-
코로나19 폐 손상 유발 면역세포의 특성 및 역동적 변화 규명
우리 대학 의과학대학원 박수형 교수 연구팀이 충북대학교 의과대학 최영기 교수(현 한국바이러스기초연구소장), 지놈인사이트 이정석 박사팀과 공동연구를 통해 코로나19 바이러스 증식의 절정기, 그리고 회복기에 걸쳐 나타나는 면역반응의 양적·질적 변화를 규명해 폐 손상을 일으키는 특정 면역세포의 특성과 기원을 규명했다고 4일 밝혔다. 이는 코로나19 환자에서 과잉 면역반응에 의해 발생하는 폐 손상을 조절할 수 있는 타깃(대상)을 제시하는 연구 결과다.
코로나19에 감염되면 처음 바이러스가 유입되어 감염되는 폐 조직 내에서 즉각적인 면역세포의 활성화가 일어남이 알려져 있다. 이 면역세포의 대부분은 대식세포(macrophage)인데, 코로나19에 환자가 감염된 후 혈류를 통해 활성화된 단핵구가 폐 조직으로 들어오며 추가로 대식세포로 분화하며 바이러스에 감염된 폐 조직 세포들을 제거하여 초기 방어로 대응을 하게 된다.
코로나19 감염 후 일어나는 초기의 면역반응과 그 시간에 따른 변화를 폐에서 면역세포를 여러 차례 얻어 연구하는 것은 환자를 통해서는 불가능하다. 따라서 페럿(식육목 족제비과의 포유류)과 같은 호흡기감염 동물모델이 바이러스 감염 후 면역반응의 정확한 면모를 밝히는 데 중요한 역할을 한다. 충북대학교 최영기 교수 연구팀은 실험동물인 페렛이 SARS-CoV-2 바이러스에 감수성이 있다는 것을 세계 최초로 학계에 보고했다.
이번 연구에서 KAIST-충북대-지놈인사이트 공동연구팀은 코로나19 바이러스 감염 동물모델을 이용하여 감염이 진행되는 동안의 폐 내 면역세포의 변화를 첨단 연구기법인 단일세포 시퀀싱을 이용해 정밀하게 분석했고, 폐 면역세포의 대부분을 차지하는 대식세포를 10가지 아형으로 분류해 이중 어떤 대식 세포군이 폐 손상에 기여하는지를 분석했다.
연구팀은 코로나19 바이러스 감염 2일 후부터 혈류에서 활성화된 단핵구가 급격하게 폐 조직으로 침윤하며 대식세포로 분화하며 양적으로 증가함을 확인했다. 특히 이러한 혈류 기원 침윤 대식세포들은 염증성 대식세포의 성질을 강하게 나타내며, 바이러스 제거에 기여할 뿐만 아니라 조직손상을 일으키는 주범이 될 수 있음을 제시했다. 또한 이러한 대식세포 분화의 양상은 중증 코로나19 환자들의 폐 조직에서 관찰되는 변화와도 높은 유사도를 보임을 규명했다.
보건복지부와 KAIST의 지원을 받아 수행한 이번 연구 결과는 국제 저명 학술지인 네이처 커뮤니케이션스(Nature Communications)誌 7월 28일 字에 게재됐다(논문명: Single-cell transcriptome of bronchoalveolar lavage fluid reveals sequential change of macrophages during SARS-CoV-2 infection in ferrets).
공동연구팀은 현재 면역억제제를 투약받은 코로나19 환자들의 면역반응 변화를 종적으로 추적하며, `싸이토카인 폭풍'과 같은 치명적인 중증 코로나19의 과잉면역반응의 적절한 제어와 약물의 면역학적 효과를 규명하는 후속 연구를 진행하고 있다.
이번 연구의 제1 저자인 지놈인사이트 이정석 박사와 우리 대학 고준영 박사과정은 "이번 연구 결과는 코로나19 환자의 폐가 경험하게 되는 선천 면역반응을 단일세포 전사체라는 오믹스 데이터를 이용해 다각적으로 분석해, 바이러스 감염 시에 발생하는 대식세포 면역반응의 이중성을 이해하는 중요한 자료ˮ고 설명했다.
충북대학교 최영기 교수는 “SARS-CoV-2 바이러스 감염 후 시간의 경과에 따른 바이러스의 증식성 변화 및 병리학적 분석을 수행한 이번 결과는 전반적인 바이러스 감염 및 회복에 관여하는 병인기전을 이해할 수 있는 중요한 연구자료“라고 말했다.
박수형 교수는 "코로나19가 감염된 직후 시간에 따른 변화를 감염 전과 비교하여 정밀하게 규명한 것이 이 연구의 가장 큰 수확이며, 감염 후 폐 손상이 특정 염증성 대식세포에 의한 것임을 규명하여 중증 코로나19 환자에서 사용되는 면역억제 치료 전략을 정교하게 만들 수 있는 근거를 마련했다ˮ라고 말했다.
2021.08.05
조회수 5394
-
기억을 형성하는 원리 최초로 규명
우리 대학 생명과학과 한진희 교수 연구팀이 무수히 많은 뉴런과 이들 사이의 시냅스 연결로 구성된 복잡한 신경 네트워크에서 기억을 인코딩하는 뉴런이 선택되는 근본 원리를 규명했다고 13일 밝혔다.
