-
생명화학공학과 김신현 군, 2008 Micro-TAS 학회 젊은 연구자 상 수상
생명화학공학과 김신현(지도교수: 양승만, 박사과정)군이 지난 12일~15일 San Diego에서 열린 2008 Micro-TAS 학회에서 ‘광가교성 이중 에멀젼을 이용한 콜로이드 결정의 광자 유체공학적 캡슐화 공정(Optofluidic Encapsulation of Crystalline Colloidal Arrays Using Photocurable Double Emulsion droplets)’ 이라는 논문으로 ‘2008년도 마이크로타스학회 젊은 연구자 상’을 수상했다.
세계 유수의 대학과 연구기관으로부터 발표된 570여 편의 Poster 논문 가운데 4단계 전문가 심사를 거쳐 수상자로 결정됐다.
한편, 김군은 양승만 교수의 창의연구단에서 광자결정소재의 실용성을 확보하기 위한 연구를 수행하여 해외 저명학술지로부터 크게 주목 받는 연구성과를 거뒀다.
최근에는 굴절률을 1.4-2.8까지 마음대로 조절할 수 있는 입자를 대량으로 제조할 수 있는 실용적 방법을 개발하여 어드밴스드 머티리얼스 표지논문으로 게재했다. 특히, 이 논문은 저명 학술지인 Nature Photonics 誌 8월호 리서치 하이라이트 (Research Highlights)로 선정되어 연구의 중요성과 응용성을 특별기사로 조명됐다.
김군은 높은 학업 성취도를 보였으며 KBS 이공계 육성장학생으로 2년 연속 선정되기도 했다.
2008.10.22
조회수 24995
-
이효철 교수팀, 물에 녹은단백질 모양 변화 실시간 관찰 성공
- 관련 논문, 9월 22일(일)자 네이처 메서드(Nature Methods)誌 게재- 단백질의 작동메커니즘 규명에 중요한 도구 역할 및 신약개발에도 큰 도움 줄 것으로 기대
KAIST(총장 서남표) 화학과 이효철(李效澈, 36) 교수팀이 ‘물에서 변하는 단백질 분자구조를 실시간으로 규명’ 하는데 성공했다. 관련 논문은 네이처 자매지인 네이처 메서드(Nature Methods)誌 9월 22일자 온라인 판에 게재됐고 10월호에 출판될 예정이다.
논문의 제목은 “시간분해 엑스선 산란을 이용한 용액상의 단백질의 구조동역학 추적(Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering)”으로 온라인에 게재되는 논문들 중에서도 특히 주목받는 하이라이트 논문으로 소개될 예정이다. 李 교수는 이 논문의 교신저자다.
이번 연구결과는 李 교수팀의 집념의 산물이라 할 수 있다. 李 교수팀은 지난 2005년 5월, 소금처럼 딱딱하게 고체상으로 굳어 있는 상태에서의 단백질의 안정적인 구조만을 볼 수 있는 기존의 방법을 시간분해 엑스선 결정법으로 발전시켜, 정지되어 있는 단백질의 구조뿐 만 아니라 움직이는 단백질의 동영상을 촬영하는데 성공했다. 관련 논문은 미국 국립과학원회보(PNAS, Proceedings of National Academy of Science)에 발표되었으며, 학계의 큰 주목을 받았다.
그러나 이 방법으로도 해결할 수 없는 치명적인 문제는 우리 몸에서 작용하는 일반적인 단백질은 고체상으로 있지 않고 물에 녹아있는 용액상태라는 점이다. 마치 고체 소금이 물에 녹아 소금물이 되는 것과 같은 원리다. 물은 인간의 몸의 약 70% 이상을 차지하고 있고 생명 유지에 필수적인 단백질들은 물에 녹아 있는 상태로 존재한다고 볼 수 있다. 따라서 단백질이 어떻게 기능을 발휘하는 지를 실시간으로 관측하기 위해서는 물에 녹아 있는 단백질 분자의 모양 변화를 실시간으로 추적할 수 있는 기술이 필요하다.
이러한 목표를 향한 첫 열매로 물에 녹아 있는 간단한 유기분자의 구조변화를 실시간 측정하는 데 성공하였으며, 관련 연구논문이 2005년 7월 사이언스(Science)誌에 발표된 바 있다. 당시 이 연구결과는 용액상에서 분자의 움직임을 실시간 추적할 수 있다는 점 때문에 많은 관심을 불러 일으켰는데, 李 교수는 그 기술을 더욱 발전시키면 단백질에도 응용 가능할 것으로 전망했다. 그러나 일반적으로 단백질은 그 당시 성공한 유기분자보다 적어도 1,000배 정도 크고 구조가 훨씬 더 복잡할 뿐 아니라 훨씬 적은 양으로 존재하기 때문에 물에 녹아 있는 단백질에서도 성공할 수 있다는 것에는 많은 과학자들이 회의적으로 생각했다.
