-
한순규 교수, 천연 물질인 플루게닌C 합성에 성공
우리 대학 화학과 한순규 교수 연구팀이 새로운 방식의 화학반응을 이용해 자연 상태에서 존재하는 천연물을 인위적으로 제작하는 데 성공했다.
연구팀은 분자 간 화학반응의 일종인 라우훗-쿠리어 반응(Rauhut-Currier 반응, RC 반응)을 이용해 이합체 천연물인 플루게닌 C를 합성했다.
전상빈 석박사통합과정이 1저자로 참여한 이번 연구는 화학 분야의 국제 학술지 ‘미국화학회지(JACS : Journal of the American Chemical Society)’ 5월 10일자에 게재됐다.
천연물 전합성(Total Synthesis)은 순차적 화학반응을 통해 자연에 존재하는 천연 물질을 실험실에서 인위적으로 합성해내는 연구 분야이다.
이 과정은 각 단계의 화학반응이 모두 성공적으로 이뤄져야만 목표하는 분자에 도달할 수 있어 높은 수준의 인내심, 창의성 등이 요구된다. 학계에서는 천연물 전합성 학자를 가리켜 ‘분자를 다루는 예술가’로 부르기도 한다.
이번 연구는 분자 간 라우훗-쿠리어 반응을 전합성에 응용한 최초의 사례이다. 라우훗-쿠리어 반응은 1963년 라우훗과 쿠리어에 의해 보고된 반응으로 친핵체 촉매에 의해 진행되는 현상이다.
기존의 분자 간 라우훗-쿠리어 반응은 150도 이상의 고온 및 고농도 용액에서 유독한 촉매를 통해 비 선택적으로 진행된다는 한계가 있어 천연물 전합성에 적합하지 않았다.
연구팀은 문제 해결을 위해 반응물 내부에 친핵체를 위치시켰다. 이를 통해 상온의 옅은 용액에서 촉매 없이 간단한 염기성 시료를 첨가시키는 것만으로도 라우훗-쿠리어 반응을 이끌어 낼 수 있음을 확인했다.
연구팀은 이 반응 조건을 이용해 시중에서 구입 가능한 아미노산 유도체를 12단계를 거쳐 플루게닌 C라는 천연물질로 합성하는 데 성공했다.
한 교수는 “이번 연구는 라우훗-쿠리어 반응의 효율성과 선택성을 획기적으로 향상시킨 발견이다”며 “기존에는 합성할 수 없었던 다양한 천연물, 신약 또는 유기재료를 합성할 수 있는 길이 열렸다”고 말했다.
이번 연구는 KAIST의 정착 연구비, 하이리스크하이리턴(HRHR) 및 RED&B(Research, Education, Development & Business) 과제, 한국연구재단의 신진연구자 지원사업, 기초과학연구원 분자활성 촉매반응 연구단의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 대표적인 이합체-소중합체 세큐리네가 알칼로이드
그림2. 플루게닌 C의 합성 경로
2017.05.19
조회수 23080
-
배상민 교수 연구팀, iF 디자인 어워드 수상
〈 배 상 민 교수 〉
우리 대학 산업디자인학과 배상민 교수 연구팀인 ID+IM이 세계 최고 권위의 디자인 공모전인 2017 iF 디자인 어워드 건축 부문에서 본상을 수상했다.
iF 디자인 어워드는 독일 국제 포럼이 주관하는 디자인 공모전으로 레드닷 디자인, IDEA 디자인과 함께 세계 3대 디자인 공모전으로 알려져 있다.
1953년부터 독일국제포럼디자인이 주관해 매년 전 세계에 출시되는 다양한 분야의 제품과 디자인을 혁신성, 기능성, 친환경성, 내구성 등의 기준을 통해 심사한다. 올해는 전 세계 59개국에서 5천 500여 건이 넘는 제품이 출품됐다.
배 교수 연구팀의 수상 작품인 ‘컬처 박스쿨’은 문화체육관광부 산하 문화융성위원회와 협력해 제작한 이동식 컨테이너 공간 플랫폼이다.
컨테이너의 내부, 외부에 모듈을 부착해 사무실, 교육 공간, 갤러리 등 다양한 용도로 사용 가능하며 이를 통해 문화 소외지역에 적합한 문화공간을 제공할 수 있다.
또한 태양광 패널이 부착돼 자체적으로 전기를 생산할 수 있고 집수 및 정수 시스템, 통신 기능을 갖췄기 때문에 독립적인 운용이 가능하다.
컬처 박스쿨은 컨테이너의 특성을 활용해 공간을 쉽고 빠르게 만들 수 있으며 빠르게 분해해 다른 곳으로 이동할 수도 있다.
배 교수는 “문화소외지역과 도심의 젠트리피케이션(Gentrification) 현상에 대한 효과적 해결책을 제시하기 위해 노력했다” 며 “궁극적으로는 지리적 조건에 상관없이 모든 사람들이 동일한 문화 향유와 교육의 기회를 갖는 것에 목표를 두었다” 고 말했다.
또한 “이러한 사회적, 경제적 가치를 인정받아 이번 공모전에서 수상할 수 있었던 것 같다. 앞으로도 소외받는 이들이 세계 최고의 디자인을 누릴 수 있도록 노력하겠다”고 말했다.
배 교수 연구팀인 ID+IM은 2005년부터 사회공헌 디자인(Philanthropy Design)을 연구 주제로 삼아 혁신적인 디자인을 통해 사회 전반의 다양한 문제를 해결하기 위해 노력하고 있고, 세계적 권위의 디자인상을 50여 회 이상 수상했다.
