인 미상의 파킨슨병 환자가 속한 분자 세포적 하위 유형별로 진단이 가능해져 환자 맞춤형 치료의 길을 열 수 있다. 또 이 플랫폼은 고속의 대량 스크리닝 시스템을 사용하기 때문에 병리적 하위 유형에 적합한 맞춤형 약물 개발 파이프라인으로도 활용될 수 있다.
지금까지 파킨슨병의 치료는 환자 개별의 병리 상태를 고려하지 않고 확률에 기댄 ‘일률적 접근’ 방식을 사용해 왔다. 이러한 접근 방식은 병리적 원인과 치료 방법 사이의 불일치로 인해 치료 효과를 향상하기 어려웠다.
최민이 교수 연구팀이 개발한 플랫폼을 사용하면 개별 환자 뇌세포의 분자 및 세포 정보를 정밀하게 프로파일링할 수 있다. 이를 토대로 환자들의 질병 하위 유형을 정확히 진단할 수 있어서 궁극적으로 ‘정밀 의학 (Precise medicine)’이 가능해진다. 이는 각 개인에게 맞춤화된 치료 (Personalized medicine)로 이어져 치료 효과를 크게 향상할 수 있을 것으로 기대된다.
이 플랫폼은 2012년 노벨의학상 수상 기술인 유도만능줄기세포(iPSC: 성인 피부세포나 혈액에서 얻은 체세포를 태아기의 미분화 상태로 리프로그래밍한 세포. 어떤 장기 세포로도 분화가 가능)를 분화시켜 얻은 뇌세포를 사용하는 ‘접시 속 질병(disease in a dish)’ 패러다임이다. 이는 퇴행성 뇌 질환처럼 병변을 직접 얻을 수 없거나, 인간의 뇌를 정확하게 모사할 수 없는 동물 모델의 한계점을 극복할 수 있는 기술 중 하나로 주목받고 있다. 특히, 접시 속에 배양한 자신의 표적 질병 세포를 순차적으로 이미징하면 일련의 병리적 사건을 추적할 수 있어 질병 진행에 따른 약물 반응 결과를 예측할 수 있다는 이점이 있다.
교신 저자인 최민이 교수는 "이번 연구는 실험실에서 얻은 생물학적 데이터를 인공지능에 효과적으로 학습시켜, 정확도가 높은 질병 하위 유형 분류 모델을 생성하는 방법을 구체적으로 소개했다”며, "이 플랫폼은 자폐 스펙트럼과 같이 환자 개인별 증상이 뚜렷하게 다른 뇌 질환의 하위 유형을 분류하는 데에도 유용할 것이며, 이를 통해 효과적인 치료법 개발도 가능해질 것이다”라고 연구의 의의를 설명했다.
이번 논문은 영국 Medical Research Council (MRC)와 대교-KAIST 인지 향상 연구센터의 지원으로 수행됐으며, 국제 학술지 ‘네이처 머신 인텔리젼스 (Nature Machine Intelligence, IF = 25.8) 8월호에 출판됐다 (논문명: Prediction of mechanistic subtypes of Parkinson’s using patient-derived stem cell model)
2023.08.16
조회수 3914
-
챗GPT에 사용된 트랜스포머로 다공성 소재 예측
다공성 소재는 넓은 공극과 표면 면적을 지니고 있어, 가스 흡착, 분리, 촉매 등 다양한 에너지 및 환경 분야에서 적용된다. 다공성 소재 중 한 종류인 금속 유기 골격체(MOF)는 무한대에 가까운 경우의 수를 갖는 넓은 물질 공간(materials space) 안에 존재하기에, 인공지능을 사용해 최적의 물질을 추출하고 특성을 예측하려는 연구가 활발히 진행되고 있다. 하지만 이러한 모델들은 대부분 특정한 물성 한 종류만 학습할 수 있으며, 모든 재료 특성에 보편적으로 적용할 수 없다는 단점이 존재한다.
우리 대학 생명화학공학과 김지한 교수 연구팀이 세계 최초로 멀티모달 트랜스포머를 적용한 인공지능(AI)을 통해 다공성 소재의 다양한 물성을 예측하는 기술을 개발했다고 5일 밝혔다. 멀티모달 트랜스포머는 비디오 프레임과 오디오 트랙, 웹 이미지와 캡션, 교육용 비디오와 음성 대본과 같이 서로 다른 형태의 정보를 효과적이고 효율적으로 결합하도록 설계된 신경망 모델의 일종이다.
김지한 교수 연구팀은 챗GPT(ChatGPT)에서 사용된 모델인 트랜스포머를 다공성 소재에 도입해 모든 성능을 예측할 수 있는 멀티모달 인공 신경망을 개발했다. 멀티모달은 사진(이미지)과 설명(자연어)같이 서로 다른 형태의 데이터를 함께 학습하며, 이는 인간과 비슷하게 입체적이고 종합적인 사고를 할 수 있도록 도와준다. 연구팀이 개발한 멀티모달 트랜스포머 (MOFTransformer)는 원자 단위의 정보를 그래프로 표현하고, 결정성 단위의 정보를 3차원 그림으로 전환 후 함께 학습하는 방식으로 개발했다. 이는 다공성 소재의 물성 예측의 한계점이었던 다양한 물성에 대한 전이 학습을 극복하고 모든 물성에서 높은 성능으로 물성을 예측할 수 있게 했다.