이번 네이처 메서드誌에 발표한 연구결과는 그러한 부정적인 생각을 깨고 기존에 성공한 유기분자보다 ‘1,000배 더 큰 단백질 분자가 물에 녹아 있을 때에 이들의 3차원 구조변화를 실시간으로 관측하는데 성공’한 획기적인 연구성과다. 논문에서는 3가지 종류의 단백질에 대한 연구결과를 발표했는데, 우리 몸에서 산소를 이동하는데 중요한 헤모글로빈 단백질과, 근육에서의 산소공급에 관여하는 미오글로빈 단백질 등이다. 이 외에도 단백질은 주로 접혀있어 특정한 구조를 형성하는데 환경이 바뀌면 이 구조가 풀리게 된다. 풀려 있는 단백질은 일반적으로 제 역할을 할 수 없어 이러한 단백질의 접힘-풀림 현상을 이해하는 것은 매우 중요한데 씨토크롬씨라는 단백질이 풀린 상태에서 접히는 과정도 실시간으로 추적하는데 성공하였다.
이 새로운 기술을 사용하면 물에서 움직이는 단백질의 동영상을 촬영할 수도 있어 단백질의 작동메커니즘을 밝히는 데에 중요한 도구가 될 것이며, 앞으로 신약개발을 하는 데에도 큰 도움을 줄 것으로 기대된다. 또한 이 기술은 단백질은 물론이고 나노물질에도 응용이 가능하므로 BT뿐만 아니라 NT분야에도 기여할 수 있을 것으로 전망된다.
이 연구는 교육과학기술부의 창의적연구진흥사업의 연구비 지원으로 진행되었다. 연구결과는 유럽연합방사광가속기센터에서 측정되었으며, 李 교수의 주도하에 이뤄진 국제적인 공동연구의 성과다.
李 교수는 “현재 포항에 있는 제3세대 가속기에 이어 한국에서도 차세대 광원으로 건설이 논의되고 있는 제4세대 방사광가속기(XFEL)가 성공적으로 가동되면, 현재 발표된 데이터보다 적어도 1,000배정도 더 좋은 데이터를 얻을 수 있을 것으로 예상된다.”고 밝혔다.
<이효철 교수 프로필>
■ 학 력
1990 경남과학고 2년 수료, KAIST 화학과 학사과정 입학
1994 KAIST 화학과 학사과정 졸업
1994 Caltech(California Institute of Technology) 박사과정 입학
2001 Caltech 졸업(박사)
2001 시카고 대학 박사 후 연구원(Post Doc.)
2003.8.1-2007.2.28 KAIST 화학과 조교수 2007.3.1-현재 KAIST 화학과 부교수
■ 수상경력
2006 젊은 과학자상(과학기술부/한국과학기술한림원)
2006 과학기술우수논문상(한국과학기술단체총연합회)
2006 KAIST 학술상 2001-2003 美國 대먼 러년 암재단(Damon Runyon Cancer Research Foundation)펠로우쉽
(설명) 시간분해 엑스선 산란의 개념을 예술적으로 표현한 그림
2008.09.22
조회수 25556
-
플렉시블 디스플레이 국제 워크샵 개최
차세대 플렉시블 디스플레이 개발의 주요기술 중 하나인 ‘유기 디스플레이(Organic Display)’에 대한 최근 연구현황 공유와 미래비전 모색을 위한 ‘2008 KAIST CAFDC 플렉시블 디스플레이 국제 워크샵’이 오는 21일과 22일 이틀 동안 교내 전기전자공학동에서 개최된다.
KAIST 차세대 플렉시블 디스플레이 융합센터(소장 최경철/崔景喆, 44세, 전기및전자공학과 교수, CAFDC, Center for Advanced Flexible Display Convergence)가 주관하고 한국과학재단, BK21 KAIST 정보기술사업단, 한국정보디스플레이 학회 등이 후원하는 이번 워크샵에서는 ‘유기 디스플레이’를 주제로 국내․외의 학계와 산업계 전문가들이 유기발광소자(OLED, Organic Light Emitting Diode)에 기반한 유기 디스플레이의 최근 연구 현황을 공유하고, 플렉시블 디스플레이의 구현 관점에서 미래 비전을 논의한다. 특히 ‘인광을 이용한 고효율 유기발광소자와 투명 유기발광소자 분야 등에서 선도적인 연구’를 수행하고 있는 美 미시간대 스티븐 포레스트(Stephen R. Forrest) 교수, ‘고분자를 이용한 실시간 홀로그래픽 이미징 등 유기전자 및 광소자 분야에서 독창적 연구’를 수행 중인 美 조지아공대의 버나드 키펠렌(Bernard Kippelen) 교수, ‘플렉시블 유기 전자소자를 이용한 전자피부(E-Skin), 무선 전력공급 시트 등의 창의성 있는 아이디어’로 유명한 일본 동경대의 타카오 소메야(Takao Someya) 교수 등 해외 저명 석학들이 주제 발표자로 나선다.
崔 소장은 “이번 워크샵은 유기발광 및 전자소자를 이용한 각종 디스플레이 기술들의 최근 연구 성과를 정리․토론하고, 이들을 꿈의 디스플레이로 불리우는 차세대 플렉시블 디스플레이 관점에서 재조명하는 중요한 자리가 될 것” 이라고 말했다.
<행사일정>
○ 일 시: 2008. 8. 21(목)~ 8. 22(금)
○ 장 소: 대전 KAIST 정보전자공학동(E3-1) 제1공동강의실 (Rm 1501)
○ 주 관: KAIST 차세대 플렉시블 디스플레이 융합센터
○ 후 원: 한국과학재단, BK21 KAIST 정보기술사업단, 한국정보디스플레이학회, 솔-젤 응용기
술연구센터
○ 참가인원: 200명
2008.08.19
조회수 20473
-
생명화학공학과 양승만교수 광자유체 신기술개발
생명화학공학과 양승만(梁承萬, 58세, 교육과학기술부 지정 광자유체집적소자 창의연구단 단장) 교수 연구팀이 다양한 기능을 갖는 나노입자를 제조하고 이들 입자들이 스스로 조립되는 ‘자기조립원리’를 규명하는 연구를 수행하여, 방대한 량의 정보를 처리할 수 있는 프로토타입(prototype)의 광․바이오 기능성 광자결정(photonic crystal)구조체를 개발했다.
