-
김성용 교수, UN 제2차 세계 해양 환경 평가 보고서 공동 발간
우리 대학 김성용 기계공학과 교수가 공동저자로 참여한 국제연합(United Nations, UN)의 제2차 세계해양환경평가(Second World Ocean Assessment; WOA II) 보고서가 4월 22일 발간됐다.
세계해양환경평가 보고서는 전 세계 해양환경의 현재 상태를 종합적이고 통합적인 과학정보로 기술한 문서로 ʻ국제연합의 지속가능한 발전을 위한 국제해양과학 10개년 계획(United Nations Decade of Ocean Science for Sustainable Development)ʼ을 실질적으로 수행하는 중요한 보고서로 꼽힌다. 유엔(UN)은 각국 정부가 해양환경을 보호하기 위한 공동의 노력을 강화하고 정책결정자들의 의사결정을 지원하기 위해 사회경제적인 측면을 포함한 전 지구적 차원의 해양환경을 평가 및 보고하는 ʻ정규과정(Regular Process)ʼ을 수행해오고 있다. 2009년 열린 제64차 유엔총회에서 정규과정 1차 주기(2010~2014)를 승인해 ʻ제1차 세계해양환경평가(First World Ocean Assessment) 보고서ʼ가 2015년 완성됐다. 김 교수는 1차 보고서의 전문가 그룹으로 참여한 데 이어 2016년부터 4년간 진행된 2차 주기(2016-2020) 세계해양환경평가 보고서 제작에 공동 저자로 참여해 전 세계 300여 명의 다학제간 전문가들과 의견을 공유했다. 총 28장으로 구성된 보고서 중 김 교수는 제5장 해양의 물리적 및 화학적 상태과 제9장 기후 대기 변화에 따른 영향 등 2개의 장을 공동 집필했다.이번 보고서는 전 세계의 해양 환경을 평가하기 위해 추진력(Drivers)-압력(Pressure)-상태(State)-영향(Impact)-반응(Response) 등을 종합한 ʻDPSIRʼ의 개념을 적용한 것이 특징이다. 이를 통해, 전 세계 해양을 환경·경제·사회적 측면을 통합하여 분석했으며, 각 지역 해양환경 특성을 구체화한 유일한 보고서로 평가받고 있다.
또한, 유엔(UN)의 모든 회원국이 해양 평가 및 정책을 결정할 때 가장 먼저 반영해야 할 내용이 담겨 있어 현재까지 발간된 해양 관련 보고서 중 영향력이 가장 큰 학술적 성과로 꼽히고 있다.
김 교수는 "전 지구적인 기후변화, 미세플라스틱, 후쿠시마 원전 오염수의 방류가 화두가 되는 시점에서 국가 간의 경계가 없이 전 세계 영향을 주는 해양에 관해 많은 관심과 연구가 필요하다ˮ라고 강조하며 "본 보고서가 각 국가의 해양상태를 판단하고 정책 입안에 기초자료가 되길 바란다.ˮ라고 소감을 전했다. 김 교수가 공동 저자로 참여한 보고서는 유엔(UN) 홈페이지에서 자세한 내용을 확인할 수 있다.
제2차 세계 해양 환경 평가 보고서 자세히 보기 (클릭☞) https://www.un.org/regularprocess/woa2launch
2021.04.26
조회수 28181
-
최경철 교수, 자가발전으로 에너지 절약 및 세탁 가능한 입는 디스플레이 개발
〈 (오른쪽 위부터 시계방향으로) 정은교 연구원, 최경철 교수, 전남대 조석호 교수, 전용민 연구원 〉
우리 대학 전기및전자공학부 최경철 교수와 전남대학교 의류학과 조석호 교수 연구팀이 외부 전원 없이 자가발전 되고 세탁이 가능한 디스플레이 모듈 기술을 개발했다.
이번 연구는 기존 플라스틱 기판 웨어러블 전자소자가 아닌 옷감을 직접 기판으로 사용하는 전자소자의 상용화를 앞당길 수 있다는 점, 일상생활에 입는 전자소자가 외부 전원 없이 자가 발전해 에너지를 절약할 수 있다는 점에서 큰 의미가 있다.
