-
양용수 교수팀, 나노물질 표면과 내부 3차원 원자구조 규명
우리 대학 물리학과 양용수 교수 연구팀이 인공신경망을 이용한 주사투과전자현미경(STEM) 기반 원자분해능 전자토모그래피 기술을 개발, 이를 적용해 백금 나노입자 표면과 내부의 3차원 원자 구조를 15 pm(피코미터)의 정밀도로 규명했다. 1 pm(피코미터)는 1 미터의 1조 분의 일에 해당하는 단위로, 15 pm의 정밀도는 수소 원자 반지름의 약 1/3 정도에 해당하는 매우 높은 수준이다.
전자토모그래피는 전자현미경으로 다양한 각도에서 측정된 2차원 투영된 이미지로부터 3차원 이미지를 얻어내는 기술이다. 최근 주사투과전자현미경과 3차원 토모그래피 재구성 알고리즘의 기술 발전으로 전자토모그래피의 분해능은 단일 원자까지 구분할 수 있는 수준에 이르렀다. 이를 통해 많은 나노물질의 구조와 물성의 근본적인 이해가 가능해졌다.
그러나 일반적인 전자토모그래피 실험에서는 시편을 탑재한 홀더 또는 그리드가 전자빔을 가리게 되는 실험적 제약으로 인해 고 각도(약 75도 이상)의 이미지 측정이 불가능하다. 이로 인해 고 각도 방향의 분해능이 저하되고, 재구성된 3차원 이미지에 원치 않는 노이즈들이 생겨난다. 이러한 현상을 손실 웨지 문제(missing wedge problem)라 부르며, 이러한 문제 때문에 기존의 전자토모그래피 방법으로는 표면/계면의 3차원 원자 구조를 고분해능으로 측정하기 힘들었다.
양용수 교수 연구팀은 인공신경망을 이용해 고 각도 방향의 데이터를 복원함으로써 이러한 손실 웨지 문제(missing wedge problem)를 해결하는 데 성공했다. 이를 통해 고분해능 3차원 표면/계면 원자 구조의 결정이 가능하게 됐고, 나노물질의 표면/계면에서 나타나는 물성의 메커니즘을 단일 원자 수준에서 근본적으로 해석할 수 있게 됐다.
물리학과 이주혁 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 3월 30일 字 게재됐다. (논문명 : Single-atom level determination of 3-dimensional surface atomic structure via neural network-assisted atomic electron tomography)
연구팀은 모든 물질은 원자들로 구성돼 있다는 원자성(atomicity)에 근거해 원자 구조 토모그래피 3차원 데이터를 시뮬레이션을 통해 생성했다. 고 각도의 데이터가 손실된 불완전한 원자 구조 토모그래피 3차원 데이터와 이상적인 원자 구조 3차원 데이터 사이의 상관관계를 학습시키기 위해 인공지능 신경망(3d-unet기반 모델)을 지도학습했다. 원자성에 기반해 학습된 인공지능 신경망은 손실된 고 각도 데이터를 성공적으로 복원함으로써 손실 웨지 문제로 인한 분해능 저하 문제를 해결했다. 이는 높은 정밀도의 3차원 표면/계면 원자 구조 규명을 가능하게 한다.
연구팀은 개발된 인공신경망 기반 전자토모그래피 기술을 이용해 실제 백금 나노입자의 3차원 표면 및 내부 구조를 단일 원자 수준에서 규명할 수 있었다. 원자 구조의 정밀도는 인공신경망 적용 전 26 pm에서 적용 후 15 pm으로 큰 폭으로 향상됐다.
연구를 주도한 양용수 교수는 "인공신경망 기반 전자토모그래피는 구성 원소, 물질의 구조/형태에 의존하지 않는 매우 일반적인 방법으로서, 전자토모그래피로 얻은 원자 구조 부피데이터에는 종류에 상관없이 바로 적용할 수 있다ˮ며 "이를 통해 많은 물질의 3차원 표면/계면 원자 구조가 정밀하게 규명되고, 표면/계면에서 일어나는 물성과 이에 연관된 메커니즘의 근본적인 이해를 바탕으로 고성능 촉매 개발 등에 응용될 것ˮ이라고 연구의 의의를 설명했다.
한편 이번 연구는 한국연구재단 개인기초연구지원사업 및 KAIST 글로벌 특이점 사업(M3I3)의 지원을 받아 수행됐다.
2021.04.05
조회수 75489
-
전산학부 김대화 석사과정, ACM CHI 2021 학회 Honorable Mention Award 수상
우리 대학 전산학부 이기혁 교수 연구팀이 가상환경에서 안테나의 반사 손실을 이용해 사용자의 핀치 제스처를 정밀하게 감지하는 방법에 대해 연구했다고 밝혔다. (논문명: ‘AtaTouch: Robust Finger Pinch Detection for a VR Controller Using RF Return Loss’’)
이 교수 연구팀 소속 김대화 석사과정 학생이 제1저자로 참여한 이번 연구는 국제학회 ACM CHI 2021 (ACM CHI Conference on Human Factors in Computing Systems)에 게재되고 Honorable Mention Award를 수상했다. ACM CHI 학회는 Human-Computer Interaction 분야의 최고 권위 학회로, Honorable Mention Award는 전체 논문 중 상위 5%의 논문에 주어지는 상이다.
가상환경에서 컨트롤러는 정확한 손 위치 추정과 햅틱 피드백을 통한 몰입형 가상현실을 가능하게 하고, 버튼 및 조이스틱과 같은 추가 입력을 제공하기 때문에 많은 장점이 있다. 컨트롤러의 장점을 유지하면서 자연스러운 상호작용을 지원하기 위해, 최신 감지 기술들은 컨트롤러를 든 상태에서 사용자의 손가락을 트래킹하고 손 제스처를 감지한다. 손 제스처들 중 핀치 제스처(엄지손가락과 다른 손가락이 서로 맞닿아 꼬집는 듯한 손동작)는 조그마한 움직임에도 큰 햅틱 변화를 내기 때문에 가상환경에서 버튼을 누르거나, 컨트롤 막대를 조절하고, 작은 가상 물체를 정교하게 움직이게 하며, 텍스트 입력을 하는 등의 많은 상황에서 유용하게 이용된다.
하지만 기존의 감지 기술들은 두 손가락의 터치 유무를 정밀하게 구분하는데 어려움이 있다. 빈번한 터치 구분 오류는 사용자들이 실패를 보상하기 위해 손가락을 평소보다 멀리 떨어뜨리거나 두 손가락을 세게 치도록 만들고, 그에따라 사용자는 상호작용 중 피로감을 느끼게 된다.