자연계에 존재하는 대표적인 광자결정은 오팔보석, 나비의 날개, 공작새의 깃털 등이 있다. 이들 광자결정 물질들이 발산하는 아름다운 색깔은 색소에 의한 것이 아니라 이 물질들을 이루는 구조 자체가 규칙적인 나노구조로 되어 있기 때문이다. 즉, 광자결정은 굴절률이 다른 물질들이 규칙적으로 쌓여 조립된 3차원 구조체로 특정한 영역의 파장에 해당하는 빛만 완전히 반사시킨다. 이 성질을 이용하면 반도체가 전자의 흐름을 제어하듯 빛의 흐름을 제어할 수 있다. 이러한 광자결정의 특수한 기능 때문에 나노레이저, 다중파장의 광 정보를 처리할 수 있는 슈퍼프리즘(superprism), 빛을 원하는 위치로 가이드 할 수 있는 광도파로(waveguide) 등 차세대 광통신 소자와 현재의 컴퓨터 속도를 획기적으로 높일 수 있는 수십 테라급 초고속 정보처리능력을 갖춘 광자컴퓨터의 개발 등에 필요한 소재로 주목 받아왔다. 광자결정은 광자(빛)가 정보를 처리하는 미래에 오늘날의 반도체와 같은 역할을 할 것이므로 ‘빛의 반도체’라 불린다. 지난 20여 년 동안 자연 상태에 존재하는 광자결정의 나노구조를 인공적으로 제조하기 위한 연구가 많은 과학자들에 의하여 시도되어 왔지만 실용적인 구조를 얻는 데에는 한계가 있었다. 梁 교수팀은 2006년부터 교육과학기술부와 한국과학재단의 ‘창의적연구진흥사업’으로부터 지원을 받아 광자결정소재의 실용성을 확보하기 위한 연구를 수행하여 최근 해외 저명학술지로부터 크게 주목 받는 일련의 연구 성과를 거뒀다.
첫 번째 연구 성과로 굴절률 조절이 가능한 미세입자 대량 생산기술을 개발했다. 지금까지 구현된 3차원 광자결정은 결정을 이루는 물질의 굴절률이 1.5-2.0 정도로 낮고, 굴절률을 다양하게 조절할 수 있는 입자를 제조할 수 없어서 광자결정의 실용성에 한계가 있었다. 최근 梁 교수 연구팀은 굴절률을 1.4-2.8까지 마음대로 조절할 수 있는 입자를 대량으로 제조할 수 있는 실용적 방법을 개발했다. 제조된 고 굴절률 입자는 나노레이저, 광 공명기, 마이크로렌즈, 디스플레이 등 각종 광학소자와 광촉매 등으로 활용될 수 있다. 이 연구결과는 최근 어드밴스드 머티리얼스 인터넷판(6. 19)과 제 17호(2008. 9)의 표지논문으로 게재 예정이다. 특히, 이 논문은 저명 학술지인 네이처 포토닉스(Nature Photonics)誌 8월호(8. 1)에 리서치 하이라이트(Research Highlights)로 선정되어 연구의 중요성과 응용성에 대하여 특별기사로 조명했다.
그림 1. 초고굴절률 타이타니아 입자의 전자 현미경 사진
두 번째 연구 성과로 광자유체 기술을 이용한 광결정구 연속생산 기술을 개발했다. 균일한 크기와 모양을 갖는 광자결정구를 빛을 매개로 반응시킴으로써 종래에 수십 시간이 소요되는 공정을 불과 수십 초 만에 연속적으로 제조할 수 있는 기술을 확보했다. 이들 광자결정구는 차세대 반사형디스플레이 색소나, 나노바코드, 생물감지소자 등으로 활용될 수 있다. 특히 주목할 것은 몇 개의 다른 색을 반사하는 야누스 광자결정구슬을 제조하였는데 이들은 전자종이와 같은 접거나 말 수 있는 차세대 디스플레이 소자에 활용될 수 도 있다. 이러한 광자결정 표시소재는 세계굴지의 화학회사인 독일 머크(Merck)社 등에서도 개발 중이며 이번 연구 결과는 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소이다. 주요 연구결과는 국제적저명학술지인 미국화학회지(JACS)와 어드밴스드 머티리얼스(Advanced Materials)誌에 6편의 논문을 최근 4개월(5~8월) 동안 연속 게재하여 광자결정의 실용성을 구현하는데 크게 기여했다고 인정받았다. 특히, 이들 논문들은 해당 학술지 편집인(Editor)과 심사위원들에 의하여 가장 앞선 연구결과로서 주목해야 할 논문(Advances in Advance)으로 선정됐으며, 9호(5. 5) 표지논문에 게재됐다.
그림 2. 3원광 광자결정구와 다색상 야누스 광자결정구의 현미경사진과 휘어지는 기판 위에 픽셀화된 3원광 광자결정.