정은교 박사과정과 전용민 연구원이 주도한 이번 연구는 국제 학술지 ‘에너지&인바이런멘탈 사이언스(Energy and Environmental Science, IF : 30.067)’ 1월 18일 자 온라인판에 게재됐고, 우수성을 인정받아 뒤표지 논문으로 선정됐다.
기존의 섬유형 웨어러블 디스플레이는 주로 디스플레이의 소자 구현에 초점을 맞춰 연구가 이뤄졌다. 이로 인해 소자를 구동하기 위한 별도의 외부 전원이 필요할 뿐 아니라 내구성 또한 부족한 특성을 가져 웨어러블 디스플레이로 응용하기에는 한계가 있다.
고분자 태양전지와 유기 발광 디스플레이 소자는 수분, 산소 등 외부 요인에 매우 취약해 소자를 보호하기 위한 봉지막이 필요하다. 그러나 기존에 개발된 봉지막 기술은 상온에서는 역할을 충분히 수행하지만, 습기가 많은 환경에서는 그 특성을 잃게 된다. 따라서 비 오는 날이나 세탁 이후에도 동작할 수 있어야 하는 착용형 디스플레이에서는 사용이 제한된다.
연구팀은 문제해결을 위해 외부 전원 없이도 안정적으로 전력을 공급할 수 있는 고분자 태양전지(PSC)와 수 밀리와트(milliwatt)로도 동작할 수 있는 유기발광다이오드(OLED)를 옷감 위에 직접 형성하고 그 위에 세탁이 가능한 봉지기술을 적용했다. 이를 통해 전기를 절약하면서도 실제 입을 수 있는 디스플레이 모듈 기술을 개발했다.
연구팀은 원자층 증착법(ALD)과 스핀코팅(spin coating)을 통해 세탁 후에도 특성 변화 없이 소자를 보호할 수 있는 봉지막 기술을 자가발전이 가능한 입는 디스플레이 모듈에 적용했다. 이 봉지막 기술을 통해 세탁 이후나 3mm의 낮은 곡률반경에서도 웨어러블 전자소자들의 성능이 유지되는 것을 증명했다.
연구팀은 일주일마다 세탁 및 기계적인 스트레스를 주입한 뒤 결과를 관찰한 결과 30일 이후 PSC는 초기 대비 98%, OLED는 94%의 특성을 유지함을 확인했다.
최경철 교수는 “기존의 플라스틱 기판 기반의 웨어러블 전자소자 및 디스플레이 연구와 달리 일상생활에 입는 옷감을 기판으로 활용해 세탁이 가능하고 외부 전원 없이 고분자 태양전지로 디스플레이를 구동하는 전자소자 모듈을 구현했다”라며 “태양에너지를 이용해 자가 구동 및 세탁이 가능한, 전기 충전이 필요 없는 진정한 의미의 입을 수 있는 디스플레이 기술 시대를 열었다”라고 말했다.
이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 선도연구센터지원사업과 교육부 BK21 지원사업으로 수행됐으며, 이번 연구 성과로 1 저자인 정은교 연구원은 BK21 우수인력으로 사회부총리 겸 교육부장관 표창을 받는다.
□ 그림 설명
그림1. 표지논문 이미지
그림2. 세탁 가능한 입는 디스플레이 모듈 모식도 및 구동 사진
2019.03.21
조회수 25073
-
박태형 박사과정, 권태혁 교수, 해저 점토질에서 불타는 얼음 생성원리 규명
우리 대학 건설및환경공학과 권태혁 교수 연구팀이 일명 불타는 얼음으로 불리는 천연가스 하이드레이트가 바다 속 점토질 퇴적토에서 다량으로 생성되는 원리를 규명했다.
이번 연구는 점토 광물이 하이드레이트 생성을 촉진한다는 것을 실험적으로 규명하고 점토질 퇴적층에서 하이드레이트의 존재에 대한 새로운 원리를 제시했다는 의의를 갖는다.