이번 논문은 전자기적으로 결합된 손과 안테나의 임피던스 변화를 이용하기 때문에, 기존의 핀치 제스처 감지 방식의 한계를 극복하고 정밀한 손가락의 터치 감지를 가능하게 한다. 두 손가락의 터치를 구분하는 원리는 다음과 같다. 사용자의 손을 안테나에 가까이 가져가면, 각각의 인덕터 성분으로 인해 안테나와 손가락의 임피던스가 결합된다. 두 손가락이 맞닿은지 혹은 떨어졌는지 여부에 따라 손가락의 전기용량 성분이 달라지고, 그에 따라 안테나의 반사 손실이 달라진다(그림1). 안테나에서 전파가 전송될 때 매질의 임피던스의 차이로 인해 일부는 반사되고 일부는 전송되는데, 손가락의 터치 여부에 따른 임피던스 변화에 의해 반사되는 전파의 양이 달라지기 때문에 반사손실의 변화를 측정할 수 있는 것이다.
연구팀은 프로토타입 컨트롤러를 개발(그림2)하여 그의 성능을 평가했다. 12명의 피실험자를 대상으로 한 실험에서 96.4%의 터치 구분 정확도를 확인했다. 또한, 가상블록을 옮기는 실제 가상환경 시나리오에서 낮은 오류율을 보였고, 실험참가자들은 민감하고 가벼운 상호작용이 가능했다고 응답했다.
이번 연구는 과학기술정보통신부와 정보통신기획평가원의 지원을 받아 수행됐다. (No.2020-0-00537, Development of 5G based low latency device – edge cloud interaction technology).
- 논문 관련 정보: https://daehwa.github.io/atatouch
2021.04.05
조회수 75083
-
천 배 넘게 응축된 빛 관측 성공
우리 대학 전기및전자공학부 장민석 교수가 이끄는 국제 공동 연구팀이 그래핀 나노층 구조에 천 배 넘게 응축돼 가둬진 중적외선 파동의 이미지를 세계 최초로 얻어내 초미시 영역에서 전자기파의 거동을 관측했다고 2일 밝혔다.
연구팀은 수 나노미터 크기의 도파로에 초고도로 응축된 `그래핀 플라즈몬'을 이용했다. 그래핀 플라즈몬이란 나노 물질 그래핀의 자유 전자들이 전자기파와 결합해 집단으로 진동하는 현상을 말한다. 최근 이 플라즈몬들이 빛을 그래핀과 금속판 사이에 있는 아주 얇은 유전체에 가둬 새로운 모드를 만들 수 있다는 사실이 밝혀졌다.
이러한 그래핀-유전체-금속판 구조에서는, 그래핀의 전하들이 금속판에 영상 전하(image charge)를 만들게 되고 빛의 전기장에 의해 그래핀의 전자들이 힘을 받아 진동하게 되면 금속에 있는 영상 전하들도 잇따라 진동하게 된다. 이러한 새로운 형태의 그래핀-유전체-금속판에서의 집단적인 전자 진동 모드를 `어쿠스틱' 그래핀 플라즈몬(Acoustic Graphene Plasmon; 이하 AGP)이라고 한다.
하지만 AGP는 광학적 파동을 수 나노미터 정도의 얇은 구조에 응집시키기 때문에, 외부로 새어 나오는 전자기장의 세기가 매우 약하다. 이 때문에 지금까지 직접적인 광학적 검출 방법으로는 그 존재를 밝혀내지 못했으며 원거리장 적외선 분광학이나 광전류 매핑과 같은 간접적인 방법으로 AGP의 존재를 보일 수밖에 없었다.
이러한 한계점을 극복하기 위해, 국제 공동 연구팀은 새로운 실험 기법과 나노 공정 방법론을 제안했다. KAIST 전기및전자공학부의 장민석 교수와 메나브데 세르게이(Sergey Menabde) 박사 후 연구원은 민감도가 매우 높은 산란형 주사 근접장 광학현미경(s-SNOM)을 이용해 나노미터 단위의 도파로를 따라 진동하는 AGP를 세계 최초로 직접적으로 검출했고, 중적외선이 천 배 넘게 응축된 현상을 시각화했다. 해당 나노 구조들은 미국의 미네소타 대학(University of Minnesota)의 전자 및 컴퓨터 공학부의 오상현 교수팀이 제작했으며, 그래핀은 성균관대학교의 IBS 나노구조물리연구단(이하 CINAP) 이영희 연구단장팀이 합성했다.
연구팀은 AGP 에너지의 대부분이 그래핀 아래에 있는 유전체층에 집중된 상황에서도 AGP를 검출했는데, 이는 오상현 교수와 이인호 박사 후 연구원이 만든 고도로 반듯한 나노 도파로와 CINAP에서 합성한 순도 높은 대면적 그래핀 덕분에 플라즈몬이 보다 긴 거리를 전파할 수 있는 환경이 조성됐기 때문이다.
중적외선 영역의 전자기파는 다양한 분자들이 가지고 있는 진동 주파수와 일치하는 주파수를 가지고 있어 이들의 화학적, 물리적 성질을 연구하는데 막대한 비중을 차지한다. 예를 들어, 많은 중요한 유기 분자들이 중적외선 흡수 분광학으로 검출될 수 있다. 하지만 한 개의 분자와 빛 간의 상호작용은 매우 작아 성공적인 검출을 위해서는 분자의 개수가 많아야 한다. AGP는 초고도로 응축된 전자기장을 통해 분자와 빛의 상호작용을 크게 높일 수 있으며 결국 한 개의 분자로도 작동하는 단분자 검출 기술을 가능하게 한다.
또한, 일반적인 그래핀 플라즈몬 기반의 광학 장치들은 그래핀에서의 큰 에너지 흡수율 때문에 높은 성능을 보이기 어렵다. 반면 AGP의 전자기장은 대부분이 그래핀이 아닌 유전체층에 존재하기 때문에 그래핀에서 에너지 손실에 덜 민감하므로 고성능 소자 구현에 유리하다. 이번 연구 결과는 AGP가 중적외선 영역에서 작동하는 다른 그래핀 기반의 메타 표면, 광학적 스위치, 다양한 광전류 장치 등을 대체할 수 있을 것이라는 희망을 보여준다.
장민석 교수는 "이번 연구를 통해 어쿠스틱 그래핀 플라즈몬의 초고도로 응축된 전자기장을 근접장 측정을 통해 관측할 수 있었다.ˮ라며 "앞으로 강한 물질-빛 상호작용이 필요한 다른 상황에서도 어쿠스틱 그래핀 플라즈몬을 이용한 연구가 활발해지기를 기대한다ˮ라고 말했다.