세 번째 연구 성과로 광자유체 기술을 이용한 광결정 나노레이저를 개발했다. 현재까지 개발된 나노레이저는 발생하는 고열로 인하여 발진하는 레이저의 파장을 변화시키기 어려운 단점이 있었다. 梁 교수 연구팀은 KAIST 물리학과의 이용희 교수 연구팀과 공동으로 연속가변파장 나노레이저를 최초로 개발했다. 레이저를 발진하는 광자결정과 매우 미세한 유량을 도입할 수 있는 미세유체소자를 결합한 후 물과 같은 액체를 흘려줌으로써 온도를 낮추어 연속파 레이저 발진을 가능케 하였다. 또한 굴절률이 다른 액체를 흘려주어 광밴드갭을 조절함으로써 레이저의 파장을 조절 할 수 있었다. 가변파장 나노레이저는 신약개발 등 생명공학에서 요구되는 극미량의 시료로부터 방대한 량의 바이오정보를 광학적으로 신속하게 처리하는데 필요한 광원으로 사용될 수 있다. 이 연구 결과는 광물리 분야의 저명학술지인 옵틱스 익스프레스(Optics Express)에 게재(4. 9) 됐으며 이 논문의 독창성과 실용성은 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 저명학술지 랩온어칩(Lab on a Chip) 8월호(8. 1)에 해설과 함께 “리서치 하이라이트”로 소개됐다.
그림 3. 나노레이저 발진모드
2008.08.19
조회수 23592
-
박재우.유승협교수 산화티타늄 투명박막트랜지스터 독자기술 세계최초 개발
- 미국, 일본, 유럽에 특허출원, 관련 국제학회 발표예정
2002년에 개봉된 스티븐 스필버그 감독의 "마이너리티 리포트”(톰 크루즈 주연) 장면들 중에 보았던 투명디스플레이 구현이 꿈이 아니라 현실로 다가오고 있다.
‘꿈의 디스플레이’라 불리는 투명디스플레이, 에이엠올레드(AMOLED, 능동형 유기발광 다이오드) 디스플레이 및 플렉서블 디스플레이 등의 구동회로용으로 사용되는 투명박막트랜지스터(Transparent Thin Film Transistor) 기술이 국내 연구진에 의해 개발됐다.
전기전자공학과 박재우(朴在佑, 44) 교수와 유승협교수는 ㈜테크노세미켐, 삼성전자LCD총괄과 공동연구를 통해 미국, 일본 등이 원천특허를 보유하고 있는 산화아연(ZnO)기반 투명박막트랜지스터 기술에서 벗어나, 세계최초로 산화티타늄(TiO2)물질을 이용한 투명박막트랜지스터의 원천기술을 확보하는데 성공했다.
朴 교수팀은 미국, 일본 등과 기술특허분쟁이 일어나지 않을 뿐만 아니라 기존특허로 잡혀진 산화아연(ZnO) 물질에 포함된 In(인듐) 또는 Ga(갈륨)과 같은 희소성 금속을 사용하지 않고 지구상에 풍부한 금속자원을 이용한다는 원칙과 기존 반도체/디스플레이 산업용 대형 양산 장비로 검증 받은 화학기상증착(CVD, Chemical Vapor Deposition)법을 이용하여 낮은 온도에서 TiO2박막의 성막이 가능하게 함으로써 차세대 디스플레이의 대형화 가능성뿐만 아니라, 소다라임글래스(Soda-lime Glass)와 같은 저가 글라스기판 및 플렉서블 기판위에도 성막할 수 있는 원천 기술을 확보하는데 성공했다. 朴 교수팀은 미국, 일본이 보유한 원천기술이 스퍼터링 방식을 주로 사용하고 있으나 스퍼터링의 연속작업에 따른 물질 조성의 변화로 트랜지스터 특성의 재현성, 신뢰성에 문제점을 가지고 있다는 것에 착안, 재현성과 대형화가 검증된 CVD법을 이용하여 투명박막 트랜지스터 기술을 개발하게 되었다.
향후 2~3년을 목표로 지속적인 공동연구개발을 통해 신뢰성 검증 및 대형 CVD장비에서의 양산가능한 기술이 확보되면, 국내 디스플레이 산업체에서 생산하는 AMOLED 및 AMLCD 디스플레이 양산에도 곧바로 적용될 수 있도록 기술 이전 계획도 갖고 있다.
연구팀 관계자는 “이번 새로운 물질 기반 투명박막트랜지스터의 기술 개발 성공은 기존 외국기업의 기술 사용에 따른 로열티 지급으로부터 벗어날 수 있는 기술 독립선언이며, 앞으로도 세계디스플레이산업을 선도하는 종주국의 면모를 이어갈 수 있는 디딤돌 역할을 할 것으로 본다” 고 말했다.
이번 기술 개발과 관련하여 TiO2박막트랜지스터의 원천특허는 KAIST 소유로 돼 있는데, 2007년 3월 국내특허를 출원하여 오는 10~11월 중에 등록될 예정이다. 지난 3월에는 지식경제부 해외특허 지원프로그램으로 채택되어 미국, 일본, 유럽에 관련기술 특허 등이 출원 중에 있다. 지난 7월 이 기술과 관련한 기술적 내용의 일부는 미국 IEEE 전자소자誌(IEEE Electron Device Letters)에 발표되었고, 오는 12월 5일, 일본 니가타에서 열리는 국제디스플레이학회(IDW 2008, International Display Workshop 2008)에서도 발표될 예정이다.