□ 그림 설명
그림1. 수상작인 컬처 박스쿨 조감도
2017.05.17
조회수 19668
-
핵비확산교육연구센터, 제4기 핵비확산 하계 장학생 선발 완료
우리학교 핵비확산교육연구센터 (NEREC: Nuclear Nonproliferation Education and Research Center, 센터장 : 임만성 교수·원자력및양자공학과, 현 KUSTAR-KAIST 교육연구원장) 는 최근 대전을 비롯, 서울·경주 등 국내와 중국·일본 등 해외에서 진행예정인 ‘ 제 4 기 핵비확산 하계장학생 프로그램’ 에 참여할 장학생 선발을 완료했다.
이 프로그램은 핵비확산 분야 글로벌 인재를 발굴 및 양성하고 국제사회에서 우리나라의 핵투명성을 제고하기 위해 매년 30여명의 국내·외 대학 (원) 생을 선발해 핵비확산과 관련한 세계 각국의 기술과 정책을 조명하고 실제 연구수행의 기회를 제공하는 교육훈련 프로그램이다.
2014 년 첫 시작한 이후 지난 3 년간 공학, 자연과학, 사회과학을 포함한 여러 전공분야의 국내·외 명문대학 (원)생 71 명을 수료자로 배출했다.
올해 제 4 기 핵비확산 하계장학생 프로그램에는 전 세계 37 개국에서 150 여명의 학생들이 지원해 5 대 1 의 경쟁률을 보였는데 미 하버드대와 조지아공대·터프츠대·조지타운대, 영국 옥스퍼드대·케임브리지대, 러시아 모스크바공학물리대학 MEPhI, 중국 후단대, 일본 동경공업대, 그리고 우리나라 KAIST 와 서울대 등 총 16 개국 26 개 대학 (원) 에서 30 명 (원자력 전공 15 명, 국제정치학 및 기타 인문사회 전공 15 명 ) 의 학생을 최종 선발했다.
핵비확산교육연구센터는 오는 7월 10일부터 8월 18일까지 6주간 진행예정인 하계프로그램 기간 동안 이들 장학생을 대상으로 원자력에너지·북핵문제 및 핵비확산 관련 강의는 물론 국내·외 현장탐방과 핵비확산 국제학회 참여 등의 기회를 제공할 예정이다.
2017.04.19
조회수 13991
-
국가보안기술연구소와 함께 최정예 사이버 보안인력 양성
'국가 사이버 보안 우리에게 맡겨라'
우리 대학은 국가보안기술연구소(소장 김광호)와 함께 우리나라 사이버 보안의 핵심역할을 할 최정예 인력양성을 위해 올해 가을부터 석사과정 신입생을 선발한다.
새로 시작되는 CSPN(Cyber Security Professional education program for NSR) 프로그램은 국가보안기술연구소와 공동으로 실무 연계형 교과과정을 운영함으로써 이론과 실무를 겸비한 우수인재 양성목표로 한다. 재학생들에게는 학비와 장학금 등이 지원되며, 졸업 후 국가보안기술연구소에서 의무복무를 수행하게 된다.
국가보안기술연구소는 5년 간 40명의 사이버 보안 인력양성을 목표로 하는 이번 시범사업을 통해 우수한 성과를 확보하여 암호분야 등 타 정보보안 분야에 대한 인력양성 프로그램으로 확대 할 수 있을 것으로 기대하고 있다.
한편, 우리 대학은 지난 2012년 정보보호대학원을 설립해 컴퓨터, 네트워크, 시스템, 소프트웨어 보안, 암호 등 균형 있는 커리큘럼으로 세계 최고 수준의 정보보호 인력양성과 연구에 매진하고 있으며 동 프로그램 학생을 포함하여 매년 30여 명의 석․박사 과정 학생을 선발해 보안 전문 인력을 양성한다.
정보보호대학원은 지난 9월 미국에서 개최된 세계 최고 권위와 최대 규모의 해킹방어대회 데프콘(DEFCON)에서 정보보호대학원 학생을 주축으로 한 KaisHack GoN팀이 대학 단일팀으로 최고의 성적을 거두었으며, 설립 이래 보안 분야 세계 최고의 학회인 미국 컴퓨터협회 컴퓨터&커뮤니케이션 시큐리티(ACM CCS) ․ IEEE S&P 등에 14편의 논문을 발표하는 등 세계적인 정보보호분야 기관으로써의 위상을 과시하고 있다.
2017.03.24
조회수 16530
-
제7회 KINC 융합연구상 시상식 개최
(왼쪽부터) 이도창 생명화학공학과 교수, 배병수 신소재공학과 교수, 정희태 나노융합연구소 소장, 정후영 UNIST 교수, 윤다은 생명화학공학과 박사과정, 김회윤 신소재공학과 박사과정, 최성율 전기및전자공학부 교수, 이건재 신소재공학과 교수
우리 대학 나노융합연구소(소장 정희태)는 본교 KI빌딩에서 교수님들의 융합연구를 장려하고 대학원생 및 연구원들의 연구 의욕 고취를 위한 '제7회 KINC 융합연구상 시상식' 을 22일(수) 개최했다.
올해로 일곱 번째를 맞이하는 시상식은 연구자의 노고를 격려하고, 우수 연구로 선정된 연구 성과를 구성원들과 함께 공유함으로써 융합연구 분위기를 활성화 시키자는 취지로 마련되었다.
KINC 융합연구상은 공모를 통해 접수된 논문을 대상으로 창의성과 융합성이 가장 우수한 논문 2편을 선정하여 논문에 참여한 공동 제1저자와 교신저자에게 각각 상패와 상금을 수여한다.
첫 번째 수상 팀은 고온 및 고습에 견딜 수 있는 퀀텀닷 기술을 개발한 신소재공학과 배병수 교수, 생명화학공학과 이도창 교수 연구팀으로, 연구 결과는 화학분야의 권위 있는 국제 학술지인 ‘미국화학회 학회지(Journal of the American Chemical Society, JACS)’ 2016년 12월 21일자에 게재됐다.