박태형 박사과정이 1저자로 참여한 이번 연구는 환경 분야 국제 학술지 ‘인바이러멘탈 사이언스&테크놀로지(Environmental Science & Technology)’ 2월 3일자 온라인 판에 게재됐다.
해저의 퇴적토나 영구동토층(2년 이상의 기간 동안 토양이 얼어있는 지대)에서 주로 발견되는 천연가스 하이드레이트는 메탄 등의 천연가스가 물 분자로 이뤄진 얼음과 비슷한 결정구조에 갇혀있는 고체물질이다. 흔히 불타는 얼음으로 불리는 이 물질은 막대한 매장량으로 인해 차세대 대체 에너지로 주목받고 있다.
점토질 퇴적토에서는 가스 하이드레이트 생성이 어렵다는 것이 일반적인 이론이다. 그러나 최근에는 전 세계적으로 해저 점토질 퇴적층에서 다량의 가스 하이드레이트가 발견되고 있어 기존 이론과 상반된 현상에 대한 원인을 규명하는 것이 과제로 남아 있다.
특히 점토광물 표면은 음전하를 띄고 있는데 이 전하들이 점토표면에 흡착된 물 분자에 상당한 전기적 힘을 가해 분극화시킨다. 또한 점토 표면의 음전하를 상쇄하기 위해 주변에 많은 양이온들이 존재한다.
따라서 보통 조건의 물 분자와 분극화된 조건의 물 분자들의 하이드레이트 결정 생성 양상을 비교하는 것이 연구의 핵심이다. 그러나 점토 주변에 자연적으로 존재하는 양이온들로 인해 실험 연구를 수행할 수 없었다.
연구팀은 기존 연구의 한계 극복을 위해 물에 전기장을 가해 점토 표면과 같이 물 분자들의 분극화를 구현한 뒤 물 분자들의 가스 하이드레이트 결정 생성 속도를 측정했다.
그 결과 점토 표면과 비슷한 크기의 전기장(10kV/m)을 물에 적용했을 때 가스 하이드레이트 결정핵 생성 속도가 약 6배 이상 빨라지는 것을 관찰했다. 이는 물 분자가 전기장에 의해 분극화되면 분자 간 수소 결합이 부분적으로 약해지고 내부에너지가 감소되기 때문인 것으로 밝혀졌다.
연구팀은 전기장이 하이드레이트 생성을 촉진함을 실험적으로 규명하는데 성공함으로써 점토광물의 존재가 하이드레이트 생성을 방해하는 것이 아니라 특정 조건에서는 오히려 하이드레이트 생성을 촉진함을 밝혔다.
권 교수는 “이번 연구를 통해 점토질 퇴적토에서 가스 하이드레이트가 많이 발견되는 이유에 대해 좀 더 이해할 수 있게 됐다”며 “멀지 않은 미래에 인류는 가스 하이드레이트를 에너지 자원으로 생산하고 소비할 수 있을 것으로 기대한다”고 말했다.
□ 그림 설명
그림1. 물 분자의 가스 하이드레이트 결정 생성 실험과 촉진 모식도
그림2. 가스 하이드레이트 생성 촉진(좌)과 억제(우) 반응
2018.03.05
조회수 12789
-
정우철 교수, 소량 금속으로 연료전지 수명 극대화기술 개발
〈 정우철 교수(오른쪽)와 연구진 〉
우리 대학 신소재공학과 정우철 교수 연구팀이 서울시립대학교 한정우 교수와의 공동 연구를 통해 소량의 금속으로 연료전지의 수명을 향상시킬 수 있는 새로운 전극소재 기술을 개발했다.
구본재 박사과정과 서울시립대 권형욱 박사과정이 공동 1저자로 참여한 이번 연구는 에너지, 환경 분야 국제 학술지 ‘에너지&인바이러멘탈 사이언스(Energy&Environmental Science)’ 2018년도 1호 표지논문에 선정됐다.