신물질 TiO2기반 투명박막트랜지스터 기술개발팀 연구책임자인 朴 교수는 미국 미시간대학교 전자공학과에서 박사학위를 받았으며, 한국, 미국, 일본 등 여러 나라의 산업체에서 근무한 경력을 갖고 있다.
<보충설명>
■ 기술의 배경
현재 국내 대기업(삼성 LCD, SDI, LG디스플레이등) 과 일본업체(소니, 마츠시타, 샤프)들 중심으로 가까운 미래 다가올 AMOLED 및 미래 투명디스플레이의 구동회로용 TFT(Thin Film Transistor) 기술개발에 대한 관심이 뜨겁다. 불행히도 기존 a-Si이나 Poly-Si기술의 한계(신뢰성, 면적제한문제)로 향후 디스플레이 backplane용 TFT는 산화물반도체로 구현되어야 한다는 사실은 이미 산학연에서 공감하고 있으나, 지금까지 산화물반도체TFT는 주로 ZnO계열 중심으로 3원계(ZTO) 또는 4원계(IGZO)를 이용하여 개발되었고 관련 해외특허도 3,000건이상 출원되었거나 등록되어 있다. 또한 In이나 Ga을 포함한 ZnO TFT의 성능은 우수하나 희소성금속으로 높은 국제시장가격과 급작스런 수요 증가시 shortage의 불안감을 항상 가지고 있어 새로운 대체 산화물을 이용한 TFT개발이 필요한 시점이다.
■ 기술의 특징
TiO2(산화티타늄) 물질은 ZnO(산화아연)와 Optical Energy bandgap이 거의 같고(3.4eV) 전자이동도도 ZnO 못지 않게 높으며, 무엇보다도 성막시 재료비가 저렴하다는 장점을 가지고 있다. 최근 KAIST 전기전자과 박재우 교수팀과 ㈜테크노세미켐, 삼성LCD총괄이 공동연구를 통해 세계 최초로 TiO2 박막을 active channel(활성층)로 채택하여 투명 산화물 TFT를 구현하는 데 성공했다. 연구팀은 TiO2박막을 향후 디스플레이 산업에서 양산화와 대형화를 고려하여 기존 반도체/디스플레이 산업용 양산장비로 널리 알려진 CVD(Chemical Vapor Deposition: 화학기상증착)법으로 낮은 온도(250C)에서 성막하여 박막형 트랜지스터를 구현하는데 성공했다. 낮은 온도에서 CVD장치로 투명박막트랜지스터를 구현할 수 있다는 의미는 디스플레이의 대형화(현재 10, 11세대 규격 디스플레이기술 개발 중)가 가능하며, Soda-lime glass와 같은 저렴한 기판을 사용할 수 있기 때문에 재료비 절감효과를 가져올 수 있으며, 향후 투명 및 플렉시블 전자/디스플레이 응용에도 가능하다는 것이다.
2008.08.06
조회수 25695
-
이도헌교수팀, 생물정보학적 연구를 통한 천식 발병 후보 유전자 발견
바이오및뇌공학과 이도헌 교수와 박사과정 황소현씨가 생물정보학 기법을 이용해 기존의 분자생물학적 연구 및 실험 결과에 나타난 천식 관련 단백질들의 상호작용을 분석, 천식 유발에 관여하는 후보 유전자군을 발굴했다.
이 연구결과는 국제학술지 "이론생물학저널(Journal of Theoretical Biology)"에 발표됐으며 기존 연구자료를 새로운 생물정보학 기법으로 분석해 신약 표적유전자를 발굴한 것이어서 신약연구 효율성 향상에 기여할 것으로 전망된다.
연구진은 세계 각국의 분자생물학적 연구자료가 담겨 있는 데이터베이스(OMIM, GEO)에서 천식과 관련 있는 단백질 606개를 찾아내고 이를 시스템 수준에서 연구하기 위해 생물정보학 기술을 이용해 단백질 상호작용 네트워크를 구성했다.
이는 단백질 사이의 상호작용을 연결선으로 표현한 것으로 여러 개의 단백질과 동시에 상호작용을 하는 단백질이 천식유발 단백질 네트워크에서 중요한 역할을 하는 "허브"로 간주된다.
질병과 관련된 질병유전자를 찾기 위해서 기존의 분자생물학적 연구를 통해 몇 가지 유전자들이 밝혀졌지만, 여러 가지 유전적인 요인과 환경적인 요인의 복합적인 작용으로 인해 나타나는 대부분의 복합 질병의 경우는 기존의 분자생물학적인 연구만으로 관련 유전자들을 찾아내기가 어렵다.
이도헌 교수는 "이런 복합적인 질병에서 중요한 역할을 하는 유전자를 찾아내려면 한 두 유전자와 질병의 관계를 조사하기 보다는 그 질병과 관련된 여러 유전자들의 연관성을 살펴보는 시스템 수준의 연구가 필요하다"고 말했다.
2008.07.01
조회수 20184
-
건설 및 환경공학과 최창근 교수, 공학분야 SCI 학술지 5종발간
우리학교 건설 및 환경공학과 최창근(崔暢根, 70) 명예교수가 5종의 공학분야 국제학술지를 창간, 과학기술논문인용색인(SCI)에 등재했다고 밝혔다.