두 번째 수상 팀은 초단시간의 레이저를 조사해 단결정 탄화규소(SiC)의 고체 상분리 현상을 발견하고 이를 활용한 그래핀 생성원리를 밝힌 신소재공학과 이건재 교수와 전기및전자공학부 최성율 교수 연구팀으로, 연구결과는 자연과학 및 응용과학 분야 세계적인 학술지 '네이처 커뮤니케이션즈(Nature Communications)' 2016년 11월 30일자에 게재됐다.
정희태 소장은 “세계적으로 인정받는 우수한 연구 성과들이 많이 도출되어 매우 기쁘며, 교내 융합연구의 발전적인 연구 환경을 조성하기 위하여 앞으로 행사를 더욱 확대해 나갈 계획이다.”라고 뜻을 밝혔다.
※ KAIST 나노융합연구소는 나노과학기술분야에 대해 학과간의 경계를 허물고 진정한 학제 간 공동연구를 촉진하여 창조적인 융합연구를 추진하기 위해 지난 2006년 6월 KAIST 연구원 산하에 설립되었다. 현재 나노융합연구소에서는 총 85명의 겸임교수가 참여하고 있으며, 최근에는 나노연구의 미래 이슈와 KAIST 경쟁력을 고려하여 재설정한 중점 연구 분야의 연구역량을 결집하여 연구를 수행하면서 세계 최고 수준의 나노융합연구 허브 대학연구소로 성장해 나가고 있다.
2017.03.22
조회수 24267
-
2017 THE 아시아대학평가 아시아 8위, 국내 1위
우리 대학이 영국의 글로벌 대학평가기관인 THE(Times Higher Education)가 발표한 ‘2017 THE 아시아대학 순위(THE Asia University Rankings)’에서 역대 최고 순위인 8위에 올랐다.
우리 대학은 교육여건, 연구실적, 논문 피인용 지수, 국제화, 산학협력 수입 등 모든 평가 분야에서 전년대비 높은 점수를 받았으며, 교육여건과 연구실적 분야 점수가 상승세를 이끌었다. 특히, 산학협력 수입 항목에서는 2년 연속 100점 만점을 받았다.
이 결과 지난해 아시아 10위에서 두 계단 뛰어오른 아시아 8위, 국내 1위를 차지했다.
THE는 2013년부터 아시아 대학평가 Top 100위의 랭킹을 발표하였으며, 2016년은 Top 200위, 2017년부터는 Top 300위의 랭킹을 발표했다. 평가지표는 ① 교육 여건 ② 연구실적 ③ 논문 피인용 지수 ④ 국제화 ⑤ 산학협력 수입 등의 지표가 활용됐다.
2017.03.16
조회수 11989
-
박희성 교수, 맞춤형 단백질 변형기술 동물 모델 적용에 성공
우리 대학 화학과 박희성 교수 연구팀이 아주대 의과대학 박찬배 교수와의 공동 연구를 통해 동물 모델에서 단백질의 아세틸화 변형을 조절할 수 있는 기술을 개발했다.
인간의 질병 연구에 대표적으로 쓰이는 쥐 모델에서 단백질 아세틸화를 조절할 수 있게 돼 다양한 질병의 원인을 밝힐 수 있을 것으로 기대된다.
이번 연구는 미래창조과학부의 글로벌프런티어사업(의약바이오컨버젼스연구단, 단장 김성훈)과 지능형 바이오시스템 설계 및 합성연구단(단장 김선창), 식약처의 미래 맞춤형 모델동물개발 연구사업단(단장 이한웅)의 지원을 받아 수행됐다.
이번 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 21일자 온라인 판에 게재됐다.
우리 몸의 세포에서 만들어지는 2만 여종의 단백질은 생합성 이후 인산화, 아세틸화, 당화 등 200여 종의 다양한 변형(post-translational modification)이 발생하게 된다.
세포 내 단백질들은 다양한 변형을 통해 기능과 활성이 조절되며 이러한 변형은 생체 내에서 세포 신호 전달 및 성장 등 우리 몸의 정상적인 신진대사 활동을 조절하는 매우 중요한 역할을 한다.
하지만 유전적 또는 환경적 요인으로 인해 단백질 변형이 비정상적으로 일어나면 세포의 신호 전달, 대사 활동 등이 손상돼 암, 치매, 당뇨를 포함한 다양한 중증 질환을 유발한다.
기존에는 이러한 비정상적 단백질 변형을 동물 모델에서 인위적으로 유발시키고 제어하는 기술이 존재하지 않아 질병의 원인 규명 및 신약 개발 연구에 어려움이 있었다.
박 교수팀은 2016년 9월 다양한 비정상 변형 단백질을 합성할 수 있는 맞춤형 단백질 변형 기술을 개발해 사이언스(Science)지에 발표한 바 있다.
연구팀은 기존 연구를 더 발전시켜 각종 암과 치매 등의 이유가 되는 퇴행성 신경질환의 원인인 비정상적인 단백질 아세틸화를 동물 모델에서 직접 구현하는 기술을 개발했다.
연구팀은 이 기술을 바탕으로 실험용 쥐의 특정한 발달 단계나 시기에 표적 단백질의 특정 위치에서 아세틸화 변형을 조절할 수 있음을 증명했다.
또한 다른 조직에 영향을 주지 않고 간이나 콩팥 등 특정 조직이나 기관에서만 표적 단백질의 아세틸화 변형 제어가 가능함을 확인했다.
연구팀은 “이 기술은 암과 치매 등 단백질의 비정상적 변형으로 발생하는 각종 질병의 바이오마커 발굴 등 질병 원인 규명 연구의 획기적인 전기를 마련할 것으로 기대된다”고 말했다.
박희성 교수는 “실용화 될 경우 지금까지 실현이 어려웠던 다양한 질병에 대한 실질적 동물 모델을 제조할 수 있을 것으로 전망된다”며 “향후 맞춤형 표적 항암제 및 뇌신경 치료제 개발 등 글로벌 신약 연구에 새 패러다임을 열 것이다”고 말했다.
