-
음주로 인한 간염 유발 원리 최초 밝혔다
과도한 음주는 알코올성 간질환을 유발하며, 이 중 약 20%는 알코올 지방간염으로 진행되고 이는 간경변증과 간부전으로 이어질 수 있어 조기 진단과 치료가 매우 중요하다. 우리 연구진은 음주 시 활성산소(ROS)가 발생해 간세포 사멸과 염증 반응을 유발하는 새로운 분자 메커니즘을 규명했다. 아울러, 간세포가 신경계의 시냅스처럼 신호를 주고 받는 유사시냅스를 형성하고 염증을 유도하는 ‘새로운 신경학적 경로’를 세계 최초로 밝혀냈다.
우리 대학 의과학대학원 정원일 교수 연구팀이 서울대 보라매 병원 김원 교수 연구팀과의 공동 연구를 통해, 음주로 인한 간 손상 및 염증(알코올 지방간염, Alcohol-associated Steatohepatitis, ASH)의 발생 기전을 분자 수준에서 규명해 알코올 간질환의 진단과 치료에 단서를 제시했다고 17일 밝혔다.
정원일 교수 연구팀은 만성 음주 시 ‘소포성 글루탐산 수송체(VGLUT3)’의 발현 증가로 글루탐산이 간세포에 축적되며, 이후 폭음으로 인한 간세포 내 칼슘 농도의 급격한 변화가 글루탐산* 분비를 유도함을 확인했다.
*글루탐산: 아미노산의 일종으로, 뇌와 간을 포함한 다양한 조직에서 세포 간 신호전달, 단백질 합성, 에너지 대사 등에 관여하며 지나치게 많으면 신경세포가 과흥분하여 세포 손상 또는 사멸하게 함
분비된 글루탐산은 간 내 상주 대식세포인 쿠퍼세포의 글루탐산 수용체(mGluR5)를 자극해 활성산소(ROS) 생성을 유도하고, 이는 곧 간세포 사멸과 염증 반응으로 이어지는 병리적 경로를 형성한다는 사실을 밝혀냈다.
특히 이번 연구의 핵심은, 음주 시 간 내에서 간세포와 쿠퍼세포가 일시적으로 신경계에서만 관찰되던 시냅스와 비슷한 구조인‘유사시냅스(pseudosynapse)’를 형성해 신호를 주고받는 현상을 처음으로 규명했다는 점이다.
이 유사시냅스 혹은 대사시냅스(metabolic synapse)는 음주로 인해 간세포가 팽창(ballooning)되면서 쿠퍼세포와 물리적으로 밀착될 때 형성된다. 즉, 손상된 간세포가 단순히 사멸하는 것이 아니라, 인접한 쿠퍼세포에 신호를 보내 면역 반응을 유도할 수 있다는 의미이다.
이러한 발견은 말초 장기에서도 ‘세포 간 밀접한 구조적 접촉을 통해 신호전달이 가능하다’라는 새로운 패러다임을 제시하며, 단순한 간세포 손상을 넘어 알코올로 손상된 간세포가 능동적으로 대식세포를 자극해 간세포의 사멸을 통한 재생을 유도하는‘자율 회복기능’도 존재함을 보여줬다.
실제로 연구팀은 글루탐산 수송체(VGLUT3), 글루탐산 수용체(mGluR5) 및 활성산소 생성 효소(NOX2)를 유전적 또는 약리적으로 억제하면 알코올 매개 간 손상이 줄어든다는 사실을 동물 모델을 통해 입증했다. 이러한 기전을 기반으로, 연구팀은 알코올성 간질환 환자의 혈액과 간 조직을 분석해 해당 메커니즘이 임상적으로도 적용될 수 있음을 제시했다.
의과학대학원 정원일 교수는 “이는 향후 알코올 지방간염(ASH)의 발병 초기 단계에서 진단용으로 혹은 치료를 위한 새로운 분자 표적으로 활용될 수 있다”라고 말했다.
의과학대학원 양경모 박사(현, 여의도 성모병원)와 김규래 박사과정생이 공동 제1 저자로 참여한 이번 연구는 서울대 보라매병원 김원 교수 연구팀과 함께 진행됐으며, 국제 학술지 `네이처 커뮤니케이션즈(Nature communications)' 지난 7월 1일 자로 출판됐다.