崔 교수는 국내 토목과 건축 분야에 SCI급 학술지가 전무한 사실을 통감하고 지난 1993년 국내 최초로 이 분야 국제학술지인 ‘구조공학 및 역학誌(SEM, Structural Engineering and Mechanics)’를 창간했다. 그로부터 3년 뒤인 1996년 교수 개인이 발행하는 공학분야 순수 학술지로는 처음으로 SCI에 등재됐다.
국제학술지 ‘SEM’은 현재 전 세계 40여 개국에서 연간 350~400 편의 논문을 접수받고, 우수논문을 엄선하여 년 18회 출판하는 세계적 학술지로 도약했다. 그 후 1, 2년 간격으로 ▲풍공학과 구조誌(Wind and Structures, 1998년 창간, 2000년 SCI 등재) ▲철골구조 및 복합구조誌(Steel and Composite Structures, 2001창간, 2003년 SCI 등재) ▲컴퓨터와 콘크리트誌(Computers and Concrete, 2004창간, 2005년 SCI 등재) ▲스마트 구조 및 시스템誌(Smart Structures and Systems, 2005년 창간, 2005년 SCI 등재) 등의 국제학술지를 연이어 창간, 짧은 기간내 모두 SCI에 등재시켰다. 특히, ‘컴퓨터와 콘크리트誌’는 창간 1년, ‘스마트 구조 및 시스템誌’는 창간호부터 SCI에 등재되어 국내외적으로 학계의 주목을 받았다. 올해 창간되어 첫 호가 나온 ‘상호작용 및 다중스케일역학誌(Interaction and Multiscale Mechanics)’는 현재 SCI 등재 신청을 한 상태다.
崔 교수의 국내 발간 국제학술지 생존 비결은 논문원고의 접수부터 최종 발간된 학술지의 배포까지 전 과정을 최신 글로벌 스탠더드(Global standard)에 맞는 독자적인 시스템을 직접 구축하여 활용했기 때문이다. 현재 국내의 SCI등재 학술지는 37종으로 알려져 있으며, 이중 5종이 한 개인에 의해 SCI에 등록된 사례는 국내는 물론 국외에서도 드문 일이다. 국내의 SCI등재 학술지 대부분이 학회나 기관을 통한 국내 영문논문의 출판 및 배포 위주인 반면, 崔 교수가 발행하는 6종의 학술지는 국외기관 배포비중이 월등히 큰(약 80%) 국제적인 경쟁력을 가진 국내 발간 국제학술지라 할 수 있다.
현재 전 세계적으로 국제학술지 발행이라는 지식 산업은 엘스비어社(Elsevier), 스프링거社(Springer), 네이처社(Nature) 등 거대 국제출판사에 의해 독과점 상태다. 다른 나라의 국제학술지 신규 진입은 학회지 성격을 제외하고는 사실상 어려운 현실이다. 이런 환경에서 崔 교수가 국내에서 독자적으로 국제학술지를 발간한 것은 높이 평가할만하다.
崔 교수는 “국제학술지의 국내 발간은 우리 과학기술계의 국제적 위상을 높이고 국제적 최신 기술 정보를 접하는 창구가 된다. 경제적 측면에서도 미국, 영국, 독일, 네덜란드 등 극소수 선진국이 독점하고 있는 지식산업 분야에 한국이 진입할 수 있는 가능성을 열었다는 점에서 중요하다.”고 말했다.
<용어설명>
-과학기술논문인용색인(SCI)
과학기술논문인용색인(SCI, Scientific Citation Index)는 미국의 과학정보연구소(ISI, Institute for Scientific Information)가 전 세계 저명한 과학기술분야 학술지에 게재된 논문의 색인 및 인용정보를 수록한 세계적인 권위를 가진 데이터베이스다. ISI는 매년 전 세계에서 출판되는 과학기술분야 학술지 중 ISI의 자체 기준과 전문가의 심의를 거쳐 등재학술지를 결정한다.
SCI의 등재 여부는 해당 학술지의 권위를 평가하는 기준이 됨과 동시에 이런 학술지에 게재된 논문의 수준을 인정하는 척도가 된다. 뿐만 아니라 SCI에 등록된 학술지에 게재된 논문의 수는 바로 국가 및 대학(기관)간, 그리고 개인 학자간의 과학기술 연구 능력과 수준을 비교하는 척도가 되고 연구비 지원, 학위인정 및 학술상 심사 등에 중요한 자료로 활용되기도 한다.
2008.03.25
조회수 21796
-
미국 실리콘밸리 주재사무소 개소
우리학교는 미국 암벡스(Ambex)社(회장 이종문, KAIST 명예석좌교수) 지원으로 미국 실리콘밸리에 주재사무소를 개소한다.
‘KAIST America"로 명명된 주재사무소는 ▲미국 항공우주국(NASA)과 공동연구 수행 관리 ▲실리콘밸리의 글로벌기업 및 명문대학과 연구개발협력 ▲재미 KAIST 동문 네트워크 구축 ▲미국 내 기부금 모금 및 관리를 위한 발전기금(US Foundation) 업무 ▲실리콘밸리 소재 기업을 대상으로 KAIST 재학생 인턴십 과정 지원 업무 등을 수행한다.
장순흥 KAIST 교학부총장은 “‘KAIST America’는 그동안 진행되어 온 KAIST 세계화 전략의 일환이다. KAIST 기술력을 바탕으로 벤처 캐피탈 회사 설립과 학교 발전을 위한 수익 창출을 목표로 하고 있다”고 말했다.