연료전지는 친환경이면서 신재생에너지원으로 주목받고 있는 에너지변환기술이다. 특히 세라믹 소재로 구성된 고체산화물 연료전지는 수소 이외에도 바이오매스, LNG, LPG 등 다양한 종류의 연료를 직접 전기에너지로 바꿀 수 있는 장점을 갖는다. 이를 통해 발전소, 전기자동차, 가정용 예비전원 등 분야에 폭넓게 사용될 것으로 전망되고 있다.
고체산화물 연료전지의 성능을 좌우하는 핵심 요소는 산소의 환원 반응이 일어나는 공기극으로 현재 페로브스카이트(ABO3) 구조의 산화물들이 주로 사용된다.
그러나 페로브스카이트 산화물들은 작동 초기 성능이 뛰어나지만 시간이 지날수록 성능이 저하돼 장기간 사용이 어렵다는 한계를 갖는다.
특히 공기극의 작동 조건인 고온 산화 상태에서 산화물 표면에 스트론튬(Sr) 등의 2차상이 축적되는 표면 편석 현상이 발생함으로써 전극의 성능을 낮추는 것으로 알려졌다. 아직까지 이러한 현상의 구체적인 원리와 이를 억제할 수 있는 효과적인 해결책이 나오지 않았다.
정 교수 연구팀은 페로브스카이트 산화물이 변형될 때 면 내 압축 변형이 일어나 스트론튬의 편석을 발생시키는 것을 계산화학적 및 실험적 결과를 통해 확인했다.
연구팀은 페로브스카이트 산화물 내부의 부분적인 변형 분포가 스트론튬 표면 편석의 주요 원인임을 규명했다.
이를 바탕으로 정 교수 연구팀은 크기가 다른 금속을 산화물 내에 장착함으로써 공기극 소재 내부의 격자변형 정도를 제어하고 스트론튬 편석을 효과적으로 억제하는데 성공했다.
정 교수는 “이 기술은 추가적인 공정 없이 소재를 합성하는 과정에서 소량의 금속입자를 넣는 것만으로 구현된다”며 “향후 고내구성 페로브스카이트 산화물 전극을 개발하는 데 유용하게 활용될 것으로 기대된다”고 말했다.
이 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 본 연구의 Energy & Environmental Science 논문지의 커버 이미지
그림2. 전극의 격자변형 정도와 Sr 편석, 전극반응의 상관관계
그림3. 개발한 기술을 적용하여 안정화된 고체산화물 연료전지 공기극의 표면
2017.12.26
조회수 22245
-
최민기 교수, 고성능의 이산화탄소 흡착제 개발
〈 최 민 기 교수 〉
우리 대학 생명화학공학과 최민기 교수 연구팀이 이산화탄소를 효율적이고 안정적으로 포집할 수 있는 흡착제를 개발했다.
이번에 개발된 이산화탄소 흡착제는 제올라이트와 아민 고분자를 기반으로 해 값싸고 대량 생산이 가능할 뿐 아니라 효율적인 성능과 뛰어난 재생 안정성을 갖는다.
연구 결과는 에너지 및 환경 분야 학술지인 ‘에너지&인바이러먼털 사이언스(Energy & Environmental Science)’ 3월 16일자 온라인 판에 게재됐다.
지구 온난화의 주요 원인인 이산화탄소의 포집을 위한 흡착제 연구가 활발히 진행 중이다. 특히 에너지 효율이 높고 환경에 무해한 고체 흡착제 중심으로 연구가 이뤄지고 있는데 제올라이트와 아민 고분자 기반의 흡착제가 가장 대표적이다.
그러나 제올라이트 기반 흡착제는 이산화탄소와 수분이 동시에 존재하는 경우 수분을 우선적으로 흡착하는 한계를 갖는다. 아민 고분자 기반 흡착제는 수분이 존재해도 효율적인 이산화탄소 흡착이 가능하지만 재생을 위해 130oC 이상 열을 가했을 때 요소가 생성돼 심각한 비활성화를 겪는 문제가 있다.