□ 그림 설명
그림1. 아세틸화 변형 조절 마우스 개발 및 아세틸화 제어 결과
그림2. 비정상적인 단백질 변형 및 각종 질병의 모식도
2017.03.06
조회수 22278
-
최시영 교수, 물리적 힘을 이용해 안정화된 에멀전 개발
우리 대학 생명화학공학과 최시영 교수 연구팀이 디플리션 힘이라고 불리는 물리적인 힘을 이용해 새로운 방식의 안정적인 에멀젼을 제작하는 데 성공했다.
생명화학공학과 연구조교수인 김규한 박사가 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 2월 1일자 온라인 판에 게재됐다.
특히 이 연구는 우리 대학 의 ‘학부생 연구 참여 프로그램(URP : Undergraduate research program)’을 통해 학부생인 김수빈 학생이 2저자로 참여해 의미를 더했다.
우리가 흔히 화장품 종류로 알고 있는 에멀전은 물속에 기름방울들이(또는 기름 속에 물방울이) 안정적으로 분산된 구조를 뜻한다. 그리고 피커링 에멀전은 계면활성제 대신 고체 입자를 사용해 안정화된 에멀전을 뜻한다.
일반적으로 물과 기름은 섞이지 않는다고 알려져 있지만 지금까지는 적정량의 계면활성제를 넣고 물과 기름을 섞어 적절히 분산시켰다. 이를 통해 에멀전을 제작했고 이는 마요네즈, 선크림, 로션 등 산업 전반에 유용하게 사용되고 있다.
그러나 지금까지 피커링 에멀전은 고체 입자 표면에 화학적인 처리를 통해 흡착력을 증대시켜 안정화하는 방식을 택했다. 이는 처리과정이 복잡하고 적용 범위가 매우 좁아 유용하게 사용되지 못했다.
연구팀은 피커링 에멀전의 표면을 화학적으로 처리하는 대신 수나노미터 크기의 작은 고분자 입자를 더 큰 고체 입자(수십 나노미터에서 수 마이크로미터 수준)와 함께 섞었다. 이를 통해 디플리션 힘(depletion force)을 유발했고 물리적인 힘을 통해 에멀전을 안정화시키는 데 성공했다.
디플리션 힘이란 많은 수의 작은 입자들이 자신들의 자유로운 공간을 많이 확보하기 위해 다른 큰 입자들을 뭉치게 만드는 힘을 뜻한다. 크기가 큰 입자끼리 서로 끌림을 유도하는 것이다.
그동안 디플리션 힘은 고체와 고체 입자끼리만 적용됐다. 그러나 연구팀은 작은 입자로 고분자, 큰 입자로 고체 입자와 기름방울을 사용해 고체와 액체 사이에서도 디플리션 힘이 적용됨을 증명했다.
작은 입자 크기 역할을 하는 고분자를 삽입함으로써 친수성을 갖는 고체 입자가 기름방울 표면에 흡착되는 것을 향상시켰고, 입자 표면으로부터 분리되는 것을 방지해 안정적인 상태를 유지할 수 있었다.
연구팀은 안정적인 고내부상 피커링 에멀전을 통해 다양한 종류의 다공성 고분자 물질을 쉽게 제작할 수 있음을 확인했다. 이 다공성 고분자는 넓은 표면적을 이용해 분리막이나 조직공학, 약물 전달체 및 센서 등에 적용 가능할 것으로 기대된다.
1저자인 김규한 연구교수는 “그동안 고체 콜로이드 입자들 사이에서만 이용되던 디플리션 힘을 고체 입자와 액체 방울 사이에서 구현한 첫 번째 예로서 그 학술적인 의미가 있다”고 말했다.
최 교수는 “학술적 의미를 넘어 산업 및 국가 경쟁력에 기여할 수 있는 기술이다”며 “화학적인 힘이 아닌 물리적 힘을 이용해 안정적인 에멀젼을 형성하기 때문에 고체 입자와 고분자 종류에 관계없이 사용 가능하고, 특수 목적에 맞는 맞춤형 다공성 물질 제작이 가능하다”고 말했다.
이번 연구는 한국연구재단 이공분야 기초연구사업 (대통령 post-doc. 펠로우십, 리서치 펠로우십, 중견연구자 지원사업)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 이번 기술을 통해 제작한 다공성 고분자 구조체의 내부 사진들
그림2. 고내부상 피커링 에멀젼의 유변학적 특성 측정 및 시스템의 가공성을 보여주는 사진
그림3. 안정한 피커링 에멀젼 시스템을 나타내는 사진들
2017.02.07
조회수 21936
-
2017년 총장 신년사
친애하는 KAIST 가족 여러분,
2017년 정유년(丁酉年) 새해가 밝았습니다. 새해 복 많이 받으시고, 댁내 건강과 행복이 가득하기를 기원합니다. 새해에도 여러분의 꿈이 이루어지고, 국민들로부터 큰 사랑과 믿음을 받고 있는 우리 KAIST가 그 성원에 보답할 수 있는 한해가 되기를 바랍니다.
2013년 총장으로 부임하며 Quantum Jump 전략을 수립하고, 전반기(2013~14)에는 ‘하나된 KAIST’를 만들어 구성원의 역량을 결집하고 후반기(2015~16)에는 ‘질적성장을 통해 혁신하는 KAIST’를 만들어 크게 도약하고자 노력했습니다. 지난 4년간 우리는 성장통을 지혜롭게 극복하며 눈부신 발전을 거듭했고, 명실상부한 ‘Students-Centered, Faculty-Driven, World’s Most Innovative Research University’로 발돋움 했습니다.
우리학교의 수월성을 달성하기 위한 ‘창의’와 ‘도전’은 국가발전의 원동력이 되어 왔습니다. 교육·연구·시스템의 지속적인 혁신, 창업문화의 확산, 대학의 사회적 책무를 다하고자 하는 노력들은 학교의 질적성장을 이끌어 왔습니다.