우리 대학 생명과학과 정이레 박사가 제1 저자로 참여한 이번 연구는 네이처 출판 그룹의 오픈 액세스(Open-access) 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 6월 24일 字로 게재됐다. (논문명: Synaptic plasticity-dependent competition rule influences memory formation)
과거의 경험은 기억이라는 형태로 뇌에 저장되고 나중에 불러오게 된다. 이러한 기억은 뇌 전체에 걸쳐 극히 적은 수의 뉴런들에 인코딩되고 저장된다고 알려져 있다. 하지만 이 뉴런들이 미리 정해져 있는 것인지, 아니면 어떤 원리에 의해 선택되는 것인지는 불확실하다. 이 질문을 해결하는 것은 신경과학의 미해결 난제 중 하나인 기억이 뇌에서 어떻게 형성되는지를 규명하는 것으로서 학문적으로 매우 중요할 뿐만 아니라, 치매를 치료할 수 있는 단서를 제공하기 때문에 막대한 사회, 경제적 파급 효과가 있다.
반세기 훨씬 이전에 캐나다의 신경심리학자 도널드 올딩 헤브(Donald O. Hebb)는 그의 유명한 저서인 ‘행동의 조직화(The Organization of Behavior)’ (1949) 에서 두 뉴런이 시간상으로 동시에 활성화되면 이 두 뉴런 사이의 시냅스 연결이 강화될 것이라는 시냅스 가소성(synaptic plasticity) 아이디어를 제시했고, 이후 실험을 통해 학습으로 특정 시냅스에서 실제로 장기 강화(long-term potentiation, 이하 LTP)가 일어난다는 것이 증명됐다.
이 발견 이후, LTP가 기억의 핵심 메커니즘으로 생각돼 왔다. 하지만, LTP가 기억을 인코딩하는 뉴런을 어떻게 결정하는지 지금까지 규명된 적이 없었다.
이번 연구에서는 이를 규명하기 위해 생쥐 뇌 편도체(amygdala) 부위에서 자연적인 학습 조건에서 LTP가 발생하지 않는 시냅스를 광유전학 기술을 이용해서 특정 패턴으로 자극함으로써 인위적으로 그 시냅스 연결을 강하게 만들거나 혹은 약하게 조작하고 이때 기억을 인코딩하는 뉴런이 달라지는지 연구팀은 조사했다.
먼저, 생쥐가 공포스러운 경험을 하기 전에 이 시냅스를 미리 자극해서 LTP가 일어나게 했을 때, 원래는 기억과 상관없었던 이 시냅스에 기억이 인코딩되고 LTP가 일어난 뉴런이 주변 다른 뉴런에 비해 매우 높은 확률로 선택적으로 기억 인코딩에 참여함을 발견했다.
하지만, 학습하고 난 바로 직후에 이 시냅스를 다시 광유전학 기술로 인위적으로 자극해서 이 시냅스 연결을 약하게 했을 때 더는 이 시냅스와 뉴런에 기억이 인코딩되지 않는 결과를 얻었다.
반대로, 정상적으로 생쥐가 공포스러운 경험을 하고 난 바로 직후에 LTP 자극을 통해 이 시냅스 연결을 인위적으로 강하게 했을 때 놀랍게도 LTP를 조작해준 이 시냅스에 공포 기억이 인코딩되고 주변 다른 뉴런들에 비해 LTP를 발생시킨 이 뉴런에 선택적으로 인코딩됨을 확인했다. 이러한 결과는 시냅스 강도를 인위적으로 조작했을 때 기억 자체는 변하지 않지만, 그 기억을 인코딩하는 뉴런이 변경됨을 증명한 것이다.
한진희 교수는 “LTP에 의해 뉴런들 사이에서 새로운 연결패턴이 만들어지고 이를 통해 경험과 연관된 특이적인 세포 집합체(cell assembly)가 뇌에서 새롭게 만들어진다”며 “이렇게 강하게 서로 연결된 뉴런들의 형성이 뇌에서 기억이 형성되는 원리임을 규명한 것”이라고 이번 연구 결과중요성을 설명했다.
한편, 이번 연구는 한국연구재단의 중견연구 사업 지원을 받아 수행되었으며 정이레 박사는 한국연구재단의 박사 후 국내 연수 사업의 지원을 받았다.
2021.07.13
조회수 8757
-
김원준 교수, 스탠퍼드 아시아-태평양 연구센터와 공동 출판
우리 대학 김원준 기술경영학부 교수가 공동저자로 참여한 미국 스탠퍼드 대학 아시아-태평양 연구센터(Walter H. Shorenstein Asia-Pacific Research Center)의 『Shifting Gears in Innovation Policy: Strategies from Asia(혁신정책의 기어를 바꾸다: 아시아의 혁신전략) 』 책이 미국에서 발간됐다.
이 책은 글로벌 혁신의 중심으로 빠르게 성장하고 있는 아시아 주요국과 미국의 혁신전략 전문가들이 모여 혁신전략 및 정책의 현재와 미래에 대해서 집필한 내용을 담고 있다. 김 교수가 공동 저자로 참여한 이번 책은 중국의 새로운 파괴적 혁신, 싱가폴의 혁신과 창업 시스템의 핵심, 대만의 혁신경제 정책, 일본의 혁신클러스터 정책, 한국과 독일의 혁신클러스터 비교를 통한 혁신전략, 집중적〮분산적 혁신전략 등 혁신 분야 글로벌 이슈들에 대해서 깊이 있는 분석과 함께 정책 및 전략적 방향을 제시하고 있다. 스탠퍼드 아시아-태평양 연구센터는 아시아와 태평양 지역(미국 중심)과 관련된 글로벌 이슈에 대해서 정책연구, 교육, 협력 활동을 추진하는 스탠퍼드 대학 산하의 주요 연구센터로 미국과 아태지역의 협력 증진을 목표로 설립되었다. 김 교수는 스탠퍼드 대학에서 2017년 열린 1차 연구그룹에 초청돼 연구 내용을 발표했고, 이후 공동 집필에 참여해 각 국의 주요 혁신전략 및 정책 전문가들과 함께 이번 책을 발간했다.