연구팀은 문제 해결을 위해 아민 고분자와 제올라이트의 장점을 모두 갖는 ‘아민-제올라이트 복합체’를 개발했다.
암모늄(NH4+)을 골격 외 양이온으로 갖는 제올라이트를 고온 열처리하면 암모니아(NH3)가 제거되고 수소 양이온이 남아 산성 제올라이트가 만들어진다. 이 제올라이트에 염기성을 갖는 에틸렌다이아민 증기를 처리하면 산-염기 반응에 의해 제올라이트 기공 내부에 아민이 기능화되는 원리이다.
이를 통해 이산화탄소 포집 공정에서 효율적으로 이산화탄소를 흡착하는 것을 확인했고, 매우 우수한 재생 안정성을 확인했다. 새로 개발한 흡착제는 제올라이트 내부에서 흡착된 물이 아민의 비활성화를 억제하는 상쇄효과를 보여 안정성을 더욱 높였다.
기존 연구들은 이산화탄소 흡착 성능 향상에만 집중됐지만 이번 연구는 우수한 흡착 성능 뿐 아니라 재생 안정성을 비약적으로 상승시켰다.
최 교수는 “값싸고 대량 생산이 가능한 제올라이트 기반의 흡착제로 실용화가 가능할 것으로 기대된다”며 “합성 방법의 최적화를 통해 더 높은 이산화탄소 흡착 성능을 갖는 흡착제 개발에도 힘쓸 것이다”고 말했다.
전남대학교 응용화학공학과 조성준 교수 연구팀과 공동으로 진행한 이번 연구는 미래창조과학부의 ‘Korea CCS 2020’ 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 아민-제올라이트 복합체를 이용한 이산화탄소 포집 공정의 개념도
그림2. 연속적인 온도교대흡착 공정에서 흡착제들의 이산화탄소의 흡착능 비교
2016.04.25
조회수 19279
-
국가 에너지 계획과 스마트그리드 주제로 ‘EEWS 포럼’ 개최
EEWS 연구센터는 12월 2일 서울캠퍼스 최종현홀에서 ‘국가 에너지계획과 Smart Grid 전략’을 주제로 포럼을 개최한다.
EEWS (Energy, Environment, Water and Sustainability)란 에너지 고갈, 지구온난화, 물부족 및 지속성장 등 21세기 인류가 직면하고 있는 글로벌 이슈의 해결을 위해 KAIST가 추진하고 있는 연구 및 교육 프로젝트다.
이번 포럼에는 이재규 KAIST 녹색성장대학원장, 최광식 KAIST EEWS 포럼회장, 이승훈 녹색성장위원회 위원장, 손양훈 에너지경제연구원 원장, 김준동 산업통상자원부 실장 등 20여명의 해당 분야 전문가가 참가한다.
포럼에서는 △ 국가에너지 계획 △스마트 그리드 전략 △ 에너지 정책 △제도 △가스 △전력 △스마트 그리드 △신재생 에너지를 주제로 발표와 토론이 진행된다.끝.
행사문의 [EEWS 연구센터 02-958-3672]
2013.11.29
조회수 14400
-
EEWS 학생아이디어 축제 2013
우리 학교 EEWS 기획단에서는 인류의 지속성장을 위해 극복해야할 에너지(Energy)부족, 환경(Environment)오염, 물(Water)부족 및 지속가능한 성장(Sustainability) 문제와 캠퍼스 환경보전 및 에너지 절약 등 녹색캠퍼스 확산 및 기반조성을 위한 학생들의 관심 제고 및 창의적 아이디어 발굴을 위하여 아래와 같이 세계적 창업투자회사인 DFJ Athena LLC 및 일신창업투자와 공동으로 EEWS학생 아이디어 축제를 개최하며 관심 있는 학생들의 많은 참여를 바라고 있다.