KAIST의 교육은 끊임없이 발전하고 있습니다. 세계적인 대학의 위상에 걸맞는 교육시스템을 마련하고자 세차례에 걸친 고강도 학사조직개편 끝에 미래지향적인 교육 플랫폼이 완성되었습니다. KAIST의 교육은 넓은 학문단위의 학사교육과 융합전공의 대학원교육이 효율적으로 운영될 수 있는 체제에 더하여 학문적 수월성과 창의성이 조화를 이루는 융합형 교육시스템입니다. 우리 학생들은 이러한 π(파이)형 교육시스템 속에서 학사과정간 학문적 기반의 공통점을 바탕으로 기초를 튼튼히 하고, 석‧박사 교육과정간 융합 전공교육과 연구를 통해 지혜와 지식을 체득하고 졸업 후 사회에 진출했을 때 대체불가능한 우수한 인재로 성장하고 있습니다.
새로 도입된 융합 Capstone Design 교과과정은 국내 공학교육의 패러다임을 현장중심형 교육으로 새롭게 바꾸는 계기를 마련했습니다. 본 과정을 통해 우리 학생들은 사회가 필요로 하는 과제를 직접 기획하고 도출된 문제를 해결해 봄으로써 창의성, 실무능력, 팀워크 및 리더십을 갖추게 될 것입니다.
우리학교는 Education 3.0을 통해 수요자 중심의 교육시스템을 선도하고 있습니다. 학생들은 강의 전에 제공받은 온라인 콘텐츠로 자기주도 사전학습을 수행하고, 수업시간에는 지식전달식 강의 대신 배움의 주체가 되어 팀원들과 협력학습을 하며 전공지식과 문제해결 및 소통능력 등을 체득하게 됩니다. 우리학교는 자체적으로 개발한 온라인 공개강좌 서비스인 KOOC(KAIST MOOC)을 개방함으로써 KAIST의 우수한 교육을 국내‧외에 무상으로 제공하며 대학의 사회적 책무를 다하고 있습니다.
KAIST의 연구역량은 세계적인 대학들과 어깨를 나란히 하고 있습니다. 우리학교의 혁신적인 교육 및 연구역량은 이미 QS, THE 등 세계 유수의 기관들로부터 널리 인정받고 있으며, 로이터통신은 매년 세계가 놀랄만한 연구성과를 발표하고 있는 우리학교를 ‘세계 혁신대학 6위’로 선정한바 있습니다. KAIST가 지금과 같이 지속적으로 발전하기 위해서는 단기적인 소나기 정책에 의한 연구보다는 늘 한 곳에서 샘솟는 샘물같이 지속가능한 연구를 수행할 수 있어야 합니다. 특히, 인류발전에 공헌할 수 있는 아이디어가 지속적으로 창출되고, 그 연구를 안정적으로 뒷받침 할 수 있는 재원이 마련되어야 하며, 누구나 꿈을 가지고 도전하며 도전의 성공여부 보다는 그 도전의 성실성이 평가되는 연구문화가 구축되어야 할 것입니다. KAIST 그랜드챌린지30 프로젝트와 같이 선도적인 연구지원제도를 신설한 것도 우리 KAIST가 앞장서서 인류가 당면한 거대한 문제들을 해결하고, 혁신적인 연구문화를 확산시키기 위함입니다.
생명과학분야의 글로벌 경쟁력을 확보하기 위해 그동안 KAIST 융합의과학대학원(세종)을 설립하기 위해 노력해왔습니다. 수년간 추진하였던 「KAIST 융합의과학대학원(세종) 설립사업」 예비타당성조사가 많은 분들의 노력으로 조만간 긍정적인 결과를 얻어 2018년부터 정부예산이 반영될 것으로 기대합니다. 우리학교는 융합의과학대학원을 시작으로 세종시에 KAIST의 혁신적인 교육·연구시스템을 구축하게 될 것이고, 융합생명과학분야의 경쟁력있는 교육‧연구역량을 갖추게 될 것입니다.
우리학교는 그동안 우리나라 대학사회의 창업문화를 선도하고 확산하는데 최선을 다해왔습니다. 학생들이 기업가정신을 함양할 수 있는 기회를 널리 제공하고 교원들의 창업활동을 장려함으로써 KAIST의 우수한 교육과 혁신적인 연구성과가 경제적‧사회적 가치로 연결될 수 있도록 노력했습니다. 과학기술 분야의 우수한 인재들이 창업인재로 성장할 수 있도록 지원하는 전담조직인 KAIST 창업원(Institute for Startup KAIST)을 설치하여 창의적인 아이디어가 사업화에 이르는 전 과정을 지원하고 있습니다. 또한 K-School을 설립하여 다양한 학과가 공동으로 운영하는 창업맞춤형 교육프로그램인 창업융합전문석사 과정을 운영하고 있습니다. 그 외에도 창업원 판교센터, KAIST 사회적기업가 MBA(SEMBA) 등 우리학교는 창업과 관련한 다양한 프로그램을 설치‧운영하며 캠퍼스 내 창업분위기를 조성하는 것은 물론 KAIST가 주축이 되어 전국적으로 창업문화가 확산될 수 있도록 노력한 결과 국내대학 창업지수 1위로 선정되는 등 가시적인 성과를 거두고 있습니다.
KAIST의 시스템 혁신은 항상 국내외의 여러 기관으로부터 주목을 받았습니다. 국내 대학 최초로 도입된 테뉴어제도는 세부적인 보완을 통해 정착단계에 접어들었으며, 영어강의와 성적연계 등록금 제도 등은 구성원들의 적극적인 의견수렴과 전문가그룹의 심도있는 검토를 통해 보완‧발전되었습니다.