총 9장으로 구성된 저서 중 김원준 교수는 이인정 석사 (’15 석사졸업)와 함께 한국과 독일의 두 혁신 클러스터 비교 분석하는 1개 장을 집필했다. 혁신에 기반해 가장 빠르게 성장하고 있는 아시아 주요국의 혁신전략을 평가, 분석하고, 미국을 포함한 다른 국가들에게 중요한 정책적 영향과 통찰을 제시하는 중요한 학술적 성과다. 김 교수는 "한국의 혁신 클러스터와 독일의 혁신 클러스터를 비교해 본 결과 독일의 경우, 혁신의 밸류체인이 산업계와 매우 긴밀하게 연결되어 있고 선택과 집중에 기반하여 구성되어 진화되고 있었다”라고 말했다. 이어 “반면에, 한국은 혁신의 밸류체인과 산업계와의 연결이 매우 느슨하고, 분산되어 있는 모습을 보이기 때문에 대덕특구와 같은 한국의 주요한 혁신 클러스터들은 산업계와의 혁신의 밸류체인을 긴밀하게 연결하고 선택과 집중을 통한 효율성을 확보해 나가는 것이 중요하다” 라고 강조했다. 미국 주요 정책연구 기관인 부르킹스 연구소에서 소개하고 있는 이 책은 지난해 12월 발간되어 아마존 등 미국 주요 서점에서 판매되고 있다.
2021.06.30
조회수 6471
-
건설및환경공학과 유지환 교수팀, IEEE 로보틱스 자동화 저널 최우수 논문상 수상
우리 대학 건설 및 환경공학과 유지환 교수 연구팀이 로봇 분야 프리미어 저널인 IEEE 로보틱스 자동화 저널(Robotics and Automation Magazine)에서 “Vine Robots: Design, Teleoperation, and Deployment for Navigation and Exploration” 이라는 논문으로 2020년 최우수 논문상(Best Paper Award)에 선정됐다.
시상은 5월 30일부터 개최된 로봇 분야 프리미어 학회인 2021 IEEE 로보틱스 자동화 국제 학회 (International Conference on Robotics and Automation, ICRA) 시상식(6월 2일)에서 온라인으로 수여됐다.
선정된 논문은 스탠포드 대학교와의 공동연구 결과로 발표된 논문으로, 나무줄기처럼 자라나는 소프트 그로잉 로봇의 설계, 원격조종, 그리고 재난 및 탐사 현장에서의 활용에 관한 논문으로, 동 저널에 2020년 게재된 논문 중 가장 큰 영향력과 많은 인용 수를 인정받아 최우수 논문으로 선정됐다.
2021.06.04
조회수 56402
-
KAIST-한국앤컴퍼니㈜, 디지털 미래혁신센터 2기 협약 체결
우리 대학이 한국앤컴퍼니㈜와 ‘디지털 미래혁신센터 2기 협약'을 18일 유성구 한국테크노돔에서 체결하고 미래 성장 동력과 테크놀로지 기반 혁신 역량 확보를 위한 협력을 한층 강화해 가기로 했다.
'KAIST 디지털 미래혁신센터'는 지난 2019년 한국앤컴퍼니㈜와 KAIST가 디지털 전환(Digital Transformation)을 통한 혁신적 연구개발(R&D) 및 디지털 기술 역량 확보를 목표로 건립한 산학협력 조직이다.
센터장인 KAIST 산업및시스템공학과 장영재 교수를 포함하여 여러 교수진이 참여하는 생산 및 연구개발 분야 프로젝트를 통해 뉴 디지털 테크놀로지 완성과 미래 경쟁력 확보를 위한 발판을 마련하고 있다.
지난 2년 간 진행된 1기 활동을 통해 12개 과제의 연구를 추진해 연구 및 생산 현장에 적용할 수 있는 수준의 성과를 일궈냈다. AI를 활용한 타이어 컴파운드 물성 예측 모델인 ‘VCD(Virtual Compound Design) 시스템’, 디지털 센서를 접목한 자동화 검수 시스템(Automatic Inspection Process), AI와 사물인터넷(Internet of Things, IoT) 기술을 활용한 설비 이상 탐지 예측 시스템 CMS+(Hankook Condition Monitoring System Plus) 등 신기술 개발을 완료했다.
18일 협약 체결을 통해 공식 개시되는 2기 활동에서는 디지털 기술을 활용해 다각도의 가상실험 데이터를 확보하기 위한 미래 기술 개발에 주력한다.
'AI 레시피 역설계 및 빅데이터 모델 생성 자동화', '분자구조에 따른 컴파운드 물성 예측 위한 머신러닝 모델 개발', 'AI 기반 Virtual 예측력 향상 기술 개발'을 비롯한 7개 과제에 대한 연구가 진행될 예정이다.우리 대학과 한국앤컴퍼니㈜는 현재 확정된 연구 과제들 외에도 산업 현장의 수요에 맞는 혁신기술 개발과 창의적 인재 양성을 위해 적극 협력할 예정이다.
2021.05.20
조회수 12024
-
디스플레이 구동 가능한 OLED 전자 섬유 개발
우리 대학 전기및전자공학부 최경철 교수 연구팀이 정보 출력이 가능한 유기발광다이오드(OLED) 전자 섬유를 개발했다고 12일 밝혔다.