메나브데 세르게이(Sergey Menabde) 박사와 이인호 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 에 2월 19일 字 게재됐다. (논문명: Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition).
한편 이번 연구는 삼성전자 미래기술육성센터 및 한국연구재단(NRF), 미국의 National Science Foundation(NSF), 삼성 글로벌 공동연구 프로그램(GRO), 기초과학연구원(IBS)의 지원으로 진행됐다.
2021.03.02
조회수 84862
-
개교 50주년 기념 국제 학생 콘퍼런스 개최
우리 대학이 개교 50주년을 맞아 학부생이 주도하는 국제 학생 콘퍼런스를 3일(수)부터 5일간 개최한다.
ʻ선구자 2071: 향후 50년을 묻는다(Pioneers 2071: Questioning the Next 50 Years)ʼ를 주제로 열리는 이번 콘퍼런스는 미래 사회의 핵심 구성원이 될 대학생들이 향후 발생할 수 있는 주요 글로벌 이슈를 탐색해 과학기술 및 사회 정책 등에 관한 혁신적인 아이디어를 겨루는 장이다.
이 콘퍼런스 진행을 위해 KAIST는 작년 12월부터 한 달간 신청을 받았는데 미국 · 이탈리아 · 인도네시아 · 일본 · 중국 · 터키 · 카자흐스탄 · 케냐 · 호주 등 전 세계 28개 대학 소속 107명의 학생이 총 19개의 팀으로 나눠 참가를 신청했다.
각 참가팀은 ʻ환경과 기후변화ʼ·ʻ새로운 팬데믹ʼ·ʻ인공지능 시대의 교육과 경제ʼ 등 주최 측이 가상으로 설정한 잠재적 위기에 관한 세 가지 시나리오 중 한 가지를 선택해 문제를 해결할 수 있는 혁신 아이디어 및 정책을 제시해야 한다.
행사 시작일인 3일부터 이틀간 준비한 정책 및 아이디어 발표 및 참가팀 간의 토론을 진행하며 교수진으로 구성된 심사위원단과의 질의응답 등도 이어진다. 이번 콘퍼런스에서는 사전에 온라인으로 등록한 약 1백 명의 투표인단도 행사를 돕기 위해 참여한다. 투표인단은 참가팀의 제출 자료 및 발표와 토론 영상을 참고해 가장 좋은 해결책을 제시한 팀에 투표한다.심사위원단의 평가와 투표단의 득표수를 합산해 각 시나리오별 상위 3개 팀이 결선에 진출하며, 2월 7일에 예정된 마지막 토론에서 최종 우승자가 가려진다. 대상 1팀에는 상금 3,000달러(한화 약 330만 원)가 수여되며, 금상 2개 팀과 은상 2개 팀에는 각각 2,000달러와 1,000달러의 상금이 주어진다.
이번 국제 학생 콘퍼런스는 개교 50주년을 기념하기 위해 학생들이 직접 주도하는 행사를 마련하자는 취지로 시작됐다. 33대 총학생회 플렉스(FLEX)를 중심으로 한 12명의 학부생이 지난해 3월부터 약 1년간 기획에서부터 실행에 이르는 주도적인 역할을 수행했다.
고경빈(KAIST 생명과학과 2학년) 학생은 "코로나19로 전 세계가 어려움을 겪는 중에도 열정적으로 참여한 세계 각국의 또래 세대와 함께 미래를 논의할 기회를 마련했다는 점에서 큰 보람을 느낀다ˮ고 말했다. 고경빈 학생은 이어 "이번 국제 학생 콘퍼런스를 통해 앞으로 우리 세대가 겪게 될 글로벌 이슈들을 주도적으로 고민하며 대처할 수 있는 계기가 마련되길 기대한다ˮ고 강조했다.한편, 전 과정이 영어로 진행되는 이번 행사는 유튜브(채널명: KAIST Pioneers 2071)를 통해 2월 3일 오전 8시부터 실시간 중계되며, 자세한 내용은 홈페이지 ( https://pioneers.kaist.ac.kr)를 통해 확인할 수 있다.
2021.02.02
조회수 71310
-
무선 충전 가능한 부드러운 뇌 이식 장치 개발
우리 연구진이 무선 충전 가능한 뇌 이식 장치를 개발했다. 이 장치는 이식 후 생체 내에서 장기간에 걸쳐 배터리 교체 없이 스마트폰을 이용해 빛으로 뇌의 신경회로를 정교하게 조절할 수 있다.
우리 대학 전기및전자공학부 정재웅 교수 연구팀이 연세대 의대 김정훈 교수팀과 공동 연구를 통해 뇌 완전 이식형 무선 광유전학 기기를 개발했다고 26일 밝혔다.
이번 개발 기술은 장기간에 걸친 동물 실험이 필요한 뇌 기능 연구뿐 아니라 향후 인체에 적용돼 중독과 같은 정신질환 및 파킨슨병과 같은 퇴행성 뇌 질환 치료에도 적용될 수 있을 것으로 기대된다.
우리 대학 전기및전자공학부 김충연 박사과정, 연세대 의대 구민정 박사과정 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 1월 22일 字에 게재됐다. (논문명 : Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics)
광유전학은 빛을 이용해 목표로 하는 특정 신경세포만을 선택적으로 정교하게 제어할 수 있다는 점에서, 뇌 기능을 밝히고 각종 뇌 질환을 치료할 해결책으로 뇌과학 및 신경과학 분야에서 주목받고 있다.
기존의 광유전학은 외부기기와 연결된 광섬유를 통해 신경세포에 빛을 전달하는 방법을 사용하고 있는데, 이러한 유선 방식은 동물의 자유로운 움직임을 크게 제한한다는 점에서 복잡한 동물 실험을 구현하는데 제약이 있다. 반면 최근에 개발된 무선 임플란트 기기들은 동물의 행동을 제약하지는 않지만, 주기적인 배터리의 교체가 필요하거나 외부 장비로부터 무선으로 전력을 공급받아야 하므로 독립적이지 못하고 동작이 안정적이지 못하다는 한계가 있다.
연구팀은 배터리의 무선 충전과 디바이스의 무선 제어를 가능하게 만드는 무선 회로를 개발해 마이크로 LED 기반의 탐침과 결합했다. 이를 통해 동물이 자유롭게 움직이는 상태에서도 배터리의 무선 충전이 가능하고, 스마트폰 앱을 통해 광자극을 무선으로 제어할 수 있는 무게 1.4그램(g)의 뇌 완전이식형 기기를 구현했다. 나아가 생체 이식 후 기기에 의해 주변의 조직이 손상되는 것을 방지하고자, 기기를 매우 부드러운 생체적합성 소재로 감싸 생체조직과 같이 부드러운 형태가 되도록 개발했다.
