-
최광욱 교수, 기관의 크기를 조절하는 유전자 발견
〈최 광 욱 교수〉
우리 대학 생명과학과 최광욱 교수 연구팀이 돌연변이 유전자의 세포분열이 증가하고 기관이 비정상적으로 커지는 현상의 원인을 밝혔다.
연구팀은 우리 몸의 각 기관이 정상적인 크기로 자라게 하는 히포네트워크(Hippo Network) 내에서 쉽원(Schip1)이라는 새로운 단백질을 발견하고 기능 원리를 규명했다.
이번 연구는 셀(Cell) 자매지인 ‘디벨롭멘탈 셀(Developmental Cell) 7일자 온라인 판에 게재됐다. (논문명: Drospohila Schip1 links Expanded to Tao-1 to regulate Hippo signaling)
생명체에는 각 기관들이 적절한 크기가 되도록 스스로 조절하는 능력이 있다. 이것을 가능하게 만드는 각 요소들은 서로 네트워크를 이뤄 작동하고, 그 네트워크를 히포 네트워크라 부른다.
이 히포네트워크에 유전적 혹은 후천적으로 문제가 발생하면 조절능력을 상실해 기관에서 종양을 만들게 되고 생명을 위협하는 요소가 된다. 따라서 네트워크를 구성하는 요소를 밝히고 완성시키는 것은 불확실한 종양의 발생원인 규명에 필수적이다.
과학계는 지속적 연구를 통해 히포네트워크의 구성요소들과 기능 및 역할을 발견했다. 하지만 이 네트워크에서 중심적으로 작동하는 두 요소인 ‘타오 원(Tao-1)’과 ‘익스팬디드(Expanded)’ 사이의 기작은 밝혀지지 않았다.
익스팬디드와 타오원이 네트워크 내에서 관련이 있다는 점은 밝혀졌지만 어떤 방식으로 연결됐는지, 직접적인 연관은 무엇인지에 대한 부분은 밝혀내야 할 숙제로 남아 있었다.
연구팀은 문제 해결을 위해 히포 네트워크 유전자가 처음 발견된 초파리를 이용했다. 히포 네트워크는 초파리부터 인간까지 거의 동일한 유전자에 의해 조절되고 있기 때문이다.
연구팀은 초파리 히포네트워크 내 쉽원(Schip1) 요소가 익스팬디드와 타오원 사이의 매개체라는 사실을 규명했다. 쉽원은 타오원을 세포막으로 끌어들이는 역할을 하고 익스팬디드는 쉽원이 적절한 위치를 잡게 해 준다.
이 쉽원 유전자에 돌연변이가 생길 경우 세포분열이 크게 증가하고 결과적으로 기관의 크기가 비정상적으로 커지는 등 암 조직에서 나타나는 여러 형질이 발생한다.
연구팀은 쉽원 유전자가 초파리 뿐 아니라 인체에도 잘 보존돼 있기 때문에 종양의 원인 규명 및 치료법 개발에도 중요한 역할을 할 것이라고 밝혔다. 향후 고등 생명체를 이용한 추가적 연구가 진행될 것으로 기대된다.
최 교수는 “지금까지 단절됐던 상류와 하류 요소를 이어주는 중요한 고리를 찾았다”며 “이는 매우 의미있는 발견이다”고 말했다.
정형록 박사과정이 주도한 이번 연구는 교육부와 한국연구재단이 추진하는 중견연구자지원사업과 글로벌 연구실지원사업의 일환으로 수행됐다.
□ 그림 설명
그림1. 쉽원이 없을 때 초파리 눈 크기 변화
그림2. 이전의 완성되지 않았던 히포네트워크와 현재 본 논문을 통해 완성된 히포 네트워크
그림3. 쉽원 돌연변이에서 히포의 양이 급격하게 늘어나는 모습
2016.03.18
조회수 9197
-
연성물질의 메조포러스 준결정 개발・분석 성공
오사무 테라사키 교수
- 네이처(Nature)지 7월 19일자 실려 -
메조포러스(mesoporous) 준결정(quaicrystal) 구조에 대한 의문이 우리 대학 연구진에 의해 보다 명확하게 풀렸다.
우리 학교 EEWS(책임교수 강정구) 대학원 소속 오사무 테라사키(Osamu Terasaki) 교수 연구팀이 불규칙적인 입자구조를 가지고 있는 준결정 메조포러스 실리카(quasicrystalline mesoporous silica) 합성에 성공하고 준결정 성장 과정을 분석하는 새로운 방법을 개발했다.