전자 섬유는 실제 입을 수 있는 형태의 소자로서 기존 2차원 평면 소자와는 다르게 인체의 다양한 움직임에 순응하고 뛰어난 착용성과 휴대성을 제공할 수 있는 섬유의 1차원 구조 덕분에 차세대 폼 팩터(form-factor)로 주목받고 있다. 특히나 빛을 방출하는 전자 섬유는 패션, 기능성 의류, 의료, 안전, 차량 디자인 등 다양한 응용 잠재력에 많은 주목을 받고 있다.
하지만 지금까지의 발광 전자 섬유 연구는 디스플레이로 활용되기엔 부족한 전기광학적 성능을 보여 왔거나 단순히 소자 단위로만 연구가 진행 또는 종횡비가 긴 2차원 평면 단위에서 연구가 이루어져 응용 기술 개발에 어려움이 있었다.
최경철 교수 연구팀은 OLED 전자 섬유 디스플레이 구현을 위해 높은 전기광학적 성능 구현과 함께 주소 지정 체계 구축에 주목했다. 연구팀은 먼저 300 마이크로미터(µm) 직경의 원통형 섬유 구조에 적합한 RGB 인광 OLED 소자 구조를 설계했고 연구팀이 보유한 원천기술인 딥 코팅 공정을 활용해 평면 OLED 소자에 버금가는 수준의 OLED 전자 섬유를 개발했다.
특히 고효율을 얻을 수 있는 인광 OLED를 섬유에 성공적으로 구현해 최고 1만 cd/m2(칸델라/제곱미터) 수준의 휘도, 60 cd/A(칸델라/암페어) 수준의 높은 전류 효율을 보였다. (이는 기존 기술 대비 약 5배 이상의 전류 효율에 해당하는 수치다.)
연구팀은 아울러 OLED 전자 섬유를 기반으로 안정적인 디스플레이 구동을 위해, OLED 전자 섬유 위에 접촉 영역을 설계해 직조된 주소 지정 체계를 구축했다. 그리고 문자와 같은 정보를 디스플레이 해 실제 입을 수 있는 기능성을 확인했다.
최 교수 연구팀 관계자는 이 전자 섬유가 디스플레이라는 표시 장치 관점에서 반드시 요구되는 밝은 밝기와 낮은 전력 소모를 위한 높은 전류 효율, 낮은 구동 전압, 그리고 주소 지정성을 갖췄다고 밝혔다.
이번 연구를 주도한 최 교수 연구팀의 황용하 박사과정은 "섬유 기반 디스플레이 구현을 위해 필수적으로 요구되는 요소 기술들을 구현하는 데 집중했다ˮ며 "전자 섬유가 가진 뛰어난 착용성과 휴대성을 제공함과 동시에 디스플레이 기능성을 구현해 패션, 기능성 의류 등 다양한 응용 분야에 적할 수 있을 것이라 기대된다ˮ고 말했다.
최경철 교수 연구팀의 황용하 박사과정이 제1 저자로 주도한 이번 연구 결과는 나노 분야의 권위 있는 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' (피인용지수(IF) 16.836) 2월 4일 字로 온라인 게재됐으며, 5월 3일 字로 전면 표지 논문(Front Cover)으로 게재됐다. (논문명: Bright-Multicolor, Highly Efficient, and Addressable Phosphorescent Organic Light-Emitting Fibers: Toward Wearable Textile Information Displays)
한편, 이번 연구는 산업통상자원부 전자부품산업핵심기술개발사업과 LG디스플레이의 지원을 받아 수행됐다.
2021.05.12
조회수 43131
-
남택진 교수팀, 레드닷 어워드 2021 대상 수상
우리 대학 남택진 산업디자인학과 교수팀이 세계 최대 규모의 디자인 공모전인 독일 ʻ레드닷 디자인 어워드(Red Dot Design Award) 2021ʼ 제품디자인 부문에서 대상(best of the best award)을 받았다. 수상작은 남 교수팀이 개발한 ʻ코로나 중증 환자 치료용 이동형 감염병동(mobile clinic module, MCM)ʼ이다. 올해 공모전에는 60여 개국에서 총 7천8백여 개의 작품이 출품돼 제품 디자인·커뮤니케이션 디자인·콘셉트 디자인 등 3개 분야에서 경쟁을 펼쳤다. 주최 측은 "수상작들이 자동차·로봇·의료 기술·포장에 이르기까지 디자인을 통해 현대 사회가 가진 문제를 해결하고 인류의 생활 수준을 향상하는 데 중요한 역할을 했다ˮ라고 밝혔다. 특히, 남 교수팀의 이동형 감염병동은 "제품 디자인이 감염병 확산을 방지하는 일에 얼마나 가치 있게 기여할 수 있는지를 보여줬다ˮ라고 평가했다.
이동형 감염병동의 쾌거는 이뿐만이 아니다. 레드닷 디자인 어워드(Red Dot Design Award)와 함께 세계 최고 권위의 디자인 공모전으로 손꼽히는 iF 디자인 어워드(International Forum Design Award) 2021에서도 제품·실내건축·사용자인터페이스·사용자경험 등 총 4개 분야에서 본상을 수상했다.
이로써, 남 교수팀의 이동형 음압병동은 국제 권위의 디자인 공모전을 연이어 석권하며 기능성·경제성·효용성뿐만 아니라 독창적 디자인과 심미성까지 갖춘 의료 시설로서 가치를 인정받게 됐다.