이번 연구를 주도한 정재웅 교수는 "개발된 장치는 체내 이식 상태에서 무선 충전이 가능하므로 배터리 교체를 위한 추가적인 수술 필요 없이 장기간 사용이 가능하다ˮ며 "이 기술은 뇌 이식용 기기뿐 아니라 인공 심박동기, 위 자극기 등 다양한 생체 이식용 기기에 범용적으로 적용될 수 있을 것이다ˮ고 말했다.
연구팀은 이 기기를 LED 탐침이 쥐의 뇌에 삽입된 상태에서 두피 안으로 완전히 이식하고 쥐가 자유롭게 움직이는 상태에서 배터리가 자동으로 무선 충전될 수 있음을 확인했다. 또한 연구팀은 중독성 약물인 코카인에 반복적으로 노출된 쥐의 특정 뇌 부위에 무선으로 빛을 전달해 코카인으로 인한 행동 민감화 발현을 억제함으로써 광유전학이 코카인에 의한 중독 행동 제어에 적용될 수 있음을 보였다.
아울러 공동연구자 연세대 의대 김정훈 교수는 "자유롭게 움직이는 동물을 바라보며, 단지 스마트폰 앱을 구동해 뇌에 빛을 전달하고, 그로 인해 동물의 특정 행동을 제어할 수 있다는 사실이 매우 흥미롭고, 많은 상상력을 자극한다ˮ라고 말했다.
연구팀은 이 기술을 궁극적으로 인체에 적용할 수 있도록 기기를 더욱 소형화하고 MRI 친화적인 디자인으로 발전시키는 확장 연구를 계획하고 있다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 기초연구실 지원사업과 신진연구자지원사업, KAIST 글로벌 특이점 연구사업의 지원을 받아 수행됐다.
2021.01.26
조회수 68058
-
시스템생물학 이용 세계 최초 알츠하이머성 치매 환자 맞춤형 치료 효능 예측 기술 개발
우리 대학 바이오및뇌공학과 조광현 교수 연구팀 (장소영 박사과정(제1저자), 강의룡 박사과정, 장홍준 박사과정)은 서울대학교 의과대학 묵인희 교수 연구팀과 공동연구를 통해 시스템생물학*과 알츠하이머 환자 유래 뇌 오가노이드** 모델의 융합으로 환자 맞춤형 약물 효능평가 플랫폼(Drug-screening platform)을 세계 최초로 개발했다고 13일 밝혔다.
* 시스템생물학: IT의 수학모델링 및 컴퓨터시뮬레이션과 BT의 분자세포생물학 실험을 융합하여 복잡한 생명현상을 규명하고 설명하는 연구 패러다임
** 뇌 오가노이드: 환자의 역분화 줄기세포(iPSC) 유래 인공 미니 뇌
알츠하이머병은 치매의 약 70%를 차지하는 대표적 치매 질환이나 현재까지 발병 원인이 불명확하며, 근본적인 치료제도 없는 인류가 극복하지 못한 질병 중 하나다.
알츠하이머병 치료제 개발 난제 중 하나는 실제 살아있는 환자의 뇌를 직접 실험 샘플로 사용할 수 없다는 것이었다. 이는 수많은 치료제 후보군의 약물 효능을 정확히 평가하기가 어려워 치료제 개발의 걸림돌로 작용해왔다.
조광현 교수 공동 연구팀은 실제 치매환자에서 유래한 뇌 오가노이드 기반으로 생물학적 메커니즘에 대한 수학 모델링을 융합하여 약물효능 예측이 가능한 플랫폼을 세계 최초로 개발했다. 환자 혈액으로부터 역분화줄기세포(Induced-pluripotent stem cell)*를 구축 후 이를 이용하여 3D 뇌 오가노이드를 제작해 실제 환자의 뇌와 유사한 환경 구축을 통해 실험적 한계를 극복했다.
* 역분화줄기세포: 다능성이 없는 혈액 면역세포에 역분화를 일으키는 4가지 특정 유전자를 도입하여 배아 줄기세포와 같이 모든 종류의 세포로 분화할 수 있는 성질(다능성)을 가진 줄기세포
또한, 시스템생물학 기반 수학 모델링 기법으로 알츠하이머병의 신경세포 특이적 네트워크망을 구축하고, 이를 실제 알츠하이머병 환자 및 정상군 유래 뇌 오가노이드를 통하여 신경세포 컴퓨터 모델의 실효성을 검증했다.
이 연구결과는 알츠하이머병의 시스템생물학 기반 신경세포 컴퓨터 모델을 실제 환자 유래 뇌 오가노이드로 검증한 세계 최초의 사례이다. 이는 환자 맞춤형 치료(Precision medicine)의 불모지로 여겨졌던 뇌 질환분야에서도 알츠하이머병 환자의 유전형에 따른 최적의 약물 효능 예측이 가능하게 됨을 의미하며 향후 약물 타겟 발굴에 기여할 것으로 기대된다.
조광현 교수는 “이번에 개발한 시스템생물학 기반 알츠하이머성 치매환자 약물 효능평가 플랫폼을 통해 향후 치매 치료제 개발 경쟁에서 우리나라가 국가적 우위를 선점할 수 있을 것으로 기대한다”고 밝혔다.
이번 연구는 보건복지부 한국보건산업진흥원의 국가치매극복기술개발 사업 및 한국연구재단의 중견연구자지원사업으로 수행됐으며, 연구성과는 국제학술지 네이처 커뮤니케이션즈(Nature Communications)의 2021년 1월 12일자 논문으로 게재됐다.
(https://www.nature.com/articles/s41467-020-20440-5)
2021.01.13
조회수 62272
-
신소재 레이저 제작기술 개발
우리 대학 물리학과 박용근 교수, 이상민 교수, 신소재공학과 김도경 교수 공동연구팀이 기존에는 활용할 수 없었던 소자와 재료로 레이저를 구현할 수 있는 새로운 비공진 방식의 레이저 제작기술을 개발했다고 12일 밝혔다.
일반적인 레이저는 거울 등을 이용해 빛을 가두는 구조(공진기) 내부에 빛을 증폭시키는 레이저 소재(이득 물질)을 배치하는 방식이다. 하지만 공진기 내부에서 빛의 경로가 일정하게 유지돼야 레이저가 작동하기 때문에, 매우 투명한 크리스탈 구조의 이득 물질에서만 레이저가 구현될 수 있었다. 따라서 자연계에 존재하는 많은 재료 중에 투명한 크리스탈로 제작할 수 있는 특수한 레이저 소재들만 활용됐다.