연구팀이 제시한 이론은 연성물질인 교질(micelles) 입자 형성 시 불규칙하게 나타나는 준결정 현상을 과학적으로 규명하는 토대를 만들었다. 세계적인 학술지 ‘네이처(Nature)’는 7월호(19일자)에 테라사키(Terasaki) 교수 연구팀의 논문을 게재했다.
과학자들은 그 동안 연성물질(solidified version of soft matter systems)에서 발견되는 메조포러스 준결정 구조를 체계적으로 설명하는데 많은 어려움을 겪어왔다. 하지만, 이번 연구를 통해 얻은 연성물질 내 준결정 성장에 대한 이론적인 근거는 앞으로 이 분야에 대한 연구를 촉진시켜 나노 구조를 가진 신소재 물질 개발에 박차를 가할 것으로 예측된다.
연성물질의 메조포러스 준결정은 높은 대칭균형(high symmetry)과 나노 스케일(nano scale)보다 더 큰 특성적 크기(large characteristic length scale)를 가지고 있어 광학적 특성을 자유자재로 조절할 수 있는 물질을 구현할 수 있다.
이를 활용하면 태양광을 사용하는 친환경적 에너지 저장 및 변환 기술 개발에 응용되어 지속가능한 에너지의 저장, 사용 및 재생산 기술 발전에 큰 도움을 줄 것으로 예상된다.
테라사키 교수 연구팀은 메조포러스 준결정 실리카 합성에 성공하고 투과전자현미경(Transmission Electron Microscopy)을 통해 실리카 입자 중앙에 12각형 기둥 모양의 순결정이 형성되어 있으며, 전자회절 무늬에서(electron diffraction pattern) 12각형의 회전대칭 무늬(rotational symmetry)가 순결정 주위에 형성되는 것을 증명하였다.
준결정(quasicrystal)은 준주기적 결정(quasiperiodic crystal)의 줄임말로서 금속 같은 일정한 규칙으로 배열된 결정 물질과 유리와 같은 비결정 물질의 중간 성질을 가지는 제 3의 고체(solid)로 최근 발견되었으며 2011년에는 노벨화학상이 이 분야 연구에 수여되기도 했다.
많은 양의 기공(porous)을 지닌 다공성 물질을 준결정으로 제조 하게 되면 기공들의 결정 구조를 ‘타일을 붙이듯(tiling)’ 원하는 방식대로 디자인 하고 성질을 조절하게 되어 다양한 분야에 필요한 새로운 소재를 개발하고 생산할 수 있게 된다.
테라사키 교수는 “높은 대칭성(high symmetry)을 가지는 준결정의 발견은 물질의 광학적 성질을 쉽게 조절해 가시광 영역대의 포토닉 크리스탈을 구현할 수 있다”며 “물질의 광학적 에너지 흡수를 조절 할 수 있는 이 기술은 향후 에너지 저장(energy harvesting)의 핵심기술이 될 수도 있을 것이다”라고 말했다.
이번 연구는 KAIST EEWS 대학원의 오사무 테라사키 교수와 스웨덴 스톡홀름(Stockholm University) 대학과 공동으로 수행되었다.(끝)
그림 1. 물질에서의 원자 배열 방법에 따라 구분되는 결정, 준결정과 비결정을 나타낸 모식도. 일반적으로는 원자가 일정한 패턴을 가지고 배열되어 있는 것을 결정, 그렇지 않은 것을 비결정이라고 하였으나, 준결정은 결정에서의 원자배열을 가지지는 않지만 정돈 되어 있는 구조이다. 투과전자현미경에서의 회절무늬를 보고 준결정을 판단할 수 있다.
그림 2. 메조포러스 실리카 준결정의 실제 모양과 원자 배열을 나타내는 투과전자현미경 이미지. 투과전자현미경으로부터 메조포러스 실리카가 12각형 기둥 모양을 하고 있음을 알 수 있으며(왼쪽 위의 이미지), 이는 투과전자현미경의 회절무늬에서도 나타난다(왼쪽 아래 이미지). 고배율의 투과전자현미경은 메조포러스 실리카의 실제 구조를 나타내고 있다(오른쪽).
그림 3. 메조포러스 실리카 준결정의 결정구조를 3차원 모델로 나타낸 모식도. 각각 다른 세 가지 다각형이 서로 정돈되어 결합해 메조포러스 준결정을 구성한다.
2012.07.24
조회수 16471
-
단백질 분해조절 효소 정보 담은 바이오마커 발굴 시스템 개발
- Mol Cell Proteomics지 게재, “바이오마커 개발의 새로운 패러다임 제시” -
단백질의 분해를 조절하는 효소와 기질에 대한 관계정보를 담은 바이오마커* 발굴 시스템(E3Net)이 국내 연구진에 의해 개발되어, 고부가가치의 새로운 바이오마커 개발에 가능성이 열렸다.