이동형 음압병동은 고급 의료 설비를 갖춘 음압 격리 시설로 신속하게 변형하거나 개조해 사용할 수 있도록 디자인됐다. 음압 프레임·에어 텐트·기능 패널 등의 각 모듈을 조합해 단시간 내에 음압 병동이나 선별진료소 등을 구축할 수 있다. 또한, 소규모의 장비와 인력으로도 관리·이송·설치가 가능해 기존의 조립식 병동 대비 경제적·시간적 효율을 높인 것이 가장 큰 특징이다. 남택진 교수팀은 작년 7월부터 KAIST 코로나 대응 과학기술 뉴딜사업(단장 배충식)의 일환으로 이동형 음압병동을 개발했다. 조스리 스튜디오·20Plus 등과 협력해 디자인을 진행했고 신성이엔지가 제작을 담당했다. 배상민(산업디자인학과)·이태식(산업및시스템 공학과)·김형수(기계공학과) 교수 등이 자문했으며, 석현정(산업디자인학과), 박해원·김성수(기계공학과), 한동수(전산학과) 교수 등이 감염병원 서비스 주제로 연구에 참여했다. 현재 한국 원자력의학원·제주도 백신 접종센터에 시제품이 설치돼 코로나 환자 및 백신 접종자들을 대상으로 시범 운영 중이다. 향후, 건양대 병원 등으로 적용 범위를 확대해나갈 예정이다. 디자인 총괄한 남택진 교수는 "현실 세계의 문제를 발견하고 해결하여 책임지는 디자이너가 더 많아지기를 바란다ˮ라고 수상 소감을 전했다. 이어, 남 교수는 "MCM의 생산 효율성과 안정된 운영을 위해 엔지니어링 디자인 측면을 개선하는 연구를 진행 중이며, 빠른 시일 내에 상용화와 수출이 이뤄질 수 있도록 박차를 가할 예정이다ˮ라고 전했다. KAIST 코로나 대응 과학기술 뉴딜사업단은 KAIST의 과학기술 역량을 기반으로 감염 예방·보호·진단·치료 등 감염병의 전 주기에 대응하는 치료 분야에서 산·학·연·병이 협력해 방역 요소기술 개발과 과학기술 기반의 방역 시스템을 구축하는 연구를 수행하고 있다.
2021.04.19
조회수 37308
-
이수현 교수팀, 뇌 복부선조영역의 새로운 기억관련 기능 규명
우리 대학 바이오및뇌공학과 이수현 교수 연구팀과 서울대학교 생명과학부 김형 교수 연구팀이 공동연구를 통해 복부선조영역(ventral striatum)에서 습관행동을 제어하는데 필요한 장기기억이 자동적으로 인출된다는 사실을 밝혔다. 이러한 복부선조영역의 기능을 그 영역과 회로별로 규명하는 것은 인간에게 직접 적용할 수 있는 뇌질환 치료방법 개발과 뇌영역 맞춤형 치료의 이론적 기반이 될 수 있다.
뇌의 복부선조영역은 새로운 가치학습에 중요하며, 중독행동과 조현병 관련 행동에도 연관된 것으로 알려져 왔지만 이러한 행동에 기반이 될 수 있는 기억정보를 처리하고 있는지에 대해서는 불분명했다.
이에 연구팀은 기능적 자기공명뇌영상과 전기생리학적 뇌세포 활성측정법을 모두 이용해 과거에 학습한 물체를 의식적으로 인지하고 있지 않는 상황에서도 복부선조에서 과거에 배운 좋은 물체에 대한 장기기억정보가 활발하게 처리되고 있다는 사실을 밝혀냈다.
또한 자동적으로 인출된 좋은 물체에 대한 기억은 무의식적이며 자동적인 행동, 즉 습관행동을 제어하고, 이를 통해 동물이 장기기억을 기반으로 최대이익을 얻을 수 있는 자동적 의사결정(automatic decision-making) 과정에 사용된다는 실험적 증거를 제시했다.
바이오및뇌공학과 뇌인지공학프로그램 강준영 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제학술지 네이쳐 커뮤니케이션즈(Nature Communications)에 4월 8일(목) 게재됐다.
복부선조영역에서 기억의 자동적 인출과정을 이해함으로써 자동적 행동인 습관과 중독행동 제어의 이론적 기반을 다지고, 나아가 기억의 자동인출(automatic retrieval)과 연관된 현저성(salience) 이상으로 조현병을 이해할 수 있는 이론적 발판을 마련한 것에 이번 연구의 의의가 있다고 볼 수 있다.
이번 연구는 한국연구재단 뇌질환극복사업 및 개인기초연구지원사업 등의 지원을 받아 수행됐다.
2021.04.09
조회수 64651
-
양용수 교수팀, 나노물질 표면과 내부 3차원 원자구조 규명
우리 대학 물리학과 양용수 교수 연구팀이 인공신경망을 이용한 주사투과전자현미경(STEM) 기반 원자분해능 전자토모그래피 기술을 개발, 이를 적용해 백금 나노입자 표면과 내부의 3차원 원자 구조를 15 pm(피코미터)의 정밀도로 규명했다. 1 pm(피코미터)는 1 미터의 1조 분의 일에 해당하는 단위로, 15 pm의 정밀도는 수소 원자 반지름의 약 1/3 정도에 해당하는 매우 높은 수준이다.