2013년 심도있는 경영진단을 바탕으로 행정조직의 대대적인 개편이 있었습니다. 기능통합과 의사결정 체계의 간소화를 목표로 단행된 행정조직개편은 KAIST 행정을 ‘변화에 유연히 대응하는 전략적 조직’, ‘핵심기능 중심의 효율적인 조직’, ‘적절하고 명확하게 역할이 부여된 합리적인 조직’, ‘고객지향적인 고객친화적 조직’으로 변화시켰습니다. 또한, 행정발전교육센터를 신설하여 적극투자함으로써 행정분야에서 근무하는 직원들이 지속적으로 자기계발을 할 수 있도록 장려하고, 행정업무에 실질적으로 도움을 줄 수 있는 강좌를 개설하여 행정역량을 제고함으로써 행정서비스의 질을 향상할 수 있도록 했습니다.
구성원들간 원활한 소통이 이루어질 수 있도록 다양한 채널을 설치하고 의견을 청취하는데 많은 노력을 기울였습니다. 우리나라 대학 최초로 총장자문기구로 옴부즈퍼슨 제도를 도입하여 학내에서 발생하는 다양한 고충을 청취하고 중재하였고, 고객만족센터를 설치하여 구성원에게 제공되는 학교서비스의 질을 제고하였으며, 인권윤리센터를 신설하여 인권‧윤리 침해 예방 및 신속한 피해구제를 통해 구성원의 인권을 보호하고 평등하고 다양성이 존중되는 캠퍼스 문화를 조성하였습니다. 총장과 학교 구성원간의 소통은 특정한 시간이나 특별한 기회를 만들어 하는 것이 아니라 상시 자연스럽게 이루어져야 합니다. 총장실 개방, 찾아가는 커피아워, 학부 및 대학원생 초청 간담회, 구성원과의 이메일 교환 등을 통해 여러분의 작은 목소리에도 귀를 기울이려고 적극적으로 노력했고, 교내를 오가며 우연히 만나 나눈 대화들 또한 학교를 운영하는데 큰 도움이 되었습니다.
우리학교는 대전시민들로부터 큰 사랑과 관심을 받고 있습니다. 대전광역시청, 유성구청, 충남대학교 등 지역의 여러 기관들과 긴밀히 소통하며 더불어 사는 길을 마련하고자 노력했습니다. 그 결과, 충남대학교와 우리학교 사이에 위치한 담을 허물고 열린길을 만들었고, 카이스트교를 개통하여 대전시민들에게 한발짝 더 다가가는 계기를 마련하였습니다. 한마음봉사단, 학생들의 김장봉사, 지역의 소외계층을 위한 교육봉사 등을 통해 KAIST가 먼저 지역사회에 다가가는 활동을 장려하고 지원하였으며 이러한 활동은 앞으로도 적극적으로 활성화되어야 할 것입니다.
지난 4년간 지속적인 인프라 개선사업을 추진하여 세계적인 대학의 명성에 걸맞는 교육과 연구를 지원하고 양질의 생활환경을 제공할 수 있는 인프라가 구축되었습니다. 현재 정문술 2관 신축공사가 마무리 되었고, 학술문화창의관 신축과 중앙도서관 리모델링 사업이 진행 중입니다. 우리 캠퍼스는 Startup KAIST Studio 2 신축, 의학연구동(약국) 신축, International Village C동 리모델링, 반도체동(새늘동) 리모델링, 대강당 리모델링, 기계공학동 리모델링, Startup Village 리모델링, 서울캠퍼스 해정사와 8‧9호관 리모델링, 노천극장 리모델링, 화암기숙사 리모델링(예정), 에코 캠퍼스 구축(소나무 이식 등), 안전한 캠퍼스 구축(도로 및 보행자도로 개선 등) 등 신축공사와 노후건물 및 시설의 보수공사 등으로 빠르게 변화하였습니다. 인프라 확충사업 외에도, 문지캠퍼스에 IBS 사업단, 녹색교통대학원 등을 이전하여 기존 스페이스를 효율적으로 사용할 수 있는 방안에 대해 다양한 논의가 진행되고 있습니다.
국제화를 추구하고 다양성을 존중하는 문화는 앞으로 우리학교가 지속적으로 발전하는 원동력이 될 것입니다. 그동안 외국인 교원 10%, 외국인 학생 10%, 여성 교원 10%를 목표로 삼고 우수한 인재를 유치하기 위해 최선을 다한 결과 이제는 10:10:10 이니셔티브(Initiative)를 20:20:20 이니셔티브(Initiative)로 그 목표를 수정할 단계에 이르렀습니다. 나눔관 공동 Kitchen 환경개선, 교내 PODCAST를 통한 외국인 구성원들과의 소통, 할랄푸드 카페테리아(Hallal Food Cafeteria) 오픈, Bilingual 캠퍼스 구축사업, 해외 유수대학들과의 공동학위 프로그램 개설, 해외 인턴십 프로그램 확충, 젠더평등을 위한 제도개선, 여성휴게실 및 육아시설 개선 등 지금까지 우리가 기울였던 노력은 앞으로도 반드시 지속되어야 할 것입니다.
KAIST에 대한 국내외적 관심은 앞으로 더욱 커질 것으로 생각됩니다. 최근 4년간의 학부 지원자 경쟁률 추이가 가파르게 상승하고 있으며, 매우 우수한 학생들이 매년 입학하고 있습니다. 새내기는 물론 재학생들의 학교생활 만족도 또한 지속적으로 향상되면서 학생들의 학교에 대한 관심과 사랑으로 이어지고 있습니다. 최근 재학생, 동문, 학부모 등 우리학교와 직접적으로 관계된 분들의 기부가 급격히 늘어나는 새로운 기부문화가 형성되었고, 지난 4년간 기부건수는 2만 6천여건에 이르며 기부금 총액은 708억여원에 달합니다.국내외의 유수 기관에서 KAIST를 벤치마킹하기 위해 많은 분들이 찾아오고 있고, 몇몇 국가에서는 KAIST 분교를 자국에 설치해 달라는 요청을 한바 있습니다. 이러한 변화는 Happy Campus를 만들기 위한 우리 구성원들의 부단한 노력의 결과라고 생각합니다.