※ 바이오마커(Biomarker) : 유전자, 단백질 등에서 유래된 특이한 패턴의 분자적 정보로, 유전적․후천적 영향으로 발생한 신체의 변화를 감지할 수 있는 생물표지인자
우리학교 바이오및뇍 이관수 교수(49세)가 주도하고, 한영웅 박사과정생, 이호동 박사 및 박종철 교수가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 선도연구센터지원사업(NCRC), 신기술융합형성장동력사업 및 교육과학기술부의 KAIST 미래형 시스템 헬스케어 연구개발사업의 지원으로 수행되었고, 단백질체 연구 분야의 권위 있는 학술지인 ‘Molecular and Cellular Proteomics"지 4월호(4월 1일자)에 게재되었다. (논문명: A system for exploring E3-mediated regulatory networks of cellular functions)이관수 교수 연구팀은 전 세계 바이오 관련 DB(데이터베이스)와 논문(약 2만 편)으로부터 정보를 추출해 단백질 분해를 조절하는 효소(E3 효소)와 기질*들 간의 네트워크를 집대성하여, 이와 관련된 세포의 기능과 질병을 분석하는 ‘E3Net’ 시스템을 개발하였다.
※ 기질(substrate) : 효소와 특이적으로 결합하여 화학반응을 일으키는 분자로, 소화작용은 우리의 몸속에서 일어나는 효소와 기질간의 반응의 대표적인 사례
세포는 시시각각 변하는 환경에 대응하여 필요한 단백질들을 생산, 폐기 및 재활용하는 정교한 시스템을 가지고 있는데, 만일 이 과정에서 오류가 생기면 ‘질병’으로 이어질 수 있다.
따라서 단백질 분해를 조절하는 E3 효소와 기질 간의 관계를 파악하면 관련 질병을 치료하거나 예방할 수 있게 된다. 특히 E3 효소는 단백질 분해의 80%를 담당하는 것으로 알려져 수많은 질병이 관련되어 있을 것으로 예측되고 있다.
그러나 E3 효소와 기질 간의 정보들이 개별 논문과 DB에 흩어져 있어, 단백질 분해 조절과 관련된 세포의 기능과 질병의 특성을 종합적․체계적으로 분석할 수 없었다.
이 교수팀은 모든 E3 효소(2,201개)와 기질(4,896개) 및 그 조절관계(1,671개)에 대한 정보를 통합하여 E3 효소 조절 네트워크 내에 존재하는 관련된 세포의 기능과 질병을 시스템적으로 분석할 수 있는 E3Net을 구축하는데 성공하였다.
이 네트워크는 지금까지 구축된 조절정보를 모두 합친 것보다 무려 10배에 이르는 방대한 양으로, E3 효소가 독자적으로 또는 협력해서 조절하는 세포의 기능과 관련 질병을 정확히 파악할 수 있는 토대가 마련된 첫 사례로서 의미가 크다.
연구팀은 E3Net을 이용하면 각각의 질병과 관련된 단백질들의 분해조절을 담당하는 E3 효소들을 찾을 수 있고, 분해조절 원리와 세포기능 네트워크를 함께 파악하여 질병의 발생 원인이나 환자에 적합한 맞춤형 치료방법을 제공할 수 있는 바이오마커를 발굴할 수 있을 것으로 기대한다.
실제 연구팀은 E3Net을 활용해 암, 뇌심혈관 질환 및 당뇨병 등 현대인의 대표적 질환과 관련된 E3 바이오마커 후보 수십 개를 새롭게 발견하는 등 눈에 띄는 성과를 거두었고, 현재 이를 검증할 후속 연구를 계획하고 있다. 이관수 교수는 “이번 연구결과로 E3 효소와 관련된 단백질 분해조절의 네트워크가 구축되고, 이 네트워크에 존재하는 세포의 기능과 질병의 특이성을 시스템적으로 분석할 수 있게 됨에 따라, E3 효소와 관련된 세포의 기능 연구와 질병 연구에 새로운 전기가 마련되었다”고 연구의의를 밝혔다.
2012.05.01
조회수 13796
-
임용택 교수, GCMM 2010 학회 연구업적상 수상
지난 11월 22일부터 24일까지 태국 방콕에서 개최된 "제10차 제조업 및 경영 글로벌학회(Global Congress of Manufacturing and Management, GCMM 2010)"에서 기계공학과 임용택 교수가 소성가공(塑性加工)공정 및 제조업 분야에서의 연구 활동을 인정받아 연구 업적상 (Excellence for Research and Scholarship in the Area of Metal Forming and Manufacturing)을 수상했다.