전자토모그래피는 전자현미경으로 다양한 각도에서 측정된 2차원 투영된 이미지로부터 3차원 이미지를 얻어내는 기술이다. 최근 주사투과전자현미경과 3차원 토모그래피 재구성 알고리즘의 기술 발전으로 전자토모그래피의 분해능은 단일 원자까지 구분할 수 있는 수준에 이르렀다. 이를 통해 많은 나노물질의 구조와 물성의 근본적인 이해가 가능해졌다.
그러나 일반적인 전자토모그래피 실험에서는 시편을 탑재한 홀더 또는 그리드가 전자빔을 가리게 되는 실험적 제약으로 인해 고 각도(약 75도 이상)의 이미지 측정이 불가능하다. 이로 인해 고 각도 방향의 분해능이 저하되고, 재구성된 3차원 이미지에 원치 않는 노이즈들이 생겨난다. 이러한 현상을 손실 웨지 문제(missing wedge problem)라 부르며, 이러한 문제 때문에 기존의 전자토모그래피 방법으로는 표면/계면의 3차원 원자 구조를 고분해능으로 측정하기 힘들었다.
양용수 교수 연구팀은 인공신경망을 이용해 고 각도 방향의 데이터를 복원함으로써 이러한 손실 웨지 문제(missing wedge problem)를 해결하는 데 성공했다. 이를 통해 고분해능 3차원 표면/계면 원자 구조의 결정이 가능하게 됐고, 나노물질의 표면/계면에서 나타나는 물성의 메커니즘을 단일 원자 수준에서 근본적으로 해석할 수 있게 됐다.
물리학과 이주혁 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 3월 30일 字 게재됐다. (논문명 : Single-atom level determination of 3-dimensional surface atomic structure via neural network-assisted atomic electron tomography)
연구팀은 모든 물질은 원자들로 구성돼 있다는 원자성(atomicity)에 근거해 원자 구조 토모그래피 3차원 데이터를 시뮬레이션을 통해 생성했다. 고 각도의 데이터가 손실된 불완전한 원자 구조 토모그래피 3차원 데이터와 이상적인 원자 구조 3차원 데이터 사이의 상관관계를 학습시키기 위해 인공지능 신경망(3d-unet기반 모델)을 지도학습했다. 원자성에 기반해 학습된 인공지능 신경망은 손실된 고 각도 데이터를 성공적으로 복원함으로써 손실 웨지 문제로 인한 분해능 저하 문제를 해결했다. 이는 높은 정밀도의 3차원 표면/계면 원자 구조 규명을 가능하게 한다.
연구팀은 개발된 인공신경망 기반 전자토모그래피 기술을 이용해 실제 백금 나노입자의 3차원 표면 및 내부 구조를 단일 원자 수준에서 규명할 수 있었다. 원자 구조의 정밀도는 인공신경망 적용 전 26 pm에서 적용 후 15 pm으로 큰 폭으로 향상됐다.
연구를 주도한 양용수 교수는 "인공신경망 기반 전자토모그래피는 구성 원소, 물질의 구조/형태에 의존하지 않는 매우 일반적인 방법으로서, 전자토모그래피로 얻은 원자 구조 부피데이터에는 종류에 상관없이 바로 적용할 수 있다ˮ며 "이를 통해 많은 물질의 3차원 표면/계면 원자 구조가 정밀하게 규명되고, 표면/계면에서 일어나는 물성과 이에 연관된 메커니즘의 근본적인 이해를 바탕으로 고성능 촉매 개발 등에 응용될 것ˮ이라고 연구의 의의를 설명했다.
한편 이번 연구는 한국연구재단 개인기초연구지원사업 및 KAIST 글로벌 특이점 사업(M3I3)의 지원을 받아 수행됐다.
2021.04.05
조회수 76619
-
전산학부 김대화 석사과정, ACM CHI 2021 학회 Honorable Mention Award 수상
우리 대학 전산학부 이기혁 교수 연구팀이 가상환경에서 안테나의 반사 손실을 이용해 사용자의 핀치 제스처를 정밀하게 감지하는 방법에 대해 연구했다고 밝혔다. (논문명: ‘AtaTouch: Robust Finger Pinch Detection for a VR Controller Using RF Return Loss’’)
이 교수 연구팀 소속 김대화 석사과정 학생이 제1저자로 참여한 이번 연구는 국제학회 ACM CHI 2021 (ACM CHI Conference on Human Factors in Computing Systems)에 게재되고 Honorable Mention Award를 수상했다. ACM CHI 학회는 Human-Computer Interaction 분야의 최고 권위 학회로, Honorable Mention Award는 전체 논문 중 상위 5%의 논문에 주어지는 상이다.
가상환경에서 컨트롤러는 정확한 손 위치 추정과 햅틱 피드백을 통한 몰입형 가상현실을 가능하게 하고, 버튼 및 조이스틱과 같은 추가 입력을 제공하기 때문에 많은 장점이 있다. 컨트롤러의 장점을 유지하면서 자연스러운 상호작용을 지원하기 위해, 최신 감지 기술들은 컨트롤러를 든 상태에서 사용자의 손가락을 트래킹하고 손 제스처를 감지한다. 손 제스처들 중 핀치 제스처(엄지손가락과 다른 손가락이 서로 맞닿아 꼬집는 듯한 손동작)는 조그마한 움직임에도 큰 햅틱 변화를 내기 때문에 가상환경에서 버튼을 누르거나, 컨트롤 막대를 조절하고, 작은 가상 물체를 정교하게 움직이게 하며, 텍스트 입력을 하는 등의 많은 상황에서 유용하게 이용된다.