사랑하는 KAIST 가족 여러분,
2017년 신년사는 제가 KAIST 총장으로서 여러분께 드리는 마지막 신년사 입니다. 이사회에서 신임 총장 선임절차가 진행중이며, 2017년 2월 23일 이취임식을 끝으로 저는 여러분과 함께 했던 4년간의 KAIST 생활을 마치고 정들었던 교정을 떠납니다.
KAIST 총장으로서 제게 허락하는 시간까지 단 한 명의 구성원이라도 소외되지 않고 Happy Campus에서 꿈을 펼칠 수 있도록 최선을 다해 노력하겠습니다. 여러분과 함께 했던 지난 4년은 제게 큰 행복이자 영광이었습니다. KAIST를 세계 최고의 대학으로 성장시키고 해피 캠퍼스를 구축하기 위해 각자의 분야에서 헌신해 준 KAIST 전체 가족 여러분께 진심으로 감사드립니다.
여러분은 KAIST의 미래이자 대한민국을 이끌어가는 원동력입니다. 그동안 일구어낸 성과를 바탕으로 각자의 위치에서 인류와 국가의 발전에 공헌 할 수 있는 더욱 큰 꿈을 꾸고 그 꿈을 이루기 위해 최선을 다해주시길 바랍니다.
2017년은 우리 KAIST 가족 여러분의 모든 꿈이 실현되는 희망찬 한 해가 되기를 기원합니다. ‘제4차 산업혁명의 허브(hub)’이자 ‘Students-Centered, Faculty-Driven World’s Best Research University’를 향한 여러분의 도전을 응원합니다.
감사합니다.
2017년 1월 1일
KAIST 총장 강성모
2017.01.02
조회수 28664
-
이건재, 최성율 교수, 고체 상분리 현상에 의한 그래핀 생성원리 발견
우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 최성율 교수 연구팀이 초단시간의 레이저를 조사해 단결정 탄화규소(SiC)의 고체 상분리 현상을 발견하고 이를 활용한 그래핀 생성원리를 밝혔다.
기존에 활용되고 있는 화학기상증착(Chemical Vapor Deposition, CVD) 기반의 그래핀 합성법이 상당시간의 고온 공정을 필요로 하는 것과 달리 새로운 레이저 열처리법은 상온환경에서 단시간의 공정으로 그래핀을 합성할 수 있어 향후 그래핀 활용의 폭을 넓힐 수 있을 전망이다.
연구진은 단결정 탄화규소 소재 표면에 나노초(10억분의 1초) 단위의 극히 짧은 시간 동안 레이저를 쪼여 표면을 순간적으로 녹였다가 다시 응고시켰다. 그러자 탄화규소 표면이 두께 2.5나노미터의 탄소(C) 초박막층과 그 아래 두께 5나노미터의 규소(Si, 실리콘)층으로 분리되는 상분리 현상이 나타났다. 여기에 레이저를 다시 쪼이자 안쪽 실리콘층은 증발하고, 탄소층은 그래핀이 됨을 확인했다.
특히 탄화규소와 같은 이종원소 화합물과 레이저의 상호작용에 대한 연구는 아주 짧은 시간에 일어나는 복잡한 상전이 현상으로 지금까지 그 규명이 쉽지 않았다. 그러나 연구진은 레이저에 의해 순간적으로 유도된 탄소 및 실리콘의 초박막층을 고해상도 전자현미경으로 촬영하고, 실리콘과 같은 반도체 물질이 고체와 액체 상태일 때 나타나는 광학 반사율이 다르다는 점에 착안해 탄화규소의 고체 상분리 현상을 성공적으로 규명해낼 수 있었다.
연구에 활용된 레이저 열처리기술은 AMOLED(능동형 유기발광다이오드) 등 상용 디스플레이 생산공정에 널리 활용되고 있는 방법으로, CVD 공정과 달리 레이저로 소재 표면만 순간적으로 가열하기 때문에 열에 약한 플라스틱 기판 등에도 활용이 가능하여, 향후 플렉시블 전자 분야로 응용의 폭을 넓힐 수 있을 것으로 기대된다.
이 교수는 "이번 연구 결과를 통해 레이저 기술이 그래핀과 같은 2차원 나노소재에 보다 폭넓게 응용될 수 있을 것이다”고 말했다.
최 교수는 "앞으로 다양한 고체 화합물과 레이저의 상호작용을 규명해 이들의 상분리 현상을 활용하면 새로운 나노소재 개발을 기대할 수 있을 것이다”고 말했다.
이번 연구결과는 자연과학 및 응용과학 분야 학술지 '네이처 커뮤니케이션즈(Nature Communications)' 최신호에 게재됐다.
□ 그림 설명
그림1. 단결정 탄화규소의 용융을 통한 상분리 현상의 원리를 밝혀내는 분자동역학 시뮬레이션의 모식도
그림2. 레이저에 의해 순간적으로 유도된 단결정 탄화규소의 용융 및 응고 현상을 증명하는 실시간 시간 분해능 반사율 (In-situ time-resolved reflectance) 측정 스펙트럼
그림3. 레이저가 조사된 탄화규소 표면의 전체적인 전자현미경 사진(a) 및 이로 의한 탄소와 실리콘으로의 상분리 현상을 촬영한 고해상도 전자현미경 사진(b)
2016.12.05
조회수 23749
-
자패르 야부즈 교수, 물속 오염물질 선택적 제거 가능한 흡착제 개발
〈자패르 야부즈 교수〉
우리 대학 EEWS대학원 자패르 야부즈(Cafer T. Yavuz) 교수 연구팀이 물속의 유기 오염 물질을 선택적으로 제거할 수 있는 흡착제를 개발했다.