GCMM(http://www.gcmm2010.org)은 정보통신기술(IT)을 제조업 시스템과 운영에 적용, 제조업계 발전을 도모하는 국제학회로, 호주 퀸즈랜드 공대(Queensland University of Technology)와 인도 벨로어 공대(Vellore Institute of Technology)의 공동 주최로 지난 2002년 태국 방콕에서 처음으로 개최된 후 격년제로 열리고 있다.
이번 학회에서 연구업적상을 수상한 임용택 교수는 소성가공 공정을 위한 유한요소 해석 프로그램을 개발했으며, 해석결과를 공정설계와 연계하는 자동설계시스템을 만들기도 했다. 최근에는 금속성형 공정에서 중요한 마찰계수를 측정하는 팁시험방법을 고안했고, 현재는 나노 벌크재 개발 및 이를 응용한 고강도 부품 개발에 매진하고 있다. 10여 개의 국내·외 특허를 보유하고 있는 임 교수는 170여 편의 논문을 국내·외 논문집에 게재하였으며, 지난 2007년부터는 선재분야 POSCO 철강 전문교수로 활동하고 있다.
아울러 이번 학회에는 태국 정부 국무총리실 산하 개혁정책처(Innovative Policy Office)의 녹색성장위원회 사무총장인 피쳇 두롱카베로이(Pichet Durongkaveroj) 박사가 참석했는데, 그는 3년 전부터 KAIST를 벤치마킹하여 태국에 국립과학기술원(Thailand Advanced Institute of Science and Technology, THAIST)를 설립하기로 결정했다고 밝혔다. 태국 정부는 메콩강 주변지역을 글로벌 지식경제 산업을 선도하는 거점지역으로 발전시키는 계획을 세워두고 있으며, 이를 위해 THAIST를 현존하는 9개의 연구중심대학과 연계시켜 키워나갈 것이라고 피쳇 박사는 부연했다.
이밖에도 태국 정부는 전기기차 (Electric Train) 개발을 주도하기 위해 우리 돈 38조원에 이르는 1조 바트(Bhat)를 철도 시스템 개선에 투자하고, 기술개발주도형 인프라시스템을 구축하기 위해 고급연구인력 수입에 대한 세제지원을 강화하고, 전체 연구비의 70%까지를 기업연구에 확대 투자해 기업의 연구 활동을 장려하는 정책을 입안 중이라고, 피쳇 박사는 밝혔다.
이로써 KAIST는 일본 과학기술연구원(Japan Advanced Institute of Science and Technology, JAIST), 홍콩 과학기술대학(Hongkong University of Science and Technology, HKUST)에 이어 연구중심대학으로서의 롤 모델 역할을 수행함은 물론 각 국의 성장동력원의 주력으로 자리매김하고 있다.
2010.11.26
조회수 13585
-
국제 생물공정학술지, 장호남교수 정년퇴임 특집호 헌정
생물공정 및 배양기술의 세계적인 리더로 인정받아, 세계적인 학자에게만 드물게 주어지는 국제학술지 특집호 헌정 영예
KAIST(총장 서남표)는 세계적 생물공정 학술지인 독일 스프링거사 발간하는 생물공정 바이오시스템공학(Bioprocess and Biosystems Engineering; BPBSE)지가 오는 2월말 정년퇴임하는 생명화학공학과 장호남(66세) 교수의 업적을 높이 평가해 기념 특집호를 발간했다고 26일 밝혔다. BPBSE지는 1986년 3월 창간한 24년 전통의 생물공정분야 전문 SCI학술지이다.
세계적인 학술지의 전체 내용을 1인 학자를 위한 기념특집호로 발간한 경우는 매우 드문 사례로 장 교수의 지난 34년간의 생물공정, 생물배양 관련 연구가 세계적으로 인정받고 있으며, 그 탁월한 업적을 세계적으로 인정했다는데 의미가 있다.
2010년 신년호로 발간된 특집호는 ‘장호남: 위대한 생물화학공학자와 그의 고농도배양에 관한 평생의 기여(Ho Nam Chang: Life of a great biochemical engineer and his life-time contribution to high cell density culture)’라는 표지제목으로 발간됐다.
장 교수의 생물공학분야 기여에 감사하고 정년퇴임을 기념하고자 하는 미국, 일본의 동 분야 최고의 전문가들과 장 교수 제자들의 논문 20편이 실렸다.
이번 특집호의 초청편집자인 이상엽 특훈교수는 ”장 교수님은 생물공학, 생물공정 분야의 세계적인 거목이다. 세계적으로도 관련 분야에서 모르는 사람이 없다. 2년 전 독일에서 개최된 학술지 편집회의에서 편집장, 부편집인들, 편집위원들이 장호남 교수의 정년기념 특집호 발간을 만장일치로 찬성했다“고 밝혔다.