2013 EEWS 학생 아이디어축제 관한 상세사항은 첨부 파일에서 확인할 수 있다.
2013.04.16
조회수 10810
-
EEWS 학생아이디어 축제 2013
KAIST EEWS 기획단에서는 인류의 지속성장을 위해 극복해야할 에너지(Energy)부족, 환경(Environment)오염, 물(Water)부족 및 지속가능한 성장(Sustainability) 문제와 캠퍼스 환경보전 및 에너지 절약 등 녹색캠퍼스 확산 및 기반조성을 위한 학생들의 관심 제고 및 창의적 아이디어 발굴을 위하여 아래와 같이 세계적 창업투자회사인 DFJ Athena LLC 및 일신창업투자와 공동으로 EEWS학생 아이디어 축제를 개최하며 관심 있는 학생들의 많은 참여를 바라고 있다.
2013 EEWS 학생 아이디어축제 관한 상세사항은 첨부 파일에서 확인할 수 있다.
2013.04.16
조회수 10817
-
2012년 ‘올해의 KAIST인 상’에 이정용 교수
이정용 교수
- 액체를 원자단위까지 관찰하고 분석하는 기술 세계 최초로 개발 -
- 과학계 80년 숙원 풀어낸 업적 인정받아 선정 -
2012년 ‘올해의 KAIST인 상’에 이정용 신소재공학과 교수가 선정됐다. 시상식은 2일 오전 10시 교내 대강당에서 진행됐다.
이정용 교수는 지난 80년 간 과학계의 숙원으로 꼽히던 액체를 원자단위로 관찰하고 분석하는 기술을 세계 최초로 개발했다.
이 기술은 ▲액체에서 나노 재료 제조 ▲전극과 전해질의 반응 규명, ▲액체와 촉매 반응 연구 ▲인체, 동물 및 식물 세포에서의 반응 규명 등 다양한 분야에 폭넓게 활용될 수 있을 것으로 학계는 기대하고 있어, 2012년 KAIST 최고의 연구성과로 평가받았다.
이 교수의 연구 성과는 세계적 학술지 "사이언스(Science)" 2012년 4월 6일자에 실리는 등 세계 과학계의 주목을 받았다. 또 BBC News, Science & Environment에서 톱기사로 보도하는 등 국내·외 언론에서도 연구 성과를 크게 다뤄 KAIST의 이미지 제고와 함께 위상을 높인 점을 인정받았다.
물질을 나노 수준 또는 원자단위까지 관찰하려면 광학 현미경만으로는 관찰할 수 없고, 이보다 훨씬 높은 배율을 갖는 전자 현미경으로만 가능한데 전자 현미경 속은 진공상태이기 때문에 액체 시료를 넣으면 증발해버려 관찰할 수 없었다.
이 교수 연구팀은 원자 한 층 두께의 그래핀을 이용해 액체를 감싸서 증발을 막아 세계 최초로 액체 속에서 백금이 성장하는 과정을 실시간으로 원자단위까지 관찰하는 데 성공했다.
이 연구 성과는 4월 과학의 날 기념식 대통령 치사에서는 우수 연구사례로 소개되기도 했다.
이정용 교수는 “이번 연구로 인해 ‘액체 전자현미경’, ‘나노액체’라는 새로운 학문 분야가 개척되는 계기가 마련됐다”며 “이 기술을 통해 그 동안 베일에 싸여있던 액체 속에서 일어나는 많은 과학 현상들을 원자단위로 규명할 수 있기를 기대한다”고 말했다.
한편 ‘올해의 KAIST인 상’은 한 해 동안 국내•외적으로 KAIST를 빛낸 교원에게 수여하는 상으로 ▲세계적인 학술잡지에 표지인물로 선정된 교원 ▲세계적인 신기술 개발 또는 학술연구 업적이 탁월한 교원 ▲거액의 연구비 및 발전기금을 유치한 교원 ▲ KAIST 위상을 대내•외적으로 높인 교원에게 수여하며 이번이 12회째다.
2013.01.02
조회수 16695
-
나노튜브를 이용한 유기태양전지 효율 향상 기술 개발
우리학교 신소재공학과 김상욱 교수팀과 전기및전자공학과 유승협 교수팀이 탄소나노튜브를 유기태양전지에 적용해 에너지 변환효율을 크게 향상시키는데 성공했다.