연구팀은 불투명한 이득 물질에서도 빛을 가둘 수 있는 공진기 구조를 내부에 만드는 새로운 방식의 레이저를 개발했다. 마치 `통발' 형태의 공간에서 빛이 갇힌 채로 주변 이득 물질에 의해 계속 산란되면서 증폭되는 원리다. 이 새로운 레이저는 이득 물질이 꼭 투명할 필요가 없으므로 기존에 이득 물질로 사용되지 못했던 다양한 불투명 소재들을 활용해 새로운 레이저를 만들 수 있다.
우리 대학 물리학과 이겨레 박사, 신소재공학과 마호진 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 1월 4일 字 출판됐다. (논문명 : Non-resonant power-efficient directional Nd:YAG ceramic laser using a scattering cavity).
박용근 교수 연구팀은 크리스탈 구조로 만들 수 없는 소재로 레이저를 구현하기 위해 공진기 사방을 모두 산란체로 막는 아이디어를 구상했다. 물고기 통발의 구조처럼 산란체로 사방이 막혀있고 좁은 입구를 가진 `빛 통발' 형태의 텅 빈 공간을 공진기로 활용하는 아이디어다.
연구팀은 불투명한 이득 물질로 제작된 산란체 내부에 작은 공간을 파내어 레이저 공진 공간을 만들었다. 이렇게 만들어진 구형 공간의 벽면에서 빛이 반사될 때마다 증폭하도록 만들어졌다.
연구팀은 제안한 형태의 `빛 통발'에서 성공적인 레이저 발진을 구현하는 데 성공했다. 3차원 공간에서 무작위로 형성되는 공동 내 빛의 경로 때문에, 구현된 레이저는 일반적인 공진(resonant) 기반 레이저와 다르게 비공진(non-resonant) 형태로 발진 됐다.
연구팀이 개발한 레이저의 가장 큰 특징은 투명한 이득 물질을 필요로 하지 않는다는 점이다. 불투명한 성질 때문에 기존 레이저 이득 물질로 활용되지 못했던 소재들을 활용해 더욱 다양한 레이저 개발이 가능할 것으로 기대된다. 기존에 활용되지 못하던 새로운 소재를 레이저 이득 물질로 활용할 수 있으므로 레이저에서 나오는 빛의 파장을 크게 확장할 수 있고, 국방 목적과 같은 고출력 레이저로도 활용될 수 있다.
공동 제1 저자이자 교신저자인 물리학과 이겨레 박사는 "구현한 레이저는 비공진 레이저이면서 동시에 높은 에너지 효율과 방향성을 가지는 것이 장점이다. 또한, 고된 소재의 결정화 과정 없이도 효율적인 레이저를 제작할 수 있다면 이득 물질로 사용될 수 있는 소재의 폭이 월등히 넓어질 것ˮ이라며 "기존에는 레이저로 활용하지 못했던 새로운 재료로 레이저를 발진시킬 수 있어 다양한 파장과 광 특성을 가진 새로운 레이저 소자 개발이 가능하고 이를 활용하면 의료, 생명과학, 산업기술, 국방 등 여러 분야로 적용이 가능할 것으로 기대한다ˮ라고 말했다.
한편 이번 연구는 한국연구재단 리더연구사업의 지원을 받아 수행됐다.
2021.01.12
조회수 52604
-
미생물 기반 다양한 일차 아민 생산 기술 최초 개발
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 `비식용 바이오매스를 여러 가지 짧은 길이의 일차 아민들로 전환하는 미생물 균주 개발'에 성공했다고 11일 밝혔다.
이번 연구결과는 국제적인 학술지인 `네이쳐 커뮤니케이션스(Nature Communications)'에 게재됐다.
※ 논문명 : Microbial production of multiple short-chain primary amines via retrobiosynthesis
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 김동인(한국과학기술원, 공동 제1저자), 채동언(한국과학기술원, 공동 제1저자), 김현욱(한국과학기술원, 공동 제1저자), 장우대(한국과학기술원, 제4저자), 포함 총 5명
석유화학산업은 화석원료를 이용해 우리 생활 전반에 광범위하게 이용되는 범용화학물질들을 생산해왔다. 그러나 원유 매장량 고갈에 대한 우려와 원유 산업으로부터 발생하는 지구 온난화 등의 환경문제가 전 세계적으로 매우 심각한 상황이다. 특히 우리나라의 경우 석유를 전량 수입에 의존하기 때문에, 국제 유가 변동에 매우 취약한 실정이다. 이에 환경문제를 해결하면서 원유를 대체할 수 있는 지속 가능한 바이오리파이너리의 구축이 시급히 요구되고 있다.
바이오 리파이너리란 화석원료가 아닌 비식용 바이오매스를 원료로 사용해 미생물로 산업적으로 유용한 화학물질들을 생산하는 기술이다. 여기서 미생물은 원료인 바이오매스를 우리가 원하는 화학물질로 전환하는 세포 공장과 같은 역할을 한다. 이러한 미생물의 복잡한 대사회로를 효과적으로 조작할 수 있게 하는 시스템 대사공학은 바이오 리파이너리에서 핵심기술 중 하나다.
지금껏 석유화학 공정을 통해서 합성되던 화학물질 중에는 미생물 시스템 대사공학을 통해서 바이오 기반으로 생산되는 사례가 점차 늘고 있지만, 아직 의약품 및 농약품들의 전구체로 널리 사용되는 짧은 탄소 길이를 가진 일차 아민들의 생산은 보고된 바가 없었다.
이에 KAIST 이상엽 특훈교수 연구팀은 여러 가지 짧은 탄소 길이를 갖는 일차 아민들을 생산할 수 있는 대장균 균주 개발 연구를 수행했다.
지금까지 이러한 일차 아민들을 생산하는 균주들이 개발되지 못한 가장 큰 이유는 생합성 대사회로의 부재였다. 이러한 문제를 해결하기 위해 역 생합성 시뮬레이션을 통해 모든 가능한 대사경로들을 예측했다. 그 후 전구체 선택과정을 통해 가장 유망한 대사회로들을 선정했다.
이렇게 디자인된 신규 대사회로들을 실제 실험을 통해 검증했으며 이를 통해 10가지 종류의 다른 짧은 길이의 일차 아민들을 생산하는 대장균 균주들을 최초로 개발하는 데 성공했다.