장 교수는 1944년 남해생으로 1976년 KAIST에 교수로 부임해 지난 34년간 국제학술지 논문 235편, 국내학술지 논문 153편, 3권의 저서, 51건의 특허를 낸 업적이 있으며, 논문의 총 피인용 횟수는 4190여회에 달하는 세계적인 석학이다.
현재도 9개의 국내외학술지 편집위원으로 활동 중이다. 우수연구센터인 생물공정연구센터의 소장, 기초기술연구회 이사, KAIST 교무처장 및 학장, 한국생물공학회 회장, 한국공학한림원 부회장 등을 역임했으며 국민훈장 목련장, 한국공학상, 아시아태평양 생물화학공학상 등 다수의 상을 수상했다.
2010.02.26
조회수 13467
-
매미와 개구리는 지휘자없이 어떻게 합창할까
나무위의 매미와 논두렁의 개구리는 지휘자 없이 어떻게 합창할까? 이와 관련해서, KAIST 바이오 및 뇌공학과의 조광현 교수는 생명체의 동기화된 주기적 진동신호의 생성원리를 최근 규명했다. 나무에 붙어있는 많은 반딧불들의 동시다발적인 깜빡임, 매미들의 조율된 울음소리, 뇌신경세포들간의 전기신호, 세포내 분자들의 농도변화에 이르기까지 생명체는 다양한 형태의 주기적 진동신호 교환을 통해 정보를 전달하는데, 이들은 놀랍게도 정확히 동일한 위상(phase)으로 동기화되곤 한다. 이는 마치 오케스트라에서 지휘자 없이도 모든 연주가 일정한 박자에 맞춰 이루어지는 것과 같다.
어떻게 생명체의 여러 주기적 진동신호들이 그러한 동기화를 이루는가?
우리학교 바이오및뇌공학과 조광현(曺光鉉) 교수 연구팀이 대규모 가상세포(virtual cell)실험을 통해 생명체의 다양한 주기적 진동(oscillation)신호들이 동기화(synchronization)되는 보편적인 원리를 규명했다.
曺교수팀은 이번 연구를 통해 여러 독립적인 주기적 진동신호들은 양성피드백(positive feedback)을 통해 서로의 위상에 영향을 줘 하나의 동일한 위상으로 수렴되는 현상을 밝혀냈다.
특히 양성피드백은 이중활성(double activation) 또는 이중억제(double inhibition)의 구조로 구현된다. 이중활성피드백은 연결시간지연이 짧을 때, 이중억제피드백은 연결시간지연이 길 때 보다 안정적인 신호동기화를 가능하게 했다.
또한, 노이즈(noise) 교란이 있을 때 이중활성피드백은 진동신호의 주기보다 진폭을 안정적으로 유지하는 반면 이중억제피드백은 연결강도에 불규칙한 변화가 주어졌을 때 일정한 주기와 진폭을 유지시켜줬다. 현존하는 대부분의 현상들이 이러한 원칙을 따르고 있었다.
이번에 규명된 원리는 생체내 주기적 진동신호의 동기화가 교란될 때 발생하는 뇌질환 등 여러 질병의 원인을 새롭게 조명하는 계기를 마련할 것으로 기대된다.
이번 연구는 기존 생명과학의 난제에 대해 IT융합기술인 시스템생물학(Systems Biology) 연구를 통해 해답을 제시할 수 있음을 보여줬으며, 향후 생명과학 연구에 있어서 가상세포실험의 무한한 가능성을 제시했다.
曺교수는 “생명체는 복잡하게 얽혀있는 것으로 보이는 네트워크속에 이와 같이 정교한 진화적 설계원리를 간직하고 있었다”며 “이러한 규칙들은 임의로 수많은 디지털 진동자들을 만들어 인공진화를 통해 신호의 동기화 현상을 관측하였을 때에도 마찬가지로 성립된다는 흥미로운 사실을 확인했다”고 말했다.
이 연구는 교육과학기술부가 지원하는 한국연구재단 연구사업의 일환으로 수행되었으며, 연구결과는 세포생물학 분야 권위지인 세포과학저널(Journal of Cell Science) 2010년 1월 26일자 온라인판에 게재됐다.
세포생물학 실험결과만을 출판하는 이 저널에 순수 컴퓨터시뮬레이션만으로 수행된 가상세포실험 연구결과가 게재된 것은 매우 이례적인 일이다.
인터넷주소: http://jcs.biologists.org/cgi/content/abstract/jcs.060061v1
<용어설명>◯ 양성피드백(positive feedback): 서로 연결되어 있는 두 요소 사이에 어느 하나의 변화가 결과적으로 스스로를 동일한 방향으로 더욱 변화시키는 형태의 연결구조.