스탠포드대학, 구글, 야후, 인텔社와 차로 10분 거리에 위치할 KAIST 미국 주재사무소는 이종문 회장의 지원으로 암벡스社내 1층에 설치되며, 무상으로 사용하게 된다. 개소식은 서남표 총장과 KAIST 주요 보직자, 스탠포드대학과 버클리대학 교수, 실리콘밸리 주요기업 간부, KAIST 동문들이 참석한 가운데 올 상반기 중에 미국 현지에서 가질 예정이다.
2008.03.18
조회수 19459
-
물리학과 김은성 교수, "리 오셔로프 리처드슨 상"수상
우리학교 물리학과 김은성(金恩成, 36) 교수가 "리 오셔로프 리처드슨 상(Lee Osheroff Richardson Prize)" 위원회가 정하는 2008년 수상자로 선정됐다고 밝혔다.
이 상은 헬륨-3의 초유체성을 발견한 업적으로 1996년 노벨 물리학상을 공동 수상한 데이비드 리, 더글러스 오셔로프, 로버트 리처드슨을 기려 제정됐다. 매년 ‘저온과 고자기장 분야’에서 뛰어난 연구업적을 이룬 젊은 과학자(박사학위 후 10년 이내)중 1명이 수상자로 선정되는 ‘저온 및 고자기장 분야 젊은 과학자상’에 해당한다.
김교수는 고체에서도 초유체 현상이 존재할 수 있다는 초고체 현상 이론을 실험적으로 증명한 업적을 인정받아 수상자로 선정됐다. 초고체 현상은 양자역학적 진동으로 인해 절대영도(-273.15℃) 근처에서 고체 격자를 이루는 원자들의 일부가 점성이 없는 초유체 상태로 존재한다는 것이다. 실험 물리학자들은 30년 이상 이 초고체 현상의 실체를 입증하기 위해 노력해 왔으며, 金 교수가 최초로 초고체 현상의 존재를 실험적으로 입증하여 고체 내에서도 보즈-아인슈타인 응축현상의 존재 가능성을 제안했다.
이 상은 영국 옥스퍼드 인스트루먼츠(Oxford instruments)社의 후원으로 저온과 고자기장 분야의 세계적 저명학자들로 구성된 위원회에서 수상자를 선정한다. 시상식은 오는 11일(화) 美 뉴올리언즈에서 열리는 미국 물리학회 학술대회에서 갖는다.
2008.03.10
조회수 19651
-
KAIST-하이닉스반도체 협약 체결
- 차세대메모리와 비메모리반도체 분야 인재 발굴 - 기존 산학협력프로그램‘KEPSI" 확대 운영
우리 학교와 하이닉스반도체(사장 김종갑)는 반도체산업의 발전과 우수인재 확보를 위한 산학협력 협약을 체결한다. 협약식은 지난 21일 서울 JW메리어트호텔 비즈니스 센터에서 열렸다.
지난 95년부터 우리 학교와 하이닉스반도체는 KEPSI(KAIST Educational Program for Semiconductor Industry) 프로그램Ⅰ,Ⅱ를 통해 메모리 반도체분야에서 특성화된 인력을 육성해왔다. 이번에 새롭게 강화된 KEPSI Ⅲ에서는 기존의 메모리 분야에 한정됐던 지원범위를 시스템 IC분야까지 확대하여 운영하게 된다. KAIST-하이닉스반도체의 KEPSI 프로그램 Ⅰ,Ⅱ는 총 250여 명의 고급 인력을 배출했다. 이번 협약으로 하이닉스반도체는 학생장학금 등을 포함한 교육지원금을 5년간 지급하며, 프로그램 정원은 기존 연 10명에서 연 20명으로 늘어나게 된다. 또한 적용 분야도 신소재공학과, 물리학과로 확대된다. 이 협약 체결로 우리 학교와 하이닉스반도체는 차세대 메모리와 비메모리 반도체분야에서 특화된 인력을 육성하고 상호 협력하게 된다.
2008.01.24
조회수 18610
-
물리학과 신성철 교수, KRISS동문상 수상
한국표준과학연구원(원장 정광화)이 15일 표준연을 빛낸 자랑스런 동문상에 우리학교 물리학과 신성철 교수를 선정했다.
"KRISS 동문상"은 표준연에 근무하다 퇴직한 동문 중 산·학·연에서 괄목할 만한 성과를 거둔 임·직원 및 연구생 등에게 수여하는 상이다.
신성철 교수는 최근 물리학계의 20년 숙제를 푸는 해결사 역할을 해 세계 물리학계의 주목받았다.
이 연구성과는 세계적 학술지인 네이처 피직스(Nature Physics) 인터넷판에 게재된 바 있고 물리분야의 획기적 발견을 소개하는 동 학술지 "뉴스앤 뷰즈(NEWS & VIEWS)"난에 해설기사로 다뤄졌다.
신 교수는 서로 다른 자화 방향을 갖는 두 가지 구역을 구분하는 경계면의 미세구조 변화가 거듭제곱법칙 분포지수 변화에 결정적으로 영향을 미친다는 사실을 세계 최초로 규명했다.