※ 논문명: Binge drinking triggers VGLUT3-mediated glutamate secretion and subsequent hepatic inflammation by activating mGluR5/NOX2 in Kupffer cells
※ DOI: 10.1038/s41467-025-60820-3.
한편, 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단 글로벌 리더연구, 중견연구자사업 및 바이오·의료기술개발사업의 지원으로 수행됐다.
2025.07.17
조회수 223
-
산업디자인학과 '루시' 팀, 'AI 크리에이티브 챌린지' 대상 수상
우리 대학 산업디자인학과 여남규, 오세준, 주하진, 한승희 학생으로 구성된 '루시' 팀이 지난 7월 11일~12일 대전 디자인진흥원 'AI 크리에이티브 챌린지'에서 대상을 수상했다.
산업통상자원부의 지역디자인산업진흥사업 일환으로 진행된 이번 행사에는 대전 지역 6개 대학(목원대·배재대·충남대·한남대·한밭대·KAIST)에서 총 17개 팀 60여 명이 참가하여, ‘바이오헬스’, '첨단반도체', ‘지능형 모빌리티’ 등 지역 특화 기술을 접목한 디자인 솔루션을 완성했다.
참가자들은 아이디어 구상에서 프로토타입 제작, 최종 발표까지 전 과정을 직접 수행하며 실전 경험을 쌓았으며, 삼성전자 고성찬 디자이너· 우리 대학 산업디자인학과 박현준 교수·김은영 홍익대학교 교수가 실무 관점의 조언과 피드백을, 송봉규 BKID 대표·김기현 한국예술종합학교 교수 등 학계·산업계 전문가들이 심사위원으로 참여해 디자인 완성도와 사업화 가능성을 심층 평가했다.
'루시' 팀은 AI 융합 바이오헬스 및 모빌리티 기술을 적용해 화재 시 유독성 연기로 인한 질식 방지를 위해 유리를 흡착 ·절단하는 '인명 구조 드론' 콘셉트를 제안해 심사위원들로부터 기술 이해도 및 사용자 경험 설계 역량을 높이 평가받았다.
이번 챌린지에서 수상한 팀에게는 상장과 함께 국제 디자인 어워드 출품 지원, 지식재산권 출원 및 사업화 연계 등의 후속 지원이 제공될 예정이다.
2025.07.16
조회수 228
-
6배 정밀한 3D 뇌 모사 플랫폼 구현 성공
기존의 3차원(3D) 신경세포 배양 기술은 뇌의 복잡한 다층 구조를 정밀하게 구현하기 어렵고, 구조와 기능을 동시에 분석할 수 있는 플랫폼이 부족해 뇌 연구에 제약이 있었다. 우리 연구진이 뇌처럼 층을 이루는 신경세포 구조를 3D 프린팅 기술로 구현하고, 그 안에서 신경세포의 활동까지 정밀하게 측정할 수 있는 통합 플랫폼 개발에 성공했다.
우리 대학 바이오및뇌공학과 박제균·남윤기 교수 공동연구팀이 뇌 조직과 유사한 기계적 특성을 가진 저점도 천연 하이드로겔을 이용해 고해상도 3D 다층 신경세포 네트워크를 제작하고, 구조적·기능적 연결성을 동시에 분석할 수 있는 통합 플랫폼을 개발했다고 16일 밝혔다.
기존 바이오프린팅 기술은 구조적 안정성을 위해 고점도 바이오잉크를 사용하지만, 이는 신경세포의 증식과 신경돌기 성장을 제한하고, 반대로 신경세포 친화적인 저점도 하이드로겔은 정밀한 패턴 형성이 어려워 구조적 안정성과 생물학적 기능 사이의 근본적인 상충 관계가 있었다.
연구팀은 묽은 젤로도 정밀한 뇌 구조를 만들고, 층마다 정확히 정렬하며, 신경세포의 활동까지 동시에 관찰할 수 있는 3대 핵심기술을 결합해 정교하고 안정적인 뇌 모사 플랫폼을 완성했다.