하지만 기존의 감지 기술들은 두 손가락의 터치 유무를 정밀하게 구분하는데 어려움이 있다. 빈번한 터치 구분 오류는 사용자들이 실패를 보상하기 위해 손가락을 평소보다 멀리 떨어뜨리거나 두 손가락을 세게 치도록 만들고, 그에따라 사용자는 상호작용 중 피로감을 느끼게 된다.
이번 논문은 전자기적으로 결합된 손과 안테나의 임피던스 변화를 이용하기 때문에, 기존의 핀치 제스처 감지 방식의 한계를 극복하고 정밀한 손가락의 터치 감지를 가능하게 한다. 두 손가락의 터치를 구분하는 원리는 다음과 같다. 사용자의 손을 안테나에 가까이 가져가면, 각각의 인덕터 성분으로 인해 안테나와 손가락의 임피던스가 결합된다. 두 손가락이 맞닿은지 혹은 떨어졌는지 여부에 따라 손가락의 전기용량 성분이 달라지고, 그에 따라 안테나의 반사 손실이 달라진다(그림1). 안테나에서 전파가 전송될 때 매질의 임피던스의 차이로 인해 일부는 반사되고 일부는 전송되는데, 손가락의 터치 여부에 따른 임피던스 변화에 의해 반사되는 전파의 양이 달라지기 때문에 반사손실의 변화를 측정할 수 있는 것이다.
연구팀은 프로토타입 컨트롤러를 개발(그림2)하여 그의 성능을 평가했다. 12명의 피실험자를 대상으로 한 실험에서 96.4%의 터치 구분 정확도를 확인했다. 또한, 가상블록을 옮기는 실제 가상환경 시나리오에서 낮은 오류율을 보였고, 실험참가자들은 민감하고 가벼운 상호작용이 가능했다고 응답했다.
이번 연구는 과학기술정보통신부와 정보통신기획평가원의 지원을 받아 수행됐다. (No.2020-0-00537, Development of 5G based low latency device – edge cloud interaction technology).
- 논문 관련 정보: https://daehwa.github.io/atatouch
2021.04.05
조회수 75944
-
천 배 넘게 응축된 빛 관측 성공
우리 대학 전기및전자공학부 장민석 교수가 이끄는 국제 공동 연구팀이 그래핀 나노층 구조에 천 배 넘게 응축돼 가둬진 중적외선 파동의 이미지를 세계 최초로 얻어내 초미시 영역에서 전자기파의 거동을 관측했다고 2일 밝혔다.
연구팀은 수 나노미터 크기의 도파로에 초고도로 응축된 `그래핀 플라즈몬'을 이용했다. 그래핀 플라즈몬이란 나노 물질 그래핀의 자유 전자들이 전자기파와 결합해 집단으로 진동하는 현상을 말한다. 최근 이 플라즈몬들이 빛을 그래핀과 금속판 사이에 있는 아주 얇은 유전체에 가둬 새로운 모드를 만들 수 있다는 사실이 밝혀졌다.
이러한 그래핀-유전체-금속판 구조에서는, 그래핀의 전하들이 금속판에 영상 전하(image charge)를 만들게 되고 빛의 전기장에 의해 그래핀의 전자들이 힘을 받아 진동하게 되면 금속에 있는 영상 전하들도 잇따라 진동하게 된다. 이러한 새로운 형태의 그래핀-유전체-금속판에서의 집단적인 전자 진동 모드를 `어쿠스틱' 그래핀 플라즈몬(Acoustic Graphene Plasmon; 이하 AGP)이라고 한다.
하지만 AGP는 광학적 파동을 수 나노미터 정도의 얇은 구조에 응집시키기 때문에, 외부로 새어 나오는 전자기장의 세기가 매우 약하다. 이 때문에 지금까지 직접적인 광학적 검출 방법으로는 그 존재를 밝혀내지 못했으며 원거리장 적외선 분광학이나 광전류 매핑과 같은 간접적인 방법으로 AGP의 존재를 보일 수밖에 없었다.
이러한 한계점을 극복하기 위해, 국제 공동 연구팀은 새로운 실험 기법과 나노 공정 방법론을 제안했다. KAIST 전기및전자공학부의 장민석 교수와 메나브데 세르게이(Sergey Menabde) 박사 후 연구원은 민감도가 매우 높은 산란형 주사 근접장 광학현미경(s-SNOM)을 이용해 나노미터 단위의 도파로를 따라 진동하는 AGP를 세계 최초로 직접적으로 검출했고, 중적외선이 천 배 넘게 응축된 현상을 시각화했다. 해당 나노 구조들은 미국의 미네소타 대학(University of Minnesota)의 전자 및 컴퓨터 공학부의 오상현 교수팀이 제작했으며, 그래핀은 성균관대학교의 IBS 나노구조물리연구단(이하 CINAP) 이영희 연구단장팀이 합성했다.
연구팀은 AGP 에너지의 대부분이 그래핀 아래에 있는 유전체층에 집중된 상황에서도 AGP를 검출했는데, 이는 오상현 교수와 이인호 박사 후 연구원이 만든 고도로 반듯한 나노 도파로와 CINAP에서 합성한 순도 높은 대면적 그래핀 덕분에 플라즈몬이 보다 긴 거리를 전파할 수 있는 환경이 조성됐기 때문이다.