김지한 교수 연구팀은 다공성 소재를 위한 트랜스포머를 개발해 1백만 개의 다공성 소재로 사전학습을 진행했으며, 다공성 소재의 가스 흡착, 기체 확산, 전기적 특성 등의 다양한 소재의 물성을 기존의 발표된 머신러닝 모델들보다 모두 더 높은 성능으로 (최대 28% 상승) 예측하는 데 성공했고, 또한 논문으로부터 추출된 텍스트 데이터에서도 역시 높은 성능으로 예측하는 데 성공했다.
연구팀이 개발한 기술은 물질의 특성을 계산 및 예측하는 새로운 방법론을 제시했으며, 이를 통해 소재 분야에서 새로운 소재의 설계와 개발에 도움이 될 뿐만 아니라, 기존의 소재에 대한 깊은 이해를 얻을 수 있을 것으로 기대된다. 더불어, 멀티모달 트랜스포머는 다공성 소재뿐만 아니라 다른 종류의 소재에도 확장 가능한 범용적인 모델이므로, 인공지능을 통한 소재 과학의 발전에 크게 이바지할 수 있을 것이다.
생명화학공학과 강영훈, 박현수 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)'에 지난 3월 13일에 게재됐다. (논문명: A multi-modal pre-training transformer for universal transfer learning in metal–organic frameworks)
한편 이번 연구는 과학기술정보통신부의 지원으로 국가 소재 연구 데이터 사업단, 그리고 한국연구재단 (NRF) 중견 연구자 지원 사업의 지원을 받아 수행됐다.
2023.04.05
조회수 5533
-
똑똑한 영상 복원 인공지능 기술 개발
딥러닝 기술은 영상 복원 속도가 기존 알고리즘 대비 수백 배 이상 빠를 뿐만 아니라 복원 정확도 역시 높다. 하지만, 주어진 학습 데이터에만 의존하는 딥러닝 기술은 영상 취득 환경상에 변화가 생기면 성능이 급격히 저하되는 치명적인 약점이 있다. 이는 알파고와 이세돌 九단과의 대국 시 `신의 한 수'에 의해 알파고의 성능이 급격하게 저하되었던 사례를 떠올리면 쉽게 이해할 수 있다. 즉, 인공지능이 학습하지 못했던 변수(학습 데이터상에 존재하지 않는 수)가 발생할 때 신뢰도가 급격히 낮아지는 인공지능 기술의 근본적인 문제이기도 하다.
우리 대학 바이오및뇌공학과 장무석 교수 연구팀과 김재철AI 대학원 예종철 교수 연구팀이 공동 연구를 통해 인공 지능의 신뢰도 문제를 해결할 수 있는 물리적 학습 기반의 영상 복원 딥러닝 기술을 개발했다고 6일 밝혔다.
연구팀은 영상 취득 환경에서 발생할 수 있는 변수 대부분이 물리적 법칙을 통해 수학적으로 기술 가능하다는 점에 착안해 물리적 법칙과 심층 신경망이 통합된 학습 기법을 제시했다.
모든 영상 기술은 물리적인 영상 기기를 통해 영상 정보를 취득한다. 연구팀은 이 정보 취득 과정에 대한 물리적인 통찰력을 인공지능에 학습시키는 방법을 개발했다. 예를 들면, `네가 도출한 복원 결과가 물리적으로 합당할까?' 혹은 `이 영상 기기는 물리적으로 이런 변수가 생길 수 있을 것 같은데?'라는 식의 질문을 통해 물리적 통찰력을 인공지능에 이식하는 방법을 제시한 것이다.
연구팀은 변화하는 영상 취득 환경에서도 신뢰도 높은 홀로그래피 영상* 을 복원하는데 성공했다. 홀로그래피 영상 기술은 의료 영상, 군용 감시, 자율 주행용 영상 등 다양한 정밀 영상 기술에 다양하게 활용될 수 있는데, 이번 연구는 의료 진단 분야의 활용성을 집중적으로 검증하였다.
*홀로그래피 영상: 물체의 그림자 패턴(회절 패턴)으로부터 물체의 형태를 복원하는 영상 기법, 일반적인 영상 기술과 달리 위상 변화에 의한 물체의 미세 구조를 감지할 수 있는 영상 기술
연구팀은 먼저 3차원 공간상에서 매우 빠르게 움직이는 적혈구의 회절 영상(확산된 그림자형상)으로부터 적혈구의 형태를 실시간으로 복원하는데 성공했다. 이러한 동적인 영상 환경에서 예상치 못한 변수로는 여러 개의 적혈구 덩어리가 복잡하게 겹쳐진다거나 적혈구가 예상하지 못했던 위치로 흘러가는 경우를 생각해 볼 수 있다. 여기서, 연구팀은 인공 지능이 생성한 영상이 합당한 결과인지 빛 전파 이론을 통해 검산하는 방식으로 물리적으로 유효한 복원 신뢰도를 구현하는데 성공하였다.