3대 핵심기술은 ▲ 묽은 젤(하이드로겔)이 흐르지 않도록 스테인리스 철망(마이크로메시) 위에 딱 붙게 만들어 주는‘모세관 고정 효과’ 기술로 기존보다 6배 더 정밀하게 (해상도 500μm 이하) 뇌 구조를 재현했고 ▲ 프린팅된 층들이 삐뚤어지지 않고 정확히 쌓이도록 맞춰주는 원통형 설계인 ‘3D 프린팅 정렬기’로 다층 구조체의 정밀한 조립과 미세 전극 칩과의 안정적 결합을 보장하였고 ▲ 아래쪽은 전기신호를 측정하고, 위쪽은 빛(칼슘 이미징)으로 동시에 세포 활동을 관찰하는 ‘이중 모드 분석 시스템’기술로 층간 연결이 실제로 작동하는지를 여러 방식으로 동시에 확인할 수 있다.
연구팀은 뇌와 유사한 탄성 특성을 지닌 피브린 하이드로겔을 이용해 3층으로 구성된 미니 뇌 구조를 3D 프린팅으로 구현하고, 그 안에서 실제 신경세포들이 신호를 주고받는 과정을 실험을 통해 입증했다.
위층과 아래층에는 대뇌 신경세포를 배치하고, 가운데층은 비어 있지만, 신경세포들이 가운데를 뚫고 지나가며 연결되도록 설계했다. 아래층에는 미세 센서(전극칩)를 달아 전기신호를 측정하고, 위층은 빛(칼슘 이미징)으로 세포 활동을 관찰한 결과, 전기 자극을 줬을 때 위아래층 신경세포가 동시에 반응했고, 신경 연결을 차단하는 약물(시냅스 차단제)을 넣었더니 반응이 줄어들어 신경세포들이 진짜로 연결돼서 신호를 주고받고 있다는 것을 입증했다.
바이오및뇌공학과 박제균 교수는 “이번 연구는 뇌 조직의 복잡한 다층 구조와 기능을 동시에 재현할 수 있는 통합 플랫폼의 공동개발 성과”임을 강조하며, “기존 기술로 14일 이상은 신호 측정이 불가했던 것에 비해 27일 이상 안정적인 미세 전극 칩 인터페이스를 유지하면서 구조-기능 관계를 실시간으로 분석할 수 있어, 향후 신경질환 모델링, 뇌 기능 연구, 신경독성 평가 및 신경 보호 약물 스크리닝 등 다양한 뇌 연구 분야에 활용할 수 있을 것”이라고 말했다.
바이오및뇌공학과 김수지 박사와 윤동조 박사가 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘바이오센서스 앤 바이오일렉트로닉스(Biosensors and Bioelectronics)’에 2025년 6월 11일 자로 온라인판에 게재됐다.
※논문명: Hybrid biofabrication of multilayered 3D neuronal networks with structural and functional interlayer connectivity
※DOI: https://doi.org/10.1016/j.bios.2025.117688
한편, 이번 연구는 한국연구재단 글로벌 기초연구실지원사업, 중견연구 및 바이오·의료기술개발사업의 지원을 받아 수행됐다.
2025.07.16
조회수 303
-
로봇도 사람처럼 위험할때만 즉각 반응한다
인공지능과 로봇 기술의 동반 발전 속에서, 로봇이 사람처럼 효율적으로 환경을 인식하고 반응하는 기술 확보가 중요한 과제로 떠오르고 있다. 이에 한국 연구진이 별도의 복잡한 소프트웨어나 회로 없이도 생명체의 감각 신경계를 모사한 인공 감각 신경계를 새롭게 구현해 주목받고 있다. 이 기술은 에너지 소모를 최소화하면서 외부 자극에 지능적으로 반응할 수 있어, 초소형 로봇이나 로봇 의수 등 의료 및 특수 환경에서의 활용이 기대된다.
우리 대학 전기및전자공학부 최신현 석좌교수, 충남대학교 반도체융합학과 이종원 교수 공동연구팀이 생명체의 감각 신경계 기능을 모사하는 차세대 뉴로모픽 반도체 기반 인공 감각 신경계를 개발하고, 이를 통해 외부 자극에 효율적으로 대응하는 신개념 로봇 시스템을 증명했다고 15일 밝혔다.
사람을 포함한 동물은 안전하거나 익숙한 자극은 무시하고, 중요한 자극에는 선별적으로 민감하게 반응함으로써, 에너지 낭비를 방지하면서도 중요한 자극에 집중해 민첩하게 외부 변화에 대응할 수 있다.