이 연구결과는 재료공학의 세계적 학술지인 어드밴스드 머티리얼스(Advanced Materials)지 최신호(11월 30일, 화) 온라인 판에 게재됐다.
반도체고분자의 광반응을 통해 전기에너지를 생산하는 유기태양전지는 고가의 실리콘을 사용하지 않아 가격이 저렴하다. 또한, 잘 휘고 투명해 여러 분야에 적용 가능한 미래 친환경 에너지원이다.
이 전지는 휴대 전자기기나 스마트 의류, BIPV(Building Integration Photovoltaic : 건물 외피에 전지판을 이용하는 건물 외장형 태양광 발전) 등 다양한 분야에 응용이 기대된다.
유기태양전지가 다른 태양전지에 비해 효율이 낮은 중요한 이유 중 하나는 태양빛을 받아 전자와 정공을 형성시키는 반도체고분자의 수송특성이 낮아 생성된 전자나 정공이 효율적으로 외부로 전달되지 못한다는 점이다.
이러한 문제를 해결하기 위해 반도체고분자의 수송특성을 향상하려는 다양한 연구들이 전 세계적으로 진행되어 왔다. 특히, 탄소나노튜브나 나노와이어 등을 이용해 전자나 정공의 빠른 수송 경로를 제공해주는 방법이 꾸준히 연구되어 왔다.
그러나 이들 연구에서는 전자와 정공이 동시에 탄소나노튜브나 나노와이어에 주입되어 자기들끼리 재결합 함으로써, 결국 외부에서 채집되는 전류가 증대되지 못하거나 오히려 감소하는 고질적인 문제가 발생했다.
이러한 문제를 포함해 유기태양전지들은 상용화하기에는 아직 낮은 광변환 효율을 보여 이에 대한 성능향상이 시급히 요구되어 왔다.
KAIST 연구팀은 유기 태양전지의 반도체고분자에 붕소 또는 질소 원소로 도핑된 탄소나노튜브를 적용해 전자나 정공 중 한쪽만을 선택적으로 수송하도록 함으로써 이들의 재결합을 막아 유기태양전지의 효율을 33%까지 크게 향상시키는데 성공했다.
또한 도핑된 탄소나노튜브는 유기용매 및 반도체고분자내에서 매우 쉽고 고르게 분산되는 특성을 보여 기존의 값싼 용액공정을 그대로 사용해 효율이 향상된 태양전지를 만들 수 있음을 확인했다.
이 연구결과로 반도체고분자가 이용되는 유기트랜지스터나 유기디스플레이 등 다양한 전자기기의 성능향상도 가능할 것으로 기대된다.
김상욱 교수는 “이번 연구결과를 통해 나노소재 기술이 유기태양전지의 성능향상에도 크게 기여할 수 있음을 알아냈다”며 “앞으로 나노소재 기술을 이용한 차세
대 에너지개발을 위한 연구에 노력하겠다”고 말했다.
이번 연구는 KAIST EEWS(Energy, Environment, Water, and Sustainability)연구사업의 지원을 받아 김상욱, 유승협 교수의 지도하에 박사과정 이주민 학생이 진행했다.
2010.12.07
조회수 23479
-
EEWS 국제 학술대회 개최
- 21세기 글로벌 이슈(EEWS)에 대비한 신기술 교류의 장 -
- 녹색성장을 위한 세계각국의 정책 및 연구 진행 상황 점검과 미래조망 -
- 7일과 8일, KAIST KI빌딩 퓨전 홀에서 열려 -
우리학교는 7일과 8일 양일간에 걸쳐 KI빌딩 퓨전 홀(Fusion Hall)에서 ‘EEWS 신산업 창출’이라는 주제로 ‘2010 EEWS(Energy, Environment, Water, Sustainability) 국제 학술대회’를 개최한다.