연구팀은 암 진단의 표준기술로 자리잡고 있는 생검 조직(생체에서 조직 일부를 메스나 바늘로 채취하는 것)의 영상 복원에도 성공했다. 주목할 점은 특정한 카메라 위치에서 측정된 회절 영상만을 학습했음에도 인공지능의 인지능력이 부가되어 다양한 카메라 위치에서도 물체를 인식하는데 성공했다는 점이다. 이번에 구현된 기술은 세포 염색 과정이나 수 천 만원에 달하는 현미경이 필요하지 않아 생검 조직 검사의 속도와 비용을 크게 개선할 수 있을 것으로 기대된다.
물리적 통찰력을 인공 지능에 이식하는 영상 복원 기술은 의료 진단 분야 뿐만 아니라 광범위한 영상 기술에 활용될 것으로 기대된다. 최근 영상 기술 산업계 (모바일 기기 카메라, 의료 진단용 MRI, CT, 광 기반 반도체 공정 불량 검출 등) 에선 인공지능 솔루션 탑재가 활발히 이루어지고 있다. 영상 취득에 사용되는 센서, 물체의 밝기, 물체까지의 거리와 같은 영상 취득 환경은 사용자마다 다를 수밖에 없어 적응 능력을 갖춘 인공 지능 솔루션에 대한 수요가 큰 상황이다. 현재 대부분의 인공 지능 기술은 적응 능력 부재로 신뢰도가 낮은 문제 때문에 실제 현장에서 활용성이 제한적인 상황이다.
바이오및뇌공학과 이찬석 연구원은 "데이터와 물리 법칙을 동시에 학습하는 적응형 인공지능 기술은 홀로그래피 영상뿐만 아니라 초고해상도 영상, 3차원 영상, 비시선 영상(장애물 뒷면을 보는 영상) 등 다양한 계산 영상 기술에 적용될 수 있을 것으로 기대된다ˮ고 밝혔다.
연구진은 "이번 연구를 통해 인공지능 학습에 있어서 학습 데이터에 대한 강한 의존성(신뢰도 문제)을 물리적 법칙을 결합해 해소했을 뿐만 아니라, 이미지 복원에 있어 매게 변수화된 전방 모델을 기반으로 했기 때문에 신뢰도와 적응성이 크게 향상됐다ˮ며, 이어 "이번 연구에서는 데이터의 다양한 특성 중에서 수학적 혹은 물리적으로 정확히 다룰 수 있는 측면에 집중했고, 향후 무작위적인 잡음이나 데이터의 형태에 대해서도 제약받지 않는 범용 복원 알고리즘을 개발하는 데 주력할 것이다ˮ라고 밝혔다.
바이오및뇌공학과 이찬석 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)'에 지난 1월 17일 字 출판됐다. (논문명: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data)
한편 이번 연구는 삼성미래기술육성사업과 선도연구센터사업의 지원을 받아 수행됐다.
2023.02.06
조회수 4660
-
실시간 나노 측정이 가능한 3D 표면예측 기술 개발
우리 대학 기계공학과 이정철 교수 연구팀이 현미경 사진을 이용해 나노 스케일 3D 표면을 예측하는 딥러닝 기반 방법론을 제시했다고 17일 밝혔다.
물리적 접촉 기반으로 나노 스케일의 표면 형상을 3D 측정하는 원자현미경은 웨이퍼 소자 검사 등 반도체 산업에서 사용되고 있다. 하지만, 원자현미경은 물리적으로 표면을 스캔하기 때문에 측정 속도*가 느리고, 고온 극한 환경에서는 작동할 수 없다는 단점을 지닌다.
* 측정 속도를 높이기 위해 표면 스캔 방식의 효율을 개선해 20 FPS(초당 프레임 수) 수준의 비디오 프레임 원자현미경이 개발됐지만, 측정 가능한 표면의 면적이 100제곱마이크로미터(μm2) 수준으로 제한되며, 극한의 환경에서는 여전히 작동이 제한된다.
이에 연구팀은 비접촉 측정 방법인 광 현미경에서 딥러닝을 이용하여 원자현미경으로 얻어질 수 있는 나노 스케일 3D 표면을 예측했다. 비슷한 개념인 사진에서 깊이를 예측하는 기술은 자율주행을 위해 많이 연구되고 있는 분야다. 연구팀은 이러한 기술이 적용되는 스케일을 일상생활 범위에서 나노 스케일 범위로 옮겨 인공지능 모델을 훈련했다. 인공지능 모델로는 입력 데이터에서 대상의 특징을 추출하고, 추출된 특징에서 출력 데이터를 표현하는 인코더-디코더 구조*를 활용했다. 연구팀이 제안한 모델은 광 현미경 사진을 하나의 변수로 표현하고, 이후 이 변수에서 현미경 사진을 3D 표면으로 계산하여 나타내는데 성공했다.
*인코더-디코더 구조: 입력 데이터에서 인공 신경망 혹은 합성곱 층을 이용하여 데이터의 크기 및 차원을 추출하며 특징을 추출하고 (인코더), 추출된 특징에서 출력 데이터를 생성하는 (디코더) 구조. 활용 목적에 따라 추출된 특징 혹은 출력 데이터가 사용됨.