예를 들면, 여름철 에어컨 소리나 옷이 피부에 닿는 감촉은 곧 익숙해져 신경 쓰지 않게 되지만, 누군가 이름을 부르거나 날카로운 물체가 피부에 닿으면 재빠르게 집중하고 대응한다.
이는 감각 신경계에서의 ‘습관화’ 그리고 ‘민감화’기능에 의해서 조절됨을 보여주며, 사람처럼 효율적으로 외부 환경에 대응하는 로봇 구현을 위해, 이러한 생명체의 감각 신경계 기능을 로봇에 적용하려는 시도가 꾸준히 진행돼왔다.
그러나, 습관화나 민감화와 같은 복잡한 신경 특성을 로봇에 구현하기 위해선 별도 소프트웨어가 필요하거나, 복잡한 회로가 필요해 소형화와 에너지 효율 측면에서의 어려움이 있었다.
특히 뉴로모픽 반도체인 멤리스터(memristor)1 소자를 활용하는 시도도 있었지만, 기존 멤리스터는 단순한 전도도 변화만 가능해 신경계의 복잡한 특성을 모사하는 데 한계가 있었다.
1멤리스터: 메모리(memory)와 저항(resistor)의 합성어로 두 단자 사이로 과거에 흐른 전하량과 방향에 따라 저항값이 결정되는 차세대 전기소자
이러한 한계를 극복하기 위해 연구팀은 하나의 멤리스터 소자 안에 서로 반대 방향으로 전도도를 변화시키는 층을 형성해, 실제 감각 신경계에서처럼 습관화와 민감화 등의 기능을 모사할 수 있는 새로운 멤리스터를 개발했다.
이 소자는 자극이 반복되면 점차 반응이 줄어들다가, 위험 신호가 감지되면 다시 민감하게 반응하는 등, 실제 신경계의 복잡한 시냅스 반응 패턴을 사실적으로 재현할 수 있다.
연구팀은 이 멤리스터를 이용해 촉각과 고통을 인식하는 멤리스터 기반 인공 감각 신경계를 제작하고, 이를 실제 로봇 손에 적용해 그 효율성을 실험했다.
반복적으로 안전한 촉각 자극을 가하자, 처음에는 낯선 촉각 자극에 민감하게 반응하던 로봇 손이 점차 자극을 무시하는 습관화 특성을 보였고, 이후 전기 충격과 함께 자극을 가했을 때는 이를 위험 신호로 인식해 다시 민감하게 반응하는 민감화 특성도 확인됐다.
이를 통해, 별도의 복잡한 소프트웨어나 프로세서 없이도 로봇이 사람처럼 효율적으로 자극에 대응할 수 있음을 실험적으로 입증하며, 에너지 측면에서 효율적인 신경계 모사 로봇(neuro-inspired robot)의 개발 가능성을 검증했다.
박시온 연구원은 “사람의 감각 신경계를 차세대 반도체로 모사해, 더 똑똑하고 에너지 측면에서 효율적으로 외부 환경에 대응하는 신개념 로봇 구현의 가능성을 열었다”라며, “앞으로 초소형 로봇, 군용 로봇, 로봇 의수 같은 의료용 로봇 등 차세대 반도체와 로보틱스의 여러 융합 분야에서 활용될 것으로 기대된다”고 밝혔다.
이번 연구는 박시온 석박통합과정 연구원이 제 1저자로 국제 학술지 `네이처 커뮤니케이션즈 (Nature Communications)'에 지난 7월 1일 자로 온라인 게재됐다.
※ 논문 제목: Experimental demonstration of third-order memristor-based artificial sensory nervous system for neuro-inspired robotics
※ DOI: https://doi.org/10.1038/s41467-025-60818-x
이번 연구는 한국연구재단의 차세대지능형반도체기술개발사업, 중견연구사업, PIM인공지능반도체핵심기술개발사업, 우수신진연구사업, 그리고 나노종합기술원의 나노메디컬 디바이스 사업의 지원을 받아 수행됐다.