올해로 세 번째를 맞는 이번 학술대회에서는 마크 섀넌(Mark Shannon) 미국과학재단(NSF)연구소장 겸 일리노이대 교수, 도멘 도쿄대 교수, 김동섭 SK에너지기술원장, 승도영 GS칼텍스 연구소장 등을 비롯한 40여명의 국내·외 산업계 및 학계 전문가들이 참석한다.
이번 학술대회에서는 12개 세션에서 인공광합성, 차세대 LED, 무선 전력송신, 안전한 원자력기술, 유연한 배터리와 유기태양광, 녹색항공, 담수기술, 연료전지에 대한 발표와 토론을 진행한다.
이재규 EEWS 기획단장은 “이번 학술대회는 녹색성장을 위한 세계 각국의 EEWS에 관한 정책 및 연구 진행 상황 등 관련 기술의 미래를 내다볼 것”이라며, “선도적인 연구자들과 협력관계를 형성하는 기회가 됐으면 좋겠다”고 말했다.
EEWS란 에너지 고갈, 환경오염, 물부족 및 지속성장 가능성 등 21세기 인류가 직면하고 있는 글로벌 이슈의 해결을 위해 KAIST가 추진하고 있는 연구프로젝트다.
2010.10.07
조회수 23971
-
2010 EEWS 녹색기술 연구과제 확정
우리학교는 2010년도 EEWS 7대 주력과제를 포함해 총27개의 EEWS 연구과제를 선정, 지원하기로 했다. EEWS(Energy, Environment, Water, and Sustainability)란 에너지 고갈, 환경 오염과 기후변화, 물부족 및 지속가능한 성장 등 21세기 인류가 직면하고 있는 문제들을 해결하는 노력으로, 카이스트가 2008년부터 EEWS기획단을 구성하여 집중 연구하고 있는 분야를 뜻하며, 국가 녹색성장 및 녹색기술에 대응된다.
EEWS기획단은 2009년 10개 연구분야에서 24개 연구과제를 지원해 특허출원 28건, 특허 등록 6건, SCI급 논문 57편 발표 등의 성과를 거둔 바 있다.올해에는 지난해 과제의 성과와 중요성을 평가하여 7개 과제를 주력과제 (Flagship Project : ▲유연한 리튬전지 ▲안전한 핵연료 재사용 ▲고효율 바이오부탄올 ▲액체연료형 고체산화물 연료전지 ▲한국형 LED 조명 ▲인공광합성 ▲나노유기태양전지)로 선정하였으며, 신규 과제 9개(▲에너지절약형 담수화시스템 ▲ 초박막실리콘 태양전지 외 7개 과제)등 총 27의 연구과제를 지원하기로 했다.
EEWS기획단(단장 이재규)은 산발적이고 소규모인 개별 연구프로젝트를 전략적으로 기획 연계함으로써 대형 융합과제를 발굴, 새로운 과학영역 창조 및 대한민국 녹색산업의 핵심 원동력을 발굴하고 있다. 선정된 모든 과제는 EEWS국제워크숍(9월)과 중간평가(7~8월) 및 최종평가(익년 1월) 등 면밀한 평가를 통해 매년 성과물을 발표하고 있다.
EEWS기획단은 EEWS최고전략과정을 통해 최고경영자들에게 녹색성장 기술과 산업화 기법을 전수하여 연구결과를 사업화로 연결하고 있다. 2010년 상반기에 수강중인 제2기에는 유경선 유진그룹회장이 동기회장을 맡고 있으며, 신상훈 신한지주사장, 정회훈 DFJ Athena Korea 사장, 녹색성장위원회 김재정 국장 등 우리나라 녹색산업, 금융, 정책의 지도자들이 녹색성장시대를 토론하며 대비하고 있다. 또한 EEWS대학원을 통해 석,박사 전문기술인력을 양성중이며, 기후변화 정책에 관한 MBA를 배출하고 있다.
[그림 : 7대 기획과제 중 하나인 ‘유연한 리튬전지’는 의학적 사용은 물론 휴대가능하며 마음대로 접을 수 있는 전자기기 개발에 필수요소이다]
2010.04.14
조회수 22593