연구팀은 제안된 방법론을 반도체 산업의 센서, 태양 전지 및 나노 입자 제작에 응용되는 저메니움(게르마늄) 자가조립 구조*의 공정 중 분석 및 검사를 위해 적용했다. 광 현미경 사진을 이용해 15% 오차 수준 이내에서 1.72배까지 더 높은 해상도의 높이 맵을 예측하였는데, 이를 기반으로 각 응용에 필요한 형상의 자가조립 구조가 만들어지도록 실시간으로 공정 과정을 검사하였다. 또한, 같은 딥러닝 모델로 어닐링(가열) 중 동적으로 변하는 표면 형상을 시뮬레이션 하여 공정 과정을 분석 및 최적화하여 기존 공정으로는 불가능했던 공동의 형상을 만들어냈다.
* 저메니움 자가조립 구조란, 저메니움 웨이퍼에 마이크로 단위 수직 구멍을 식각 후 고온 어닐링(가열)을 하면 생기는 표면 아래의 공동을 뜻한다. 가열과정 중 구멍이 식각된 표면이 닫히고, 이후 표면과 표면 아래 공동의 형상이 함께 변하는데 공동의 형상에 따라 각기 다른 용도로 활용된다. 연구팀은 이렇게 동적으로 변하는 구조의 표면 높이 맵을 예측했다.
이번 연구에서 제안된 딥러닝 기반 방법론은 원자현미경으로는 제한돼있던 나노 스케일 표면 높이 맵 측정을 1 제곱밀리미터(mm2) 까지의 넓은 표면에 대해 기존 원자현미경 측정 속도 대비 10배에 해당하는 200 FPS까지 측정 가능하도록 속도를 높였으며, 광학을 이용한 비접촉 관측이기에 극한의 열 환경에서도 측정이 가능한 방법을 제시한 데에 의의가 있다. 이번 연구는 광학 현미경 해상도의 물리적 한계인 빛의 파장 이하의 작은 나노 스케일에서 동적인 현상을 현미경만으로 분석할 수 있게 해, 공정 중 혹은 이후 표면 분석이 필요한 재료, 물리, 화학 등에서의 나노 스케일 연구를 촉진할 것으로 기대된다.
또한 학계 뿐 아니라 산업계에서도 쓰일 것으로 기대된다. 향후 반도체 사업에는 웨이퍼의 표면 분석 속도와 정확도를 개선함으로서, 반도체 공정 시 생산 속도와 정밀한 측정으로 수율 개선에 기여할 수 있다.
연구를 주도한 이정철 교수는 "개발된 기술은 시간에 따라 변화하는 반도체 표면 및 내부 구조에 대해 불연속적인 저해상도 광학 현미경 사진 몇 장만 이용해서, 연속적인 고해상도 원자현미경 동영상을 생성해내는 최초의 연구로서, 극한 공정 중 실시간 나노 측정을 대체하는 효과를 가져와 반도체 및 첨단센서 산업 발전에 기여할 것ˮ이라고 말했다.
한편, 이번 연구는 국제 학술지 어드밴스드 인텔리전트 시스템(Advanced Intelligent Systems)에 지난 12월 20일 字에 온라인 게재됐으며, 23년 1사분기의 표지 논문(Inside back cover) 중 하나로 선정됐다. 이번 연구는 한국연구재단의 중견연구자지원사업과 기초연구실 지원사업의 지원을 받아 수행됐다.
2023.01.17
조회수 4107
-
인공지능으로 화학반응을 예측하다
우리 대학 생명화학공학과 정유성 교수 연구팀이 화학자처럼 생각하는 인공지능을 개발했다고 4일 밝혔다. 연구팀이 개발한 인공지능은 유기 반응의 결과를 정확하게 예측한다.
유기 화학자는 반응물을 보고 유기 화학반응의 결과를 예상해 약물이나 유기발광다이오드(OLED)와 같이 원하는 물성을 갖는 분자를 합성한다. 하지만 실험을 통해 화학반응의 생성물을 직접 확인하는 작업은 일반적으로 시간과 비용이 많이 소모된다. 게다가 유기 화학 반응은 같은 반응물에서 다양한 생성물이 생길 수 있어 숙련된 유기 화학자라도 모든 화학반응을 정확하게 예측하지 못한다.
이런 한계를 극복하고자 인공지능을 이용해 유기 반응을 예측하는 연구가 활발하게 일어나고 있다. 대부분의 연구는 반응물과 생성물을 서로 다른 두 개의 언어로 생각하고 한 언어에서 다른 언어로 번역하는 언어 번역 모델을 사용하는 방법에 집중하고 있다. 이 방법은 예측 정확도는 높지만, 인공지능이 화학을 이해하고 생성물을 예측했다고 해석하기 어려워 모델이 예측한 결과를 신뢰하기 어렵다.
정 교수팀은 화학적 직관을 바탕으로 모델을 설계해서 모델이 예측한 결과를 화학적으로 설명을 할 수 있을 뿐 아니라, 공개 데이터베이스에서 매우 우수한 예측 정확도를 달성했다.