<사진설명>◯ 설명: A: 서로 상호작용하는 두 생체신호 진동자(oscillator)들의 예시. B: 이중활성 양성피드백으로 연결된 진동자들. C: 이중억제 양성피드백으로 연결된 진동자들. D: 연결강도에 따라 진동신호 동기화에 소요되는 시간. E: 연결강도 증가에 따라 점차 진동신호 동기화가 되어가는 모습의 예시 (좌측의 비동기화 진동신호들이 점차 우측의 동기화된 진동신호들로 변화되어 가는 과정을 나타냄).
2010.02.02
조회수 15350
-
김성철 교수, 환태평양 고분자 연합 회장으로 추대
생명화학공학과 김성철(64)교수가 호주 케언스(Cairns)에서 개최된 환태평양 고분자연합(Pacific Polymer Federation, PPF) 집행위원회에서 제12대 회장으로 최근 선출됐다.
환태평양 고분자연합은 한국, 미국, 일본, 중국, 호주, 카나다, 멕시코, 대만, 싱가포르, 태국, 뉴질랜드, 칠레, 베트남, 인도네시아, 말레이시아 등 태평양 연안 15개국의 고분자학회의 연합체로 2년에 한번 국제 심포지엄을 개최한다.
김 교수는 이번 케언스(Cairns)에서 열린 제11차 국제 심포지엄에서 ‘메탄올 연료전지용 고분자 블렌드, IPN, 하이브리드 막(Polymer Blend, IPN, Hybrid Membranes for Direct Methanol Fuel Cell)’이란 제목으로 기조강연을 했다.
제12차 국제심포지엄은 2011년 11월 제주 신라호텔에서 개최되며, 김 교수가 조직위원장을 맡게 된다.
* IPN : 상호침투하는 고분자 망목(Interpenetrating Polymer Network)
2009.12.23
조회수 13434
-
산업디자인학과 4학년 김성준씨, 국제 디자인 공모전
우리대학 산업디자인학과 4학년 김성준(25, 지도교수 정경원)씨가 최근 독일서 열린 ‘iF 커뮤니케이션 디자인상’에서 ‘새로운 기부문화시스템’이란 출품작으로 최우수상을 수상했다.
‘새로운 기부문화시스템(1/2 PROJECT)’은 기부의 일상생활화를 목표로 진행됐다. 이 작품은 소비자가 전체 가격으로 절반만 들어있는 음료를 구매하면 나머지 절반에 해당하는 금전적 가치를 타인에게 기부하는 새로운 시스템을 표현한 것이다. 삼성 디자인 멤버십의 일환으로 이화여대를 졸업한 박지원씨가 공동 참여한 이 작품은 최근 미국 ‘IDEA’에서도 은상을 수상했다.
독일의 ‘iF 커뮤니케이션 디자인상(iF Communication Design Award)’은 세계 최대 규모와 권위를 자랑하는 디자인상으로 오는 8월 뮌헨 BMW 본사에서 시상식이 있을 예정이다. 또한 ‘IDEA(International Design Excellence Awards)’는 비즈니스 위크사의 후원으로 미국 산업디자인협회(IDSA)가 심사, 시상하는 세계 최대 규모의 디자인상으로 시상식은 오는 9월 마이애미에서 거행될 예정이다.
한 개의 작품으로 유럽과 미국의 권위있는 디자인공모전에서 수상을 하게 된 김씨는 “이 프로젝트가 단지 공모전 수상으로 끝나는 것이 아니라, 비영리 단체로서 대형 음료 업체들과 직접 계약을 맺어 기부 문화의 일상 생활화를 이끌어나가는 것이 궁극적인 목표”라고 밝혔다.한편 지난 3월 독일 ‘iF 국제디자인상(iF Lebens(t)räume 2009)’에서 최우수상을 수상했던 ‘휴대용 인명 구조 장비(Rescue Stick)’ 작품은 이번 IDEA에서 은상을 수상했다. 이로써 김성준 씨의 두개 작품(1/2 PROJECT, Rescue Stick)을 세계 3대 디자인 어워드(iF, IDEA, Red Dot)중 두 곳에서 수상함으로써 그의 탁월한 디자인 능력을 인정받게 됐다.
2009.06.02
조회수 16128
-
조광현 교수, 컴퓨터시뮬레이션 통해 세포 조절회로의 숨겨진 메커니즘 규명
바이오및뇌공학과 조광현(曺光鉉, 38) 교수 연구팀이 컴퓨터시뮬레이션을 통해 세포의 증식과 분화 조절회로에 숨겨진 동역학 메커니즘을 규명하였다. 연구결과는 세포생물학계의 권위지인 저널오브셀사이언스(Journal of Cell Science)지 21일자 온라인판에 표지논문(Cover Paper)으로 선정, 출판되었다.