2025.07.15
조회수 393
-
고온 실험 없이 AI로 '최적 합금' 예측 시대 연다
자동차와 기계 부품 등에 사용되는 강철 합금은 일반적으로 고온에서 녹이는(융해) 공정을 거쳐 제조된다. 이때 성분이 변하지 않고 그대로 녹는 현상을 ‘합치 융해(congruent melting)’라고 한다. 우리 연구진은 이처럼 고온 실험을 통해서만 가능했던 합금의 융해 특성을 인공지능(AI)으로 해결했다. 이번 연구는 고질적인 난제였던 합금이 녹을 때 서로 얼마나 잘 섞이는지를 미리 예측함으로써, 미래 합금 개발의 방향성을 제시한다는 점에서 주목받고 있다.
우리 대학 신소재공학과 홍승범 교수 연구팀이 미국 노스웨스턴대 크리스 울버튼(Chris Wolverton) 교수팀과 국제 공동연구를 통해, 밀도범함수이론(DFT)* 기반의 형성에너지(합금이 얼마나 안정적인지를 나타내는 값) 데이터를 활용해 합금이 녹을 때 성분이 유지되는지를 예측하는 고정확도 머신러닝 모델을 개발했다고 14일 밝혔다.
*밀도범함수이론(Density Functional Theory, DFT): 전자 밀도(electron density)를 기반으로 시스템의 전체 에너지를 계산하는 방법
연구팀은 밀도범함수이론을 통해 계산한 형성에너지와, 기존의 실험적 융해 반응 데이터를 머신러닝에 결합해 4,536개의 이원계 화합물에 대한 융해 반응 유형을 학습한 후, 그 예측 모델을 구성했다.
다양한 머신러닝 알고리즘 중 특히 ‘XGBoost’ 기반 분류 모델이 합금이 잘 섞이는지 여부에 대해 가장 높은 정확도를 보였으며, 약 82.5%의 예측 정확도를 달성했다.
연구팀은 또한 샤플리(Shapley) 기법*을 활용해 모델의 주요 특징(feature)들을 분석했으며, 이 중에서도 기울기 변화가 크다는 것은 그 조성에서 에너지적으로 매우 유리한(=안정한) 상태가 형성된다는 뜻으로 ‘형성에너지 곡선의 기울기 변화(convex hull sharpness)’가 가장 중요한 인자로 도출됐다.
*샤플리기법: AI가 어떤 이유로 그렇게 판단했는지를 알려주는 설명 도구
이번 연구의 가장 큰 의의는 고온 실험 없이도 소재의 융해 반응 경향성을 예측할 수 있다는 점이다. 이는 특히 고엔트로피 합금이나 초내열 합금 등 실험이 어려운 소재 군에서 매우 유용하며, 향후 복잡한 다성분계 합금 설계에도 확장될 수 있다.
또한, AI 모델이 도출한 주요 물리량은 합금이 잘 변하고, 안정적인지 등에 대한 실제 실험 결과와 높은 일치도를 보였고, 향후 다양한 금속재료 개발 및 구조 안정성 예측 등 널리 활용될 수 있을 것으로 기대된다.
홍승범 교수는 “이번 연구는 계산과 실험 데이터, 그리고 머신러닝의 융합을 통해 기존의 경험적 합금 설계 방식에서 벗어나 데이터 기반의 예측적 소재 개발이 가능하다는 가능성을 보여준 사례”라며 “향후 생성형 모델, 강화학습 등의 최신 AI 기술을 접목하면 완전히 새로운 합금을 자동으로 설계하는 시대가 열릴 것”이라고 말했다.
신소재공학과 최영우 박사과정 연구원이 제1 저자로 참여한 이번 연구는 미국물리협회(American Institute of Physics, AIP)에서 발간하는 머신러닝 분야의 권위 있는 학술지인 ‘APL 머신러닝(Machine Learning)’ 5월호에 게재 및 ‘특집 논문(Featured article)’로 선정됐다.
※ 논문 제목: Machine learning-based melting congruency prediction of binary compounds using density functional theory-calculated formation energy
※ DOI: https://doi.org/10.1063/5.0247514
한편, 이번 연구는 과학기술정보통신부와 한국연구재단의 지원으로 수행됐다.