정 교수팀은 화학자가 반응 결과를 예측하는 방법에서 아이디어를 얻었다. 화학자는 반응 중심을 파악하고 화학반응 규칙을 적용해 가능한 생성물을 예측한다. 이 과정을 본떠서 공개 화학반응 데이터베이스로부터 화학반응 규칙을 도출했다. 화학반응 규칙을 바탕으로 분자의 화학 반응성을 예측하기 위해서, 분자를 그래프로 취급하는 그래프 신경망(Graph Neural Network, GNN) 모델을 개발했다. 이 모델에 반응물들을 넣으면 화학반응 규칙과 반응 중심을 식별해 생성물을 성공적으로 예측한다.
정 교수팀은 화학반응에서 널리 사용되는 미국 특허무역청(USPTO) 데이터를 이용해 유기 반응을 90% 이상의 정확도로 예측하는 데 성공했다. 개발된 모델은 실제 사용 시 모델에 높은 신뢰성을 제공하는 `예측의 불확실성'을 말할 수 있다. 예를 들어, 불확실성이 낮다고 간주되는 모델의 정확도는 98.6%로 증가한다. 모델은 무작위로 샘플링된 일련의 유기 반응을 예측하는 데 있어 소규모의 합성 전문가보다 더 정확한 것으로 나타났다.
이번 연구의 성공으로 연구팀은 다른 분야에서 좋은 성능을 보인 모델을 그대로 사용하던 기존 방법보다, 화학자가 생각하는 방법과 동일하게 신경망을 설계하는 전략이 더 합리적이고 우수한 성능을 보인다는 것을 입증했다. 연구팀은 이 연구를 활용하면 분자 설계 과정이 비약적으로 빨라질 것으로 기대하며, 새로운 화합물 개발에 실용적인 응용을 기대하고 있다. 정유성 교수팀은 현재 연구 성과의 특허 출원을 준비하고 있다.
우리 대학 생명화학공학과 첸수안(Shuan Chen) 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 '네이처 머신 인텔리전스(Nature Machine Intelligence)'에 9월호 표지논문으로 선정돼 출판됐다.
한편 이번 연구는 산업통상자원부와 한국연구재단의 지원을 받아 수행됐다.
2022.10.04
조회수 10369
-
3차원 표정인식용 인공지능 라이트필드 카메라 개발
우리 대학 바이오및뇌공학과 정기훈, 이도헌 교수 공동연구팀이 근적외선 기반 라이트필드 카메라와 인공지능기술을 융합하여 얼굴의 감정표현을 구분하는 기술을 개발했다고 7일 밝혔다.
라이트필드 카메라는 일반적인 카메라와 다르게 미세렌즈 배열(Microlens arrays)을 이미지센서 앞에 삽입해 손에 들 수 있을 정도로 작은 크기이지만 한 번의 촬영으로 빛의 공간 및 방향 정보를 획득한다. 이를 통해 다시점 영상, 디지털 재초점, 3차원 영상 획득 등 다양한 영상 재구성이 가능하고 많은 활용 가능성으로 주목받고 있는 촬영 기술이다.
그러나 기존의 라이트필드 카메라는 실내조명에 의한 그림자와 미세렌즈 사이의 광학 크로스토크(Optical crosstalk)에 의해 이미지의 대비도 및 3차원 재구성의 정확도가 낮아지는 한계점이 있다.
연구팀은 라이트필드 카메라에 근적외선 영역의 수직 공진형 표면 발광 레이저(VCSEL) 광원과 근적외선 대역필터를 적용해 기존 라이트필드 카메라가 갖는 조명 환경에 따라 3차원 재구성의 정확도가 낮아지는 문제를 해결했다. 이를 통해 얼굴 정면 기준 0도, 30도, 60도 각도의 외부 조명에 대해, 근적외선 대역필터를 사용한 경우 최대 54%까지 영상 재구성 오류를 줄일 수 있었다. 또한, 가시광선 및 근적외선 영역을 흡수하는 광 흡수층을 미세렌즈 사이에 제작하면서 광학 크로스토크를 최소화해 원시 영상의 대비도를 기존 대비 약 2.1배 정도로 획기적으로 향상하는 데 성공했다.
이를 통해 기존 라이트필드 카메라의 한계를 극복하고 3차원 표정 영상 재구성에 최적화된 근적외선 기반 라이트필드 카메라(NIR-LFC, NIR-based light-field camera) 개발에 성공했다. 연구팀은 개발한 카메라를 통해 피험자의 다양한 감정표정을 가진 얼굴의 3차원 재구성 이미지를 조명 환경과 관계없이 고품질로 획득할 수 있었다.
획득한 3차원 얼굴 이미지로부터 기계 학습을 통해 성공적으로 표정을 구분할 수 있었고, 분류 결과의 정확도는 평균 85% 정도로 2차원 이미지를 이용했을 때보다 통계적으로 유의미하게 높은 정확도를 보였다. 이뿐만 아니라, 연구팀은 표정에 따른 얼굴의 3차원 거리 정보의 상호의존성을 계산한 결과를 통해, 라이트필드 카메라가 인간이나 기계가 표정을 판독할 때 어떤 정보를 활용하는지에 대한 단서를 제공할 수 있음을 확인했다.