또한 대표적인 일차 아민들을 선정해 폐목재, 잡초 등 지구상에서 가장 풍부한 바이오매스의 주원료인 포도당을 단일 탄소원으로 사용한 생산과 시스템 대사공학을 통한 생산량 증대를 보임으로써 바이오 기반 생산의 가능성을 보여줬다.
이번 연구에서 활용된 역 생합성과 전구체 선택과정을 같이 사용한 전략은 짧은 탄소 길이를 가진 일차 아민들 뿐만 아니라 다른 그룹의 여러 가지 화학물질들을 동시에 생산하는 대사회로들을 구축하는 데도 유용하게 쓰일 것으로 예상된다.
이상엽 특훈교수는 “이번 연구는 지금까지 석유화학 산업 기반으로만 생산할 수 있었던 짧은 탄소 길이를 가진 일차 아민들을 재생 가능한 바이오 기반 화학산업을 통해 생산할 가능성을 세계 최초로 제시한 점에 의의가 있다”며 “앞으로 더 많은 연구를 통해 생산량과 생산성을 증대시킬 계획이다”라고 밝혔다.
한편 이번 연구는 과기정통부가 지원하는 기후변화대응기술개발사업의 '바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제'의 지원을 받아 수행됐다.
2021.01.11
조회수 52920
-
신경 네트워크의 연결을 실시간으로 조절 가능한 신경 칩 플랫폼 개발
우리 대학 바이오및뇌공학과 남윤기 교수 연구팀이 나노입자 기술을 기반으로 시험관 조건에서 배양한 신경 네트워크의 연결을 실시간으로 조절할 수 있는 신경칩 플랫폼을 개발했다고 7일 밝혔다.
이번 연구는 신경 네트워크의 구조를 조절하기 위한 기존의 많은 세포 형태화 기술이 세포 배양 이전 단계에만 적용 가능한 데 반해, 네트워크의 발달 및 성숙 단계에서도 도입할 수 있다는 점에서 큰 의미가 있다.
바이오및뇌공학과 홍나리 박사과정(지도교수:남윤기)이 주도한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 12월 9일 字에 게재됐다. (논문명: Thermoplasmonic neural chip platform for in situ manipulation of neuronal connections in vitro)
우리 뇌의 복잡한 구조를 모방하는 신경 네트워크 모델을 체외 조건에서 구현하기 위해서는 신경세포의 위치와 연결을 원하는 구조에 맞춰 정렬하는 기술이 필요하며, 이를 위해 다양한 방식의 미세공정 기법을 통한 신경세포 형태화 기술이 개발돼왔다.
그러나 이러한 기술들은 세포를 배양하기 전에 배양기판의 표면을 개질하는 방법을 기반으로 하고 있어 배양 초기 단계에서 원하는 네트워크의 구조를 통제하는 것은 가능하나, 이후 수일 또는 수 주에 걸친 세포 간 네트워크 형성 과정 중에 네트워크 연결을 조절하는 것이 매우 어렵다는 단점이 있었다.
연구진은 세포 배양 중에도 신경 네트워크의 구조와 기능을 실시간으로 조절할 수 있는 기술을 개발하기 위해, `아가로즈 하이드로겔 (agarose hydrogel), 금 나노막대, 미세 전극 칩' 기반의 신경 칩 플랫폼을 제작했다. 해초로부터 추출한 물질로 조직공학 분야에서 활용되고 있는 아가로즈 하이드로겔은 신경세포의 흡착을 방해하는 세포 반발성을 가지고 있어, 배양기판 상에 다양한 형태의 패턴을 제작해 이 물질이 없는 영역에만 한정적으로 신경 네트워크를 형성시킬 수 있다.
또한 아가로즈 하이드로겔은 열에 의해 녹는 특성이 있어, 국소적인 열을 통해 특정한 위치의 하이드로겔을 제거할 수 있다. 연구진은 원하는 영역에만 국소적 열을 발생시키기 위한 매개체로 금 나노막대를 사용했다. 금 나노막대는 근적외선을 선택적으로 흡수해 열을 발생시킬 수 있는 광열 특성이 있다. 마지막으로 미세 전극 칩은 신경세포의 전기적 신호를 비침습적으로 장기간 측정한다.
연구진은 배양기판인 미세 전극 칩 위에 금 나노막대 층을 형성하고, 그 위에 미세 패턴을 지닌 아가로즈 하이드로겔 층을 제작함으로써, 각 미세 패턴 안에 독립된 신경 네트워크들을 구축했다. 다음으로 개발된 플랫폼을 통해 세 가지의 다른 조작 방식으로 신경 네트워크의 구조와 기능을 조절할 수 있음을 실험적으로 확인했다.
첫 번째로는, 금 나노막대 층에서 발생하는 열을 통해 네트워크 사이에 하이드로겔을 국소적으로 제거했으며, 제거된 영역을 따라 신경돌기(축삭)가 생장해 새로운 신경 연결이 생성됨을 확인했다. 두 번째로는, 네트워크를 연결하고 있는 신경돌기에 직접 열을 가함으로써 원하는 신경 연결을 선택적으로 제거할 수 있음을 관찰했다. 이러한 신경 연결의 생성과 제거 기술을 미세 전극 칩 상에서 실행함으로써, 연구팀은 네트워크의 구조적 변화에 의한 기능적 연결성을 분석할 수 있었다. 세 번째로는, 광열 자극을 이용한 신경 활성 억제 현상을 이용해 개별 네트워크의 활성 변화를 조절하면서 서로 연결된 네트워크 간의 기능적 연결성을 대응시킬 수 있음을 확인했다.
이번 연구의 교신저자인 남윤기 교수는 "이번 연구에서 개발된 신경 세포 칩 플랫폼은 신경회로의 구조와 기능을 세포 발달과정 중에 조절할 수 있다ˮ며, "앞으로 뇌신경과학 연구를 위한 다양하고 복잡한 형태의 체외 신경 모델을 구현하는 데 활용될 것으로 기대된다ˮ고 말했다.
한편 이번 연구는 과학기술정보통신부 중견연구자지원사업(도약연구)와 글로벌박사양성사업 지원을 받아 수행됐다.
2021.01.06
조회수 48957
-
성풍현 명예교수, 국제원자력학회연합회 의장으로 선출
우리 대학 원자력및양자공학과 성풍현 명예교수가 국제원자력학회연합회(International Nuclear Societies Council) 의장으로 선출됐다고 3일 밝혔다. 임기는 2021년 1월 1일부터 2년간이다.
국제원자력학회연합회는 1990년 설립된 단체로서 현재 국제원자력여성단체(WIN-Global)와 세계 38개국의 원자력학회가 참가하고 있으며 80,000명 이상의 원자력 전문가 회원을 대표하고 있다.