이 연구를 통해 향후 고용량 하드디스크 개발, 차세대 비휘발성 메모리 소자 개발, 초고밀도 정보저장소자 개발 등 스핀트로닉스 기술 구현을 통한 신개념 핵심소자를 개발하는데도 큰 기여를 하게 될 것으로 예상된다.<연구성과 관련 보도자료, 홈페이지 스팟라이트 7월 24일자 (15호)>
2007.10.16
조회수 19291
-
생명화공 정희태교수, 세계최초 액정 초미세 나노패턴소자 개발
- 15일자 네이처 머티리얼스誌 온라인판 게재- 나노-바이오 전자소자 산업분야에서 시장 선점 기대우리 학교 생명화학공학과 정희태(鄭喜台, 42) 교수 연구팀이 액정 디스플레이 (LCD)의 핵심소재로 잘 알려져 있는 액정물질을 이용, 나노기술의 핵심인 차세대 초미세 나노패턴소자를 세계최초로 개발했다. 관련 연구논문은 15일자 네이처 머티리얼스(Nature Materials)誌 온라인판에 게재된다. 나노패턴 제작은 차세대 초고밀도 반도체 메모리기술과 바이오칩 등 나노기술의 핵심분야다. 특히, 鄭 교수팀의 액정을 이용한 패턴구현은 기존의 패턴 방식에 비해 대면적을 구현할 수 있을 뿐만 아니라 바이오 특성을 가지는 나노물질도 액정 패턴 내에 배열할 수 있다는 것이 큰 장점이다.
LCD를 구동하는 물질인 네마틱 액정과 달리 鄭 교수가 사용한 스메틱 액정은 LCD 응답특성이 매우 우수함에도 불구하고 자연적으로 존재하는 결함구조 때문에 LCD 구동물질로 사용하지 못하고 있다. 이러한 스메틱 액정은 기판의 표면특성에 따라서 무질서한 형태의 회오리 형 결함구조를 가진다. 이번 연구에서는 마이크로미터 수준의 직선이 새겨진 표면 처리된 실리콘 기판을 사용함으로써 무질서한 회오리 형태의 액정 결함구조를 규칙적으로 제어하였다(첨부 자료그림 참조). 특히 이 공정은 기존의 나노패턴에 적용하는 방식과 비교하여 제작시간을 수십 배 이상 줄일 수 있으며, 결함구조 내에 다른 형태의 기능성 물질도 규칙적으로 배열 할 수 있음을 확인하였다. 이는 다양한 형태의 패턴이 필요한 실제 반도체와 단백질 칩 등의 바이오 소자에 적용할 수 있는 가능성을 제시하고 있다 (자료그림 중 삽입사진 참조).
이번 연구결과로 LCD의 세계적 강국인 우리나라가 액정을 이용한 나노분야에서도 세계 최고의 원천기술을 갖게 되었다. 향후 액정을 이용한 새로운 응용의 신기원을 열게 되었으며, 나노-바이오 전자소자 산업분야에서 시장 선점 및 막대한 부가가치 창출 등을 통해 국가경쟁력 강화에 크게 기여할 것으로 기대된다. 연성재료(Soft Materials)를 이용하여 나노패턴을 제조하는 기술은 전 세계적으로 나노-바이오 분야에서 큰 이슈가 되는 연구로써, 연구의 핵심은 바이오 및 광전자소자 응용을 위하여 대면적에서 결함이 없는 소재의 개발에 있다. 이번 鄭 교수팀이 적용한 액정은 결함구조를 가지는 대표적인 물질로서 지금까지 학계에서는 대면적 나노패턴이 불가능하다고 인식돼 왔다.
鄭 교수는 “이번 연구결과는 연성소재를 이용한 나노패턴소자 제작방식의 기존 개념을 완전히 뒤엎는 것이다. 결함을 없애야만 한다는 기존의 생각에서 탈피하여 결함을 규칙적으로 구현하면 패턴에 이용할 수 있다는 발상의 전환으로 대면적 나노패턴을 개발했다는데 의미가 있으며, 향후 나노분야 전반에 걸쳐 영향이 클 것” 이라고 밝혔다.
이번 연구결과는 鄭 교수(교신저자)의 주도 하에 KAIST 물리학과 김만원 교수팀과 미국 캔트 주립대학의 액정센터 올래그 라브랜토비치(Oleg Lavrentovich)교수가 함께 일궈낸 성과다. 鄭 교수는 나노물질분야에서 사이언스, PNAS, Advanced Materials에 최정상급 논문을 다수 발표하는 등 나노물질 분야에서 차세대 주자로서 두각을 나타내고 있는 젊은 과학자다.
<해설>
액정: 유동성이 있으면서 고체적인 특성을 나타낸다. 전기적 특성이 매우 뛰어나 LCD 구동을 위한 핵심 물질로 사용된다. 네마틱, 스메틱, 콜레스테릭 등 다양한 종류의 액정이 존재한다. 현재 LCD에 사용하는 액정은 네마틱 액정이며 콜레스테릭 액정은 반사거울과 초정밀 온도계에 사용된다. 鄭 교수팀이 사용한 액정은 스메틱 액정으로서 네마틱 액정보다 자연계와 합성물질에서 더욱 많이 존재하고, 산업체와 학계에서 오랜기간 동안 연구해 왔음에도 불구하고 결함구조 등의 문제점으로 인하여 산업에 적용하지 못하고 있는 물질이다.
<첨부. 수 밀리미터 크기의 대면적 액정물질 나노패턴 현미경 사진>우측상단 삽입사진은 액정나노패턴내에 형광나노입자를 규칙적으로 포집한 리소그라피 제작사진
2007.10.15
조회수 24236