정기훈 교수는 "연구팀이 개발한 초소형 라이트필드 카메라는 정량적으로 인간의 표정과 감정을 분석하기 위한 새로운 플랫폼으로 활용될 수 있을 것으로 기대된다ˮ며 "모바일 헬스케어, 현장 진단, 사회 인지, 인간-기계 상호작용 등의 분야에서 활용될 것ˮ이라고 연구의 의미를 설명했다.
우리 대학 바이오및뇌공학과 배상인 박사과정 졸업생이 주도한 이번 연구 결과는 국제저명학술지 `어드밴스드 인텔리전트 시스템즈(Advanced Intelligent Systems)'에 2021년 12월 16일 온라인 게재됐다. (논문명: Machine-Learned Light-Field Camera that Reads Facial Expression from High-Contrast and Illumination Invariant 3D Facial Images).
한편 이번 연구는 과학기술정보통신부 및 산업통상자원부의 지원을 받아 수행됐다.
2022.01.07
조회수 6841
-
한국4차산업혁명정책센터, WEF 트랜스포메이션 맵 공동 큐레이터 선정
우리 대학이 세계경제포럼(의장 클라우스 슈밥, 이하 WEF)의 블록체인 및 분산원장기술 분야 트랜스포메이션 맵(Transformation Map)의 공동 큐레이터로 지난 11월 12일 선정됐다.
트랜스포메이션 맵은 WEF가 약 120여 개 분야의 세계 경제 이슈를 선제적으로 발굴하는 정보 서비스다. 학계·기업·정부·국제기구·시민 사회·예술 및 미디어 분야에서 활동하는 5,500여 명의 전문가들이 협업해 제공하는 정보를 토대로 정보를 제공하는 것이 특징이다. 현재 3만 명 이상의 정부·산업·학계 리더와 11만 5천명 이상의 일반인이 트랜스포메이션 맵을 통해 최신 이슈를 파악하고 있다.
KAIST는 하버드대학교, MIT 등의 12개 기관과 함께 공동 큐레이터로 선정되었으며, 이상엽 생명화학공학과 교수와 임만성 원자력양자공학과 교수가 각각 바이오기술과 핵 안보 분야를 관리하고 있다.
블록체인 및 분산원장기술은 전 세계의 물류, 금융, 데이터 거래 등의 경제 활동을 자동화하는 4차 산업혁명의 핵심 기술이다. 범용기술로 다양한 분야에 활용되고 있으며 관련 이슈는 나날이 복잡해지고 있다. WEF는 관련 이슈를 조망하고자 하는 산업계와 학계의 수요를 반영해 ▴탈중앙화 거버넌스와 새로운 모형 ▴스마트계약과 자동화 ▴토큰화와 디지털자산 ▴블록체인과 데이터 활용 ▴블록체인과 디지털 신원▴블록체인과 보안 그리고 상호운용성 ▴블록체인 정책과 법·규제 등 블록체인 및 분산원장기술 이슈를 7개 범주로 구분해 트랜스포메이션 맵에 수록했다.
우리나라는 올해부터 자금세탁방지국제기구(Financial Action Task Force)의 권고에 따라 디지털자산을 제도화하고 디지털신원을 강화하고 유럽연합의 일반 데이터 보호 규칙(General Data Protection Ruegulation) 수준에 맞게 데이터 소유와 데이터 모형 관련 규정을 개정했다. 블록체인 및 분산원장기술의 상용화가 진전될수록 데이터 처리 과정에서 인공지능·사물인터넷 등과 상호 운용하면서 발생하는 기술적 문제를 해결하는 것과 이에 맞게 탈중앙화 원리를 우리 사회에 적용하는 것이 숙제가 될 전망이다.
공동 큐레이션을 담당하는 김기배 KAIST 한국4차산업혁명정책센터 책임연구원은 "트랜스포메이션 맵에서 조망하는 다양한 이슈는 투자-투기, 규제-진흥의 이분법적 시각에서 벗어나 블록체인 및 분산원장기술을 다각적이고 전략적으로 바라보는 시각을 줄 것”이라는 기대를 내비쳤다.
한편, 트랜스포메이션 맵은 WEF의 전략정보 홈페이지(https://intelligence.weforum.org/)에서 확인할 수 있으며, KAIST 구성원은 포털 공지사항에 게시된 절차에 따라 무료로 이용할 수 있다.
2020.11.20
조회수 30288
-
재촬영 없이 MRI 강조영상 얻는 AI 기술 개발
우리 대학 바이오및뇌공학과 예종철 교수 연구팀 자기공명영상(magnetic resonance imaging: MRI)에서 재촬영 없이도 누락된 강조영상을 얻을 수 있는 인공지능 기술을 개발했다.
이 연구를 통해 각 질환별로 강조영상이 암의 진단에 미치는 영향을 객관적으로 밝힐 수 있으며, 실제 임상에서 고비용의 MRI를 효과적이고 체계적으로 활용할 수 있는 방안을 설계할 수 있을 것으로 기대된다.
이동욱 박사가 1 저자로 참여하고 건국대 의과대학 영상의학과 문원진 교수팀이 참여한 이번 연구 결과는 국제 학술지 ‘네이처 머신인테리젼스(Nature Machine Intelligence)’ 1월 18일 자 온라인판에 게재됐다. (논문명 : Assessing the importance of magnetic resonance contrasts using collaborative generative adversarial networks).