개발된 수(水)처리 흡착제는 불소를 기반으로 한 미소공성 고분자로 오염수 내의 물에 녹는 성질을 가진 미세 분자를 선택적으로 제거할 수 있다. 또한 값싸면서 손쉽게 합성할 수 있고 재생 가능하다는 장점을 갖는다.
이번 연구 결과는 네이처 자매지인 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 11월 10일자 온라인 판에 게재됐다.
전 지구적 산업 개발과 지구 온난화로 인해 수자원의 오염은 가속화되고 있다. 농, 산업 분야에서 다양한 신소재를 개발하고 응용하면서 하수, 폐수에 유입되는 오염 물질의 종류 또한 다양해지고 있다.
특히 약물, 염료, 농약 등 크기가 작고 수용성이 높은 유기 분자들은 기존의 수(水)처리 공정을 통해 처리되지 않고 음용수(마실 수 있는 물)에 잔류해 인체에 피해를 줄 가능성이 높다.
기존의 수처리는 활성탄, 오존 분해, 역삼투 박막 등의 기술을 통해 이뤄진다. 이러한 기술들은 물에 잘 녹지 않는 성질을 갖고 크기가 큰 유기 분자를 대상으로 하기 때문에 잘 녹고 크기가 매우 작은 유기 분자들은 현재의 수처리 시스템으로는 제거가 어렵다. 또한 이러한 미세 분자들의 구조는 전하를 띠기 때문에 액상에서 분리가 어렵다.
연구팀은 새로운 흡착 기술을 이용해 이러한 작은 분자들을 제거하고자 했다. 수용액 내 용해된 유기 분자를 제거하기 위해선 미세한 크기의 유기 분자를 흡착할 수 있어야 한다.
그밖에 유기 분자를 선택적으로 흡착하기 위해 적절한 화학적 기능기의 도입이 가능해야 하고, 물속에서 사용하기 때문에 물에 대한 구조적 안정성이 높아야 한다.
연구팀은 위와 같은 조건을 충족하는 불소 기반의 다공성 유기 고분자 흡착제를 개발했다. 이 흡착제는 기공의 크기를 조절하는 방법을 통해 물에 존재하는 유기 분자 중 1~2 나노미터 미만의 미세 분자만을 특정해 흡착하는 성능을 보인다.
또한 화학적으로 유기 분자를 선택적으로 제거하기 위해서는 표적 물질과 강하게 상호작용할 수 있는 화학적 기능기가 필요하다. 불소 이온은 모든 원소 중 가장 전기 음성적이기 때문에 물속에서 전하를 띠는 유기 분자와 강하게 상호작용한다.
연구팀은 불소 기능을 함유함으로써 개발된 흡착제가 전하를 띠는 유기 분자를 중성인 분자보다 최대 8배 빠르게 흡착하고 제거함을 확인했다.
연구팀이 개발한 흡착제는 산업적 활용 가능성이 크고 회분식 공정 뿐 아니라 칼럼 공정을 통해서도 전하 및 크기에 따라 선택적 흡착이 가능하다.
야부즈 교수는 “불소 기능기가 가지는 전하의 선택성은 향후 담수화 재료 또는 수처리용 멤브레인 개발 등 다양한 기술에 응용 가능할 것이다”고 말했다.
변지혜 박사가 1저자로 참여한 이번 연구는 KAIST 하이리스크 하이리턴(High Risk High Return) 사업과 미래창조과학부의 중견연구자지원사업 및 기후변화대응사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 불소 기반의 다공성 고분자의 전하,크기 선택적 흡착 개념도
그림2. 불소 다공성 고분자 칼럼을 이용한 유기 분자의 분리 전, 후 농도 변화 관측
그림3. 유기 분자의 전하, 크기에 따른 불소 고분자의 흡착 특성
2016.11.29
조회수 18918
-
전산학부, 美 런타임베리피케이션사와 산학협력 협정 체결
우리 대학은 미국 런타임베리피케이션(Runtime Verification)사와 22일 전산학과 회의실에서 ‘런타임베리피케이션 산학협력 협정’을 체결했다.
협정 체결 행사에는 KAIST 전산학부 교수이며 국내 유일의 ‘소프트웨어 테스팅 베리피케이션 그룹’ 지도교수인 김문주 교수와 미국 런타임베리피케이션 CEO인 그리고레 로수(Grigore Rosu), 그리고 런타임베리피케이션 한국총판 이웨이파트너즈사의 정희설 상무 등이 참석했다.
이번 협정은 런타임 검증 분야의 관련 솔루션들을 공급하고 있는 미국 런타임베리피케이션사가 소프트웨어 런타임 분석도구를 KAIST에 무상 기증하고, 이를 통해 국내 유일하게 KAIST에서 소프트웨어 테스팅 및 검증 연구 강화와 KAIST 재학생들의 소프트웨어 교육에 활용될 예정이다.
런타임베리피케이션 솔루션은 소프트웨어 시스템을 실행시켜 이를 분석하여 소프트웨어 버그를 찾아주는 솔루션으로서 기존의 분석도구 혹은 테스팅 기법으로는 찾아낼 수 없는 소프트웨어에 내재된 버그도 찾아내어 준다. 코드를 기반으로 하는 것이 아니라 분석 결과에 허위경보(False Alarm)가 발생하지 않기에 소프트웨어 개발자들이 더 빠르고 쉽게 소프트웨어 버그를 해결할 수 있도록 도와준다.
미국 런타임베리피케이션 설립자이자 대표인 그리고레 로수(Grigore Rosu)는 2001년 ‘런타임 검증(runtime verification)’이라는 용어를 처음으로 창안하여 학계에 발표하였고, 관련 국제컨퍼런스인 ‘런타임베리피케이션 컨퍼런스’를 16여 년간 이끌어온 관련 분야의 권위자이다.
2016.11.22
조회수 13679