2025.07.14
조회수 442
-
최정우 교수팀, 세계 최고 음향 AI 챌린지 세계 1위 쾌거
‘음향 분리 및 분류 기술’은 드론, 공장 배관, 국경 감시 시스템 등에서 이상 음향을 조기에 탐지하거나, AR/VR 콘텐츠 제작 시 공간 음향(Spatial Audio)을 음원별로 분리해 편집할 수 있도록 하는 차세대 인공지능(AI) 핵심 기술이다.
우리 대학 전기및전자공학부 최정우 교수 연구팀이 세계 최고 권위의 음향 탐지 및 분석 대회인 ‘IEEE DCASE 챌린지 2025’에서 ‘공간 의미 기반 음향 장면 분할(Spatial Semantic Segmentation of Sound Scenes)’ 분야에서 우승을 차지했다고 11일 밝혔다.
이번 대회에서 연구팀은 전 세계 86개 참가팀과 총 6개 분야에서 경쟁 끝에 최초 참가임에도 세계 1위 성과를 거두었다. KAIST 최정우 교수 연구팀은 이동헌 박사, 권영후 석박통합과정생, 김도환 석사과정생으로 구성되었다.
연구팀이 참가한 ‘공간 의미 기반 음향 장면 분할’의 ‘태스크(Task) 4’분야는 여러 음원이 혼합된 다채널 신호의 공간 정보를 분석해 개별 소리를 분리하고 18종으로의 분류를 수행해야 하는 기술 난이도가 매우 높은 분야이다. 연구팀은 오는 10월, 바르셀로나에서 열리는 DCASE 워크숍에서 기술을 발표할 예정이다.
연구팀의 이동헌 박사는 올해 초 트랜스포머(Transformer)와 맘바(Mamba) 아키텍처를 결합한 세계 최고 성능의 음원 분리 인공지능을 개발했으며, 챌린지 기간 동안 권영후 연구원을 중심으로 1차로 분리된 음원의 파형과 종류를 단서로 해 다시 음원 분리와 분류를 수행하는‘단계적 추론 방식’의 AI 모델을 완성했다.
이는 사람이 복잡한 소리를 들을 때 소리의 종류나 리듬, 방향 등 특정 단서에 기반해 개별 소리를 분리해 듣는 방식을 AI가 모방한 모델이다.
이를 통해, 순위를 결정하는 척도인 AI가 소리를 얼마나 잘 분리하고 분류했는지 평가하는‘음원의 신호대 왜곡비 향상도(CA-SDRi)*’에서 참가팀 중 유일하게 두 자릿수 대의 성능(11 dB)을 보여, 기술적인 우수성을 입증하였다.
*음원의 신호대 왜곡비 향상도(CA-SDRi): 기존의 오디오와 비교해 얼마나 더 선명하게(덜 왜곡되게) 원하는 소리를 분리했는지를 dB(데시벨) 단위로 측정하고 숫자가 클수록 더 정확하고 깔끔하게 소리를 분리했다는 뜻임
최정우 교수는 "연구팀은 최근 3년간 세계 최고의 음향 분리 AI 모델을 선보여 왔으며, 그 결과를 공식적으로 인정받는 계기가 되어 기쁘다”면서 “난이도가 대폭 향상되고, 타 학회 일정과 기말고사로 불과 몇 주간만 개발이 가능했음에도 집중력 있는 연구를 통해 1위를 차지한 연구팀 개개인이 자랑스럽다”고 소감을 밝혔다.
‘IEEE DCASE 챌린지 2025’는 온라인으로 진행됐으며, 4월 1일부터 시작해 6월 15일 인공지능 모델 투고를 마감했고 지난 6월 30일 결과가 발표됐다. 각종 음향 관련 탐지 및 분류 기술을 평가하는 IEEE 신호처리학회(Signal Processing Society) 산하 국제대회인 본 챌린지는 2013년 개최된 이래 음향 분야 인공지능 모델의 세계적인 경연의 장으로 자리매김해 왔다.
https://dcase.community/challenge2025/task-spatial-semantic-segmentation-of-sound-scenes
한편, 해당 연구는 교육과학기술부의 재원으로 한국연구재단 중견연구자지원사업, STEAM 연구사업 지원 및 방위사업청 및 국방과학연구소 재원으로 미래국방연구센터 지원을 받아 수행됐다.