MRI는 엑스선 컴퓨터 단층촬영, 초음파와 더불어 임상 진단에서 중요한 역할을 하는 진단 장비이다. 특히 비침습적 방법으로 고해상도의 영상을 얻기 때문에 종양이나 병변을 관찰하며 진단하는데 매우 중요한 임상 정보를 제공한다. 이는 영상의 대조도 (contrast)를 다양하게 조절할 수 있는 MRI의 특징 덕분이다.
예를 들어 뇌종양을 진단하는 데 활용되는 T1·T2 강조영상, FLAIR 기법 영상, T1 조영증강 영상 등 여러 가지 대조 영상을 얻어 진단에 사용함으로써 종양을 찾을 수 있다.
하지만 실제 임상 환경에서는 강조영상을 모두 얻기 어려운 경우가 많다. 여러 장의 강조영상 촬영을 위해 촬영시간이 길어지기도 하고, 잡음이나 인공음영 발생으로 인해 진단에 사용하기 어려운 경우가 많기 때문이다.
또한, 뇌질환진단을 위한 MRI 검사는 의심 질환이 무엇인지에 따라 필수 강조영상이 달라지며, 이후 특정 질환으로 진단명이 좁혀지면서 부득이하게 누락된 강조영상을 확보하기 위한 재촬영이 필요한 경우가 많다. 이러한 상황에 의해 많은 시간과 비용이 소모된다.
최근 인공지능 분야에서 생성적 적대 신경망(Generative adversarial networks, GAN)이라는 딥러닝을 이용해 영상을 합성하는 기술이 많이 보고되고 있지만, 이 기술을 MRI 강조영상 합성에 사용하면 준비하고 미리 학습해야 하는 네트워크가 너무 많아지게 된다.
또한, 이러한 기법은 하나의 영상에서 다른 영상으로의 관계를 학습하기 때문에 몇 개의 강조영상의 존재하더라도 이 정보 간의 시너지를 활용하는 영상 학습기법이 없는 현실이다.
예 교수 연구팀은 자체 개발한 ‘협조·생성적 적대신경망(Collaborative Generative Adversarial Network : CollaGAN)’이라는 기술을 이용해 여러 MRI 강조영상의 공통 특징 공간을 학습함으로써 확장성의 문제를 해결했다.
이를 통해 어떤 대조 영상의 생성이 가능한지와 불가능한지에 대한 질문과, 그에 대한 체계적인 대답 기법을 제안했다.
즉, 여러 개의 강조영상 중에서 임의의 순서 및 개수로 영상이 없어져도 남아있는 영상을 통해 사라진 영상을 복원하는 기법을 학습한 후 합성된 영상의 임상적 정확도를 평가해, 강조 영상 간 중요도를 자동으로 평가할 수 있는 원천 기술을 개발했다.
예 교수 연구팀은 건국대 문원진 교수 연구팀과의 협력을 통해 T1강조·T2강조 영상과 같이 내인성 강조영상은 다른 영상으로부터 정확한 합성이 가능하며, 합성된 강조영상이 실제 영상과 매우 유사하게 임상 정보를 표현하고 있다는 것을 확인했다.
연구팀은 확보한 합성 영상이 뇌종양 분할기법을 통해 뇌종양 범위를 파악하는데 유용한 정보를 제공한다는 것을 확인했다. 또한, 현재 많이 사용되는 합성 MRI 기법(synthetic MRI)에서 생기는 인공음영 영상도 자동 제거가 가능함이 증명됐다. 이 기술을 이용하면 추가적인 재촬영을 하지 않고도 필요한 대조 영상을 생성해 시간과 비용을 비약적으로 줄일 수 있을 것으로 기대된다.
건국대 영상의학과 문원진 교수는 “연구에서 개발한 방법을 이용해 인공지능을 통한 합성 영상을 임상현장에서 이용하면 재촬영으로 인한 환자의 불편을 최소화하고 진단정확도를 높여 전체의료비용 절감 효과를 가져올 것이다”라고 말했다.
예종철 교수는 “인공지능이 진단과 영상처리에 사용되는 현재의 응용 범위를 넘어서, 진단의 중요도를 선택하고 진단 규약을 계획하는 데 중요한 역할을 할 수 있는 것을 보여준 독창적인 연구이다”라고 말했다.
이 연구는 한국연구재단의 중견연구자지원사업을 받아 수행됐다.
□ 그림 설명
그림1. CollaGAN의 작동 원리의 예
2020.01.30
조회수 11219
-
방효충 교수 연구팀, 제1회 큐브위성 경연대회 최우수상 수상
우리 대학 항공우주공학과 방효충 교수 연구팀이 제1회 큐브위성 경연대회 시상식에서 과학기술정보통신부 장관상(최우수상)을 수상했다.
연구팀은 국내에서 개최된 2012년 큐브위성 경연대회에 참가해 최종 선발됐다. 이후 초소형위성인 큐브샛 LINK(Little Intelligent Nanosatellite of KAIST)를 개발하고 2017년 4월 발사한 후 임무를 수행하는 과정까지 완료했다.