중적외선 영역의 전자기파는 다양한 분자들이 가지고 있는 진동 주파수와 일치하는 주파수를 가지고 있어 이들의 화학적, 물리적 성질을 연구하는데 막대한 비중을 차지한다. 예를 들어, 많은 중요한 유기 분자들이 중적외선 흡수 분광학으로 검출될 수 있다. 하지만 한 개의 분자와 빛 간의 상호작용은 매우 작아 성공적인 검출을 위해서는 분자의 개수가 많아야 한다. AGP는 초고도로 응축된 전자기장을 통해 분자와 빛의 상호작용을 크게 높일 수 있으며 결국 한 개의 분자로도 작동하는 단분자 검출 기술을 가능하게 한다.
또한, 일반적인 그래핀 플라즈몬 기반의 광학 장치들은 그래핀에서의 큰 에너지 흡수율 때문에 높은 성능을 보이기 어렵다. 반면 AGP의 전자기장은 대부분이 그래핀이 아닌 유전체층에 존재하기 때문에 그래핀에서 에너지 손실에 덜 민감하므로 고성능 소자 구현에 유리하다. 이번 연구 결과는 AGP가 중적외선 영역에서 작동하는 다른 그래핀 기반의 메타 표면, 광학적 스위치, 다양한 광전류 장치 등을 대체할 수 있을 것이라는 희망을 보여준다.
장민석 교수는 "이번 연구를 통해 어쿠스틱 그래핀 플라즈몬의 초고도로 응축된 전자기장을 근접장 측정을 통해 관측할 수 있었다.ˮ라며 "앞으로 강한 물질-빛 상호작용이 필요한 다른 상황에서도 어쿠스틱 그래핀 플라즈몬을 이용한 연구가 활발해지기를 기대한다ˮ라고 말했다.
메나브데 세르게이(Sergey Menabde) 박사와 이인호 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 에 2월 19일 字 게재됐다. (논문명: Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition).
한편 이번 연구는 삼성전자 미래기술육성센터 및 한국연구재단(NRF), 미국의 National Science Foundation(NSF), 삼성 글로벌 공동연구 프로그램(GRO), 기초과학연구원(IBS)의 지원으로 진행됐다.
2021.03.02
조회수 86209
-
개교 50주년 기념 국제 학생 콘퍼런스 개최
우리 대학이 개교 50주년을 맞아 학부생이 주도하는 국제 학생 콘퍼런스를 3일(수)부터 5일간 개최한다.
ʻ선구자 2071: 향후 50년을 묻는다(Pioneers 2071: Questioning the Next 50 Years)ʼ를 주제로 열리는 이번 콘퍼런스는 미래 사회의 핵심 구성원이 될 대학생들이 향후 발생할 수 있는 주요 글로벌 이슈를 탐색해 과학기술 및 사회 정책 등에 관한 혁신적인 아이디어를 겨루는 장이다.
이 콘퍼런스 진행을 위해 KAIST는 작년 12월부터 한 달간 신청을 받았는데 미국 · 이탈리아 · 인도네시아 · 일본 · 중국 · 터키 · 카자흐스탄 · 케냐 · 호주 등 전 세계 28개 대학 소속 107명의 학생이 총 19개의 팀으로 나눠 참가를 신청했다.
각 참가팀은 ʻ환경과 기후변화ʼ·ʻ새로운 팬데믹ʼ·ʻ인공지능 시대의 교육과 경제ʼ 등 주최 측이 가상으로 설정한 잠재적 위기에 관한 세 가지 시나리오 중 한 가지를 선택해 문제를 해결할 수 있는 혁신 아이디어 및 정책을 제시해야 한다.
행사 시작일인 3일부터 이틀간 준비한 정책 및 아이디어 발표 및 참가팀 간의 토론을 진행하며 교수진으로 구성된 심사위원단과의 질의응답 등도 이어진다. 이번 콘퍼런스에서는 사전에 온라인으로 등록한 약 1백 명의 투표인단도 행사를 돕기 위해 참여한다. 투표인단은 참가팀의 제출 자료 및 발표와 토론 영상을 참고해 가장 좋은 해결책을 제시한 팀에 투표한다.심사위원단의 평가와 투표단의 득표수를 합산해 각 시나리오별 상위 3개 팀이 결선에 진출하며, 2월 7일에 예정된 마지막 토론에서 최종 우승자가 가려진다. 대상 1팀에는 상금 3,000달러(한화 약 330만 원)가 수여되며, 금상 2개 팀과 은상 2개 팀에는 각각 2,000달러와 1,000달러의 상금이 주어진다.
이번 국제 학생 콘퍼런스는 개교 50주년을 기념하기 위해 학생들이 직접 주도하는 행사를 마련하자는 취지로 시작됐다. 33대 총학생회 플렉스(FLEX)를 중심으로 한 12명의 학부생이 지난해 3월부터 약 1년간 기획에서부터 실행에 이르는 주도적인 역할을 수행했다.
고경빈(KAIST 생명과학과 2학년) 학생은 "코로나19로 전 세계가 어려움을 겪는 중에도 열정적으로 참여한 세계 각국의 또래 세대와 함께 미래를 논의할 기회를 마련했다는 점에서 큰 보람을 느낀다ˮ고 말했다. 고경빈 학생은 이어 "이번 국제 학생 콘퍼런스를 통해 앞으로 우리 세대가 겪게 될 글로벌 이슈들을 주도적으로 고민하며 대처할 수 있는 계기가 마련되길 기대한다ˮ고 강조했다.한편, 전 과정이 영어로 진행되는 이번 행사는 유튜브(채널명: KAIST Pioneers 2071)를 통해 2월 3일 오전 8시부터 실시간 중계되며, 자세한 내용은 홈페이지 ( https://pioneers.kaist.ac.kr)를 통해 확인할 수 있다.
2021.02.02
조회수 72348