원자력관련 국제 포럼인 국제원자력학회연합회는 원자력이 현재 세계적으로 크게 문제가 되고 있는 기후변화를 막는 필수 불가결한 에너지원이라는 것을 인식하고 전 세계에 알리는 일을 하고 있으며 원자력이 소형원자로와 4세대 원자력발전소와 같은 차세대 발전소 개발을 통하여 전통적인 전기 생산뿐 아니라 지역난방, 해수담수화, 공정열생산 등에 선도적으로 쓰일 수 있다는 것을 전 세계에 알리고 이에 관련된 연구개발을 촉진하는 일을 하고 있다.
1990년에 시작돼 2020년에 30주년을 맞은 국제원자력학회연합회는 지금까지 2년 임기의 의장을 15명 배출했는데 이번에 성풍현 명예교수가 16번째 의장이 되는 것이다. 우리나라에서는 원자력 1세대인 이창건 박사가 2001년 초부터 2년간 의장을 역임한 적이 있다.
성풍현 명예교수는 1991년 9월부터 2020년 8월까지 우리 대학 교수로 활동하였으며 재직 중 한국원자력학회 회장, 원자력안전위원회 위원, 원자력진흥위원회 위원 등을 역임했다. 성풍현 명예교수는 미국원자력학회 석학회원이며 2019년 6월에는 미국원자력학회에서 주는 원자력계측제어 분야 최고의 상인 돈 밀러 상도 수상한 국제적인 원자력 전문가다.
국내에서는 현재 에너지 정책 합리화를 추구하는 교수협의회(에교협)의 공동대표로서 정부의 탈원전 정책의 문제점을 지적하는 등 합리적인 국가 에너지 정책 수립을 위해 노력하고 있다.
성풍현 우리 대학 명예교수 겸 제 16대 국제원자력학회연합회 의장은 “지금 미국, 영국, 프랑스, 일본 등 많은 선진국에서 2050년 탄소중립을 선언하고 그 목표를 위해 원자력을 재생에너지와 함께 가장 중요한 에너지원이라고 인정하고 열심히 추진해 나간다”며 “그에 반해 우리나라는 원자력을 줄이고 화석에너지인 가스 사용을 늘리면서 2050년까지 탄소중립을 하겠다고 선언했는데 이는 실현 가능성이 거의 없는 정책이므로 조속히 이런 비합리적이고 무모한 탈원전 정책을 철회해야한다”고 주장했다.
2021.01.04
조회수 56494
-
초소형·저전력·저잡음 브릴루앙 레이저 구현 성공
우리 대학 물리학과 이한석, 이용희 교수 공동연구팀(초세대협업연구실)이 경북대학교 최무한 교수, 호주국립대학교 최덕용 교수 연구팀과 공동연구를 통해 초소형·저전력·저잡음 *브릴루앙 레이저를 구현하는 데 성공했다고 23일 밝혔다. 주파수의 흔들림이 거의 없는 초소형·저전력·저잡음 광원은 차세대 초정밀 광센서 구성에 필요한 핵심 소자다.
☞ 브릴루앙 레이저(Brillouin laser): *브릴루앙 산란에 기반해 레이저 빛을 생성 증폭하며, 따라서 레이저의 매질이 브릴루앙 산란을 쉽게 일으킬수록 더 작은 에너지로도 작동할 수 있다. 출력 레이저 빛은 입력된 펌프 빛보다 주파수의 흔들림이 작고 매우 낮은 잡음을 갖는다.
☞ 브릴루앙 산란(Brillouin scattering): 빛이 매질과 상호작용을 통해 음파(acoustic phonon)를 생성하고 산란되는 현상. 산란된 빛은 음파의 에너지에 대응되는 주파수 감소를 겪으며, 유도 방출(stimulated emission) 즉 동일한 특성의 빛을 복제하는 것이 가능해 레이저 구성에 이용될 수 있다.
공동연구팀은 기존에 주로 사용돼온 물질보다 브릴루앙 산란 현상이 수백 배 잘 일어나는 칼코겐화합물 유리를 기반으로 브릴루앙 레이저를 개발함으로써 성능을 극대화했다. 칼코겐화합물 유리는 화학적 불안정성으로 인해 칩 상에서 식각을 통한 성형이 어렵다는 근본적인 약점이 있지만 연구팀은 증착 과정에서 자발적으로 광소자가 구성되는 새로운 제작 기법을 개발해 이런 문제를 해결했다.
연구팀이 개발한 제작 기법은 겨울철 지붕 위에 쌓인 눈의 형태가 지붕의 형태에 의해 정해지므로 눈을 직접 만지지 않고서도 지붕의 형태만을 조절해 원하는 눈의 형태를 얻는 것에 비유할 수 있다. 즉, 현재 반도체 공정 기술로 가공하기 쉬운 산화규소를 이용해 바닥구조를 적절히 형성하면, 그 위에 칼코겐화합물 유리를 증착하는 것만으로도 우수한 성능의 광소자가 자발적으로 형성되는 현상을 최초로 입증한 것이다.
공동연구팀은 자체 개발한 이 제작 기법을 활용해서 칼코겐화합물 유리 기반 고성능 브릴루앙 레이저를 반도체 칩 상에 초소형 광소자의 형태로 구현하는 데 성공했다. 또 기존 기록보다 100배 이상 낮은 펌프 에너지로도 레이저 구동이 가능함을 밝혔다.
공동연구팀 관계자는 "소형화 및 저전력 구동은 상용화를 위한 필수적인 요소ˮ라면서 "공동연구팀의 브릴루앙 레이저 광원 개발은 자율주행에 필요한 거리뿐만 아니라 회전관성 센서의 감도를 획기적으로 개선하는 등 차세대 광센서 개발에 널리 활용될 것으로 기대가 크다ˮ고 말했다.
그는 또 "연구 과정에서 개발한 신공정 기법은 지금껏 활용할 수 없었던 다양한 물질을 미세 광학소자 분야에 도입, 가능케 했다는 점에서 매우 의미가 클 뿐 아니라 향후 널리 활용될 가능성이 큰 원천기술이다ˮ라고 의미를 부여했다.
이번 연구를 주도한 교신저자 이한석 교수는 "칼코겐화합물 유리는 다양한 분자의 흡수선이 존재하는 중적외선 대역에도 적용 가능해 분자 분광에 기반한 환경감시 및 헬스케어 분야까지 그 응용범위를 넓힐 수 있을 것ˮ이라고 내다봤다. 또 다른 교신저자인 최덕용 교수는 "연구 과정에서 개발된 공정기법은 다양한 물질의 이종 결합(hybrid integration)을 가능하게 해 미래 양자 인터넷의 핵심 소자인 고효율 양자 광원 및 양자 메모리 분야에도 응용될 수 있다ˮ고 강조했다.