LINK는 벨기에 Von Karman Institute에서 주관하는 QB50 프로젝트의 일환으로 개발됐다. QB50 프로젝트는 큰 대기항력 때문에 관측이 덜 이루어진 저고도 지구 대기를 개발비용이 저렴한 큐브샛을 다수 발사해 관측하는 국제 공동 프로젝트로 전 세계 23개 이상의 국가가 참여했다.
큐브샛 LINK는 2 unit(20x10x10cm3) 크기로 무게가 약 2kg이며 지구관측을 위해 이온-중성자 질량 분광기 및 랑뮈어 탐침을 탑재했다. 랑뮈어 탐침은 우리 대학 물리학과 민경욱 교수 연구팀에서 개발했다.
2018.02.22
조회수 12992
-
방효충 교수 연구팀, 지구 저궤도 관측 큐브위성 궤도진입 및 교신 성공
우리 대학 항공우주공학과 방효충 교수 연구팀이 큐브위성 궤도진입 및 첫 교신을 성공적으로 수행했다.
방 교수 연구팀에서 개발한 LINK(Little Intelligent Nanosatellite of KAIST)는 4월 18일에 발사돼 국제우주정거장으로 배송된 바 있다.
궤도진입은 5월 18일 오전 10시에 NRCSD(NanoRacks CubeSat Deployer)를 통해 이뤄졌으며 한국 시각으로 같은 날 23시 5분 첫 교신에 성공했다. 지상국에서 확인한 큐브위성의 상태는 양호하다.
LINK는 벨기에 Von Karman Institute에서 주관하는 QB50 프로젝트의 일환으로 개발됐다.
QB50는 큰 대기항력 때문에 관측이 덜 이루어진 200~400km 구간의 지구 저궤도 대기를 개발비용이 저렴한 큐브위성을 다수 발사해 관측하고자 하는 국제 공동 프로젝트로 전 세계 23개 이상의 국가에서 참여하고 있다.
LINK는 2unit(20x10x10cm3) 크기로 무게가 약 2kg이며 지구관측을 위해 이온-중성자 질량 분광기 및 랑뮈어 탐침을 탑재하고 있다. 랑뮈어 탐침은 우리 대학 물리학과 민경욱 교수 연구팀이 개발했다.
궤도진입을 마친 큐브위성은 초기 한 달 동안 지상국을 통해 시스템 점검을 수행한 뒤 두 달에 걸쳐 저궤도 대기관측 데이터를 수집할 예정이다.
LINK 큐브위성의 개발은 항공우주연구원 '2012년 큐브위성대회'의 지원을 받아 이뤄졌다.
□ 그림 설명
그림1. NRCSD(NanoRacks CubeSat Deployer) 큐브위성 사출 장면
그림2. LINK 비콘신호 수신
2017.05.24
조회수 11265
-
방효충 교수, 지구 저궤도의 관측 위한 큐브위성 발사
우리 대학 항공우주공학과 방효충 교수 연구팀이 지구 저궤도 관측을 위한 초소형 큐브위성을 발사했다.
방 교수 연구팀에서 개발한 큐브위성인 LINK(Little Intelligent Nanosatellite of KAIST)를 포함한 총 28개의 큐브위성이 아틀라스 V(Atlas V) 발사체(NASA CRS-7 미션)에 탑재돼 미 동부시간 4월 18일 오전 11시 11분에 미국 Space Launch Complex 41에서 성공적으로 발사됐다.
큐브위성들은 국제우주정거장에서 보관 후 약 한 달 뒤에 궤도 진입 예정이며 이후 약 3달 동안 과학임무를 수행한다.
LINK는 벨기에의 Von Karman Institute에서 주관하는 QB50 프로젝트의 일환으로 개발됐다.
QB50 프로젝트는 큰 대기항력 때문에 관측이 덜 이뤄진 200~400km 구간의 지구 저궤도 대기를 개발비용이 저렴한 큐브위성을 다수 발사해 관측하는 국제 공동 프로젝트이다. 2012년에 시작된 이 프로젝트는 전 세계 23개 이상의 국가가 참여하고 있다.
LINK는 2유닛(20x10x10㎤) 크기로 무게는 2kg 정도이며 지구 관측을 위해 이온-중성자 질량 분광기 및 랑뮈어 탐침을 탑재했다. 랑뮈어 탐침은 우리 대학 물리학과 민경욱 교수 연구팀이 개발했다.
방 교수는 “QB50 프로젝트는 교육용으로만 쓰이던 큐브위성이 의미있는 과학임무를 수행하기 위한 도구로 도약하는 계기가 될 것이다”며 “다수의 큐브위성을 이용해 저궤도 대기 관측을 한 첫 사례로 의미있는 데이터를 얻을 것으로 기대한다”고 말했다.
또한 “이 노하우를 이용해 앞으로 위성을 추가 개발해 연구 내용을 우주에서 직접 검증할 수 있을 것이다”고 말했다.
현재 큐브위성을 실은 Cygnus 모듈이 궤도에서 대기 중이며 미 동부시간 4월 22일 오전 8시 39분 국제우주정거장과 도킹을 완료했다.
2017.04.24
조회수 12928