이번 연구는 특히 수학 모델과 컴퓨터 시뮬레이션을 이용해 세포내 복잡한 메커니즘을 해석해 내고 이를 생화학실험을 통해 재차 검증함으로서 완성되었다. 이는 IT를 BT에 접목시킨 시스템생물학(Systems Biology) 연구를 통해 기존 생명과학의 한계를 극복한 중요한 BIT 융합 연구사례로 평가된다.
세포내 어크(ERK) 신호전달경로는 세포의 증식과 분화를 조절하는 주요 회로로 알려져 왔으며, 최종단의 인산화된 어크 단백질의 시간에 따른 농도변화 프로화일은 세포의 운명을 결정하는 핵심인자로 여겨져 왔다. 그러나 이 회로의 복잡한 동역학적 특성으로 인해 조절메커니즘은 아직껏 잘 밝혀지지 않았다. 曺 교수 연구팀은 어크 신호전달경로 가운데 라프(Raf) 단백질의 신호를 선택적으로 차단하는 알킵(RKIP) 단백질이 매개하여 형성하는 양성피드백과 어크에서 에스오에스(SOS)로 이어지는 신호에 의해 형성되는 음성피드백이 최종 어크 단백질의 동역학 패턴을 결정짓는 주요 조절회로임을 규명해 냈다. 특히 양성피드백은 이 신호전달과정이 외부노이즈에 둔감하도록 스위칭동작을 유발하고 음성피드백은 어크 프로파일의 진동현상을 유발함으로써 다이나믹한 동역학 특성이 결정됨을 밝혀냈다. 이러한 컴퓨터 시뮬레이션 분석결과는 공동연구팀인 영국 글라스고우 암연구소에서 생화학실험을 통해 증명되었다.
이번 연구는 인간의 주요 질환과 관련된 세포내의 근원적인 조절메커니즘을 규명함으로써 차후 생명과학 응용연구의 중요한 발판을 마련하였으며, 또한 BIT 융합연구로서 시스템생물학의 새로운 가능성을 제시하게 됐다. 이번 연구는 교육과학기술부지원 연구사업의 일환으로 수행되었다.
<2009년 1월 21일자 온라인판, 인터넷주소>
http://jcs.biologists.org/content/vol122/issue3/cover.shtml
2009.01.29
조회수 16342
-
KAIST, 삼성전기 삼성서울병원과 공동으로 세포벤치 연구센터 설립
- 삼성서울병원과 생체모사 세포 칩 공동연구
- 개인별 맞춤형 최적 항암제 발굴 및 임상적용 기술 개발
- 전자산업-의학 간 기술 융복합으로 의료 바이오 신 사업 창출
- 원천기술 조기 확보로 시장 선점, 암 환자들에게도 희소식
우리학교는 차세대 바이오(Bio) 분야에서 원천 기술과 우수 인력을 확보하기 위해 세포벤치(Bench)연구센터를 설립, 지난 17일 개소식을 가졌다.
정문술 빌딩에서 열린 이날 개소식에는 서남표 총장을 비롯해 삼성전기 기술총괄(CTO) 고병천 부사장, 삼성서울병원 임효근 진료부원장 등 관계자 100여 명이 참석했다.
KAIST-삼성전기-삼성서울병원 등 3개 기관이 협력하여 구성된 세포벤치연구센터는 우리학교 바이오 및 뇌공학과 조영호 교수가 센터장을 맡아, 생체모사 세포칩((Bio-inspired Cell Chip)을 이용한 개인별 맞춤형 항암제 발굴 및 임상적용 기술을 개발한다.
국내에서만 약 40 만 명에 달하고, 개인별로 큰 편차를 보이는 암에 대한 치료효과를 극대화하기 위해, 삼성전기의 첨단 소재 및 장비기술, KAIST의 바이오 소자 기술, 삼성서울병원의 임상 적용 기술 등을 결합, 의료 바이오의 새로운 분야를 개척할 계획이다.