우리 대학 물리학과 김대곤 박사과정 학생과 한상윤 박사후연구원(現 대구경북과학기술원 교수)이 공동 제1 저자로 참여한 공동연구팀의 이번 논문은 국제학술지 `네이쳐 커뮤니케이션스(Nature Communications)' 11월 23일 字에 실렸다. (논문명: Universal light-guiding geometry for on-chip resonators having extremely high Q-factor)
한편 이번 연구는 2018년 삼성미래기술육성사업에 선정돼 지속적인 지원을 받아 수행됐다.
2020.12.23
조회수 43970
-
도파민의 성질로 박테리아 생장의 실시간 탐지 기술 개발
우리 몸의 신경전달물질인 도파민의 성질을 이용해 박테리아(병원균)를 쉽게 검출할 수 있는 기술이 우리 대학 연구진에 의해 개발됐다.
생명과학과 정현정 교수, 화학과 이해신 교수 공동연구팀이 도파민의 반응을 이용해 병원균의 생장과 항생제 내성을 광학적으로 측정하고 맨눈으로 실시간 검출하는 기술을 개발했다고 7일 밝혔다.
박테리아의 항생제 내성 문제는 현대인의 건강을 위협하는 위험요인으로 꼽히고 있다. 항생제 내성에 대한 적절한 대처가 없다면 30년 이내에 항생제 내성균에 의한 피해가 암보다 더 현대인의 수명을 줄일 수 있다는 보고서가 발표되기도 했다. 항생제 내성균의 종류가 점차 늘어나면서 미국 질병통제예방센터(CDC)는 연간 최소 200만 명 이상의 환자가 항생제 내성 병원균에 의해 발생하고 있다고 보고했다.
도파민은 대다수 생명체에서 신경전달물질로 사용되며, 산소가 존재하는 환경에서 다른 물질의 도움 없이 자체 중합반응(두 개 이상 결합해 큰 화합물이 되는 일)이 일어난다. 이렇게 중합된 도파민 고분자는 짙은 갈색을 나타내고, 다양한 물질 표면에 흡착해 층을 형성한다.
연구팀은 이러한 도파민의 성질을 이용해 병원균이 생장하는지와 항생제 내성을 갖는지를 육안과 형광으로 동시에 탐지 가능한 기술을 개발했다. 이 기술은 현재 사용되는 디스크 확산 검사나 균 배양 분석에 대비해 시간이 짧고 중합효소 연쇄 반응(PCR 검사)과 비교할 때도 전처리 과정이 필요 없는 간편한 기술이라는 점이 큰 장점이다.
우리 대학 나노과학기술대학원 석박사통합과정 이주훈 학생이 제1 저자로, 나노과학기술대학원 석박사통합과정 류제성 학생과 생명과학과 강유경 박사가 공동 저자로 참여한 이번 연구 결과는 재료과학 분야 국제학술지 `어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials, IF 16.836)'에 11월 3일 字 온라인 게재됐다. (논문명 : Polydopamine Sensors of Bacterial Hypoxia via Fluorescence Coupling)
도파민의 자체 중합반응에서는 개시제 역할을 하는 산소가 필수적인 존재다. 연구팀은 박테리아가 생장함에 따라 용액 내의 산소를 소모하는 현상을 이용, 박테리아의 생장 정도를 도파민의 중합반응과 연관 지어 관측하는 방법을 개발했다.
또 박테리아의 생장에 영향을 끼치지 않는 소재인 덱스트란으로 형광나노입자를 제조해 실험에 사용했다. 도파민의 자체 중합반응은 용액 내에 존재하는 형광나노입자 표면에 흡착하고 층을 형성해 입자의 화학적, 물리적 성질에 큰 변화를 일으키고 기존에 발생하던 강한 형광 신호를 약하게 만든다. 또한, 도파민과 나노입자가 첨가된 용액 내에서는 도파민의 산화와 자체 중합반응 때문에 용액의 색이 짙은 갈색으로 변한다.
하지만 박테리아가 용액 내에 존재하는 경우 박테리아 생장 때문에 산소가 소모돼 도파민의 자체 중합반응은 저해되고 용액의 색깔은 투명하게 유지된다. 나노입자의 형광 신호 역시 원래의 신호를 유지하게 된다.
연구팀은 이러한 현상을 박테리아의 생장 및 항생제 내성을 탐지하는데 적용할 수 있다는 점에 착안, 항생제에 내성을 가지는 `뉴 델리 메탈로-베타락타마제 1 (NDM-1)'을 발현하는 대장균(E. coli)을 대상으로 실험을 진행했다.
일반적인 대장균의 경우 카바페넴 계열의 항생제인 암피실린에 의해 생장이 크게 저해되는데, 항생제에 내성을 갖는 대장균은 생장이 잘 이뤄진다. 즉 항생제 내성을 가지는지에 따라 소모하는 산소의 양이 달라지고, 이 차이 때문에 도파민의 중합반응 여부를 육안과 광학적 측정으로 확인할 수 있다.
이렇게 살아있는 세포의 활성에 따라 일어나는 도파민의 자체 중합반응은 실제로 인체에 존재하는 다양한 `카테콜아민' 물질에서 나타나는 반응과 깊은 관련이 있다. 일례로 피부에 존재하는 카테콜아민은 자체 중합반응이 왕성하게 일어나 피부의 색에 큰 영향을 주는 멜라닌 색소를 형성하게 되는데 신경계에 존재하는 카테콜아민은 자체 중합반응이 거의 일어나지 않고 단일분자 형태로 존재하여 작용하는 것으로 알려져 있다. 연구팀은 이번 연구 결과를 향후 생체 내에서 도파민 등 카테콜아민의 역할과 작용을 다양한 생체 모델에서 밝히는 연구로 발전시킨다면 매우 흥미로운 연구 결과를 얻을 것으로 기대하고 있다.
정현정 교수는 “이번 연구는 도파민의 자체 중합반응을 생체 시스템에서 규명한 연구로 큰 의미를 가지며, 이를 박테리아 생장 및 항생제 내성의 실시간 검출에 적용할 수 있어 기존의 미생물 배양법보다 신속하게, 그리고 PCR 검사보다 간편하게 진단이 가능해 감염병 확산 예방에 크게 기여할 것으로 기대된다”고 말했다.
한편 이번 연구는 한국연구재단 중견연구자지원사업 및 KAIST 그랜드 챌린지 사업의 지원을 통해 이뤄졌다.
2020.12.07
조회수 36074