세포벤치 연구센터 조영호 센터장(KAIST 바이오 및 뇌공학과 교수)은 초기에는 한국인 사망원인 1위인 폐암용 항암제 세포 칩 개발을 목표로 하고, 이를 기반으로 5대 고형암으로 확대해갈 계획이라고 밝혔다
이날 KAIST 서남표 총장은 환영사에서 “전자산업 및 학계, 의료계의 최고 전문가들이 세포벤치연구센터에서 서로의 강점 기술을 융/복합하여, 혁신적인 맞춤형 항암 치료 기술을 발굴, 과학기술의 새로운 장을 개척하기를 바란다”고 당부했다
삼성전기 기술총괄 고병천 부사장은 “바이오 세포칩 기술 개발은 그 동안 IT분야에 주력해 온 삼성전기에게도 새로운 사업 분야로 진입하는 의미 있는 도전이다”며 “삼성전기, KAIST, 삼성서울병원 등 최고 인력들의 공동연구를 통해 세포칩 분야의 원천기술을 확보해 새로운 비즈니스 모델을 창출하고, 질병으로 고통 받는 환자들에게도 간편하고도 효과적인 치료방법을 제시할 것”이라고 말했다.
<<용어해설>>
- 개인별 맞춤형 항암제: 환자의 유전적, 후천적 특성과 암의 종류 및 부위에 따라 항암제의 효능이 달라지므로, 개인별 항암제 치료의 특이성과 부작용을 고려한 최적의 항암제를 단기간에 선별하여 항암치료의 시기, 효과 및 신뢰성을 극대화 할 수 있는 약물치료 기술
- 생체모사 세포칩: 인간의 몸 속에서 세포가 분화 성장하는 환경과 과정을 인공적으로 모사하여 체외에서 세포를 성장시킬 수 있는 환경을 조성하고 극미량의 약물에 대한 반응(BT) 등 관련 정보(IT)를 고속으로 감지하고 분석할 수 있도록 나노/마이크로가공기술(NT)로 제작된 극미세세포배양 및 분석 칩(Chip)
- 세포벤치: 세포의 배양과 분석을 위한 세포칩과 이에 필요한 세포의 분리, 계수, 처리와 극미량배양액 및 약물의 고속 공급과 순환제어를 위한 전처리 과정과 세포의 추출, 파괴, 관찰을 위한 후처리 과정을 함께 결합한 바이오 벤치(Bench)
2008.11.17
조회수 14041
-
올해의 KAIST인 상에 이지오 교수
세계적인 학술지, Cell誌에 두편의 논문 잇따라 발표하는 등 뛰어난 학술연구실적 인정 우리 학교는 2007년 ‘올해의 KAIST인 賞’에 화학과 이지오(李志五, 42) 교수를 선정했다. 시상식은 2일(수) 학내 대강당에서 열린 2008년도 시무식에서 있었다.
李 교수는 2007년 패혈증을 유도하는 단백질 복합체인 ‘TLR4-MD-2’와 ‘TLR1-TLR2’의 구조 및 작용 메커니즘을 규명해 세계적인 학술지인 셀(Cell)誌에 잇따라 발표, 패혈증 치료제 개발과 선천성 면역연구 발전에 크게 기여했다.
李 교수는 2001년 이후 국제우수논문 18편을 발표하는 등 뛰어난 학술연구 활동으로 학계의 주목을 받고 있다. 2007년 과학기술부 ‘미래를 만드는 우수과학자"에 선정됐으며, 한국과학기자협회가 뽑은 ‘올해의 과학인상’을 수상했다.
2008.01.10
조회수 14438
-
손영석,전용준씨 산업자원부장관상 수상
전기및전자공학전공 회로설계및시스템응용연구실 박사과정에 재학중인 손영석,전용준씨가 특허청 주관‘제7회 반도체 설계 공모전’에서 산업자원부장관상(은상)을 수상했다.
이번 공모전에 제출된 작품은 "AMOLED 디스플레이 화질 개선을 위한 구동 회로"이다.
AMOLED 디스플레이는 AMLCD및 PDP와 같은 디스플레이에 비해 많은 장점을 가진 차세대 디스플레이로 주목을 받고 있으나, 디스플레이 화질 및 수명문제로 큰 발전을 이루지 못했다. 이번 작품은 AMOLED 디스플레이의 화질 및 수명 개선을 위한 구동 방식 및 구동 회로를 제안하고 설계하여 전기적 특성을 검증했다. 발표된 구동 방식은 Transient Cancellation Feedback (TCF)으로 명명했으며, SID 2006에 구동 개념을 publish 했다. 기존의 구동 방식과는 달리 고유의 Active Matrix 구조를 제공하여 기존의 구동 방식이 가진 한계를 뛰어넘었다는 평을 받았다.
TCF 구동에 의하여 데이터 전류 구동 속도 및 구동의 정확성을 획기적으로 높였으며 달성된 전기적 성능은 상용 적용 가능한 수준으로 평가되고 있다. TCF 구동을 적용하여 AMOLED 디스플레이의 화질 및 수명은 상당한 향상시킬 수 있을 것으로 기대하고 있다.
2006.11.23
조회수 13381