2025.07.11
조회수 643
-
뇌는 포도당을 구별한다..비만·당뇨 치료의 단서 찾아
‘우리의 뇌는 어떻게 장내에서 흡수된 다양한 영양소 중 포도당을 구별해낼까?’ 우리 대학 연구진은 이 질문에서 출발해, 뇌가 단순히 총열량(칼로리)을 감지하는 수준을 넘어 특정 영양소, 특히 포도당을 선택적으로 인식할 수 있다는 사실을 입증했다. 이번 연구는 향후 식욕 조절 및 대사성 질환 치료 전략에 새로운 패러다임을 제시할 수 있을 것으로 기대된다.
우리 대학 생명과학과 서성배 교수 연구팀이 바이오및뇌공학과 박영균 교수팀, 생명과학과 이승희 교수팀, 뉴욕 알버트 아인슈타인 의과대학과의 협력을 통해, 배고픔 상태에서 포도당이 결핍된 동물이 장내의 포도당을 선택적으로 인식하고 선호하도록 유도하는 장-뇌 회로의 존재를 규명했다고 9일 밝혔다.
생물은 당, 단백질, 지방 등 다양한 영양소로부터 에너지를 얻는다. 기존 연구들은 장내 총열량 정보가 시상하부의 배고픔 뉴런(hunger neurons)을 억제함으로써 식욕을 조절한다는 사실을 밝혀왔으나, 특정 포도당에 특이적으로 반응하는 장-뇌 회로와 이에 반응하는 특정 뇌세포의 존재는 규명되지 않았다.
연구팀은 이번 연구를 통해 뇌의 기능에 필수적인 포도당을 감지하고 필요한 영양소에 대한 섭취 행동을 조절하는 ‘장-뇌 회로’를 밝혀내는 데 성공했다.
또한, 이 회로는 뇌의 ‘스트레스 반응 세포(CRF 뉴런*)’가 배고픔이나 외부 자극뿐만 아니라, 소장에 직접 유입된 특정 열량 영양소에 대해서도 초 단위로 반응하며, 특히 ‘포도당(D-glucose)’에 선택적으로 반응한다는 점을 처음으로 입증했다.
*CRF 뉴런: 우리 몸이 심리적·물리적 스트레스에 대응하는 핵심 생리 시스템은 시상하부-뇌하수체-부신 축(Hypothalamus-Pituitary-Adrenal Axis, HPA axis)이다. 이 축의 중심에는 시상하부에서 CRF(부신피질호르몬 방출인자)를 분비하는 뉴런이 있으며, 이들은 다양한 스트레스 자극에 반응해 코르티솔 분비를 유도하고, 생리 및 대사 균형을 유지하는 신경 내분비 조절의 중추로 알려져 있다.
연구팀은 실시간 뇌 속을 정밀하게 추적할 수 있는 광유전학 기반 신경 활성 조절 및 회로 추적 기법을 활용해서, 포도당(D-글루코스, L-글루코스,) 아미노산, 지방 등 다양한 영양소의 쥐의 소장 내 직접 주입하고 관찰했다.
그 결과, 뇌 시상하부의 ‘시상하부 시상핵(PVN)* 부위’에 있는 CRF 뉴런 중 D-글루코스(glucose) 포도당에만 선택적으로 반응하며, 다른 당류나 단백질·지방류에는 반응하지 않거나 반대 방향의 반응을 보이는 것을 확인했다. 이는 뇌가 장내 영양소가 유입 시 반응에 대해 단일 뇌세포 수준에서 어떤 방향성을 유도한다는 것을 처음 확인한 것을 의미한다.
* 시상하부 시상핵(paraventricular nucleus, PVN): 뇌의 시상하부(hypothalamus) 안에 있는 매우 중요한 신경핵(뉴런 무리)으로, 신체 항상성(몸의 균형 유지)을 조절하는 핵심 구조
또한, 연구팀은 소장의 포도당 감지 신호가 ‘척수신경’을 거쳐 뇌의 특정 부위(등쪽 외측 팔곁핵,parabrachial nucleus, PBNdl)을 통해 PVN의 CRF 뉴런으로 전달되는 특징적인 회로를 밝혀냈다. 반면, 아미노산이나 지방 등 기타 영양소는 미주신경(vagus nerve)이란 다른 통로로 뇌에 전달된다는 사실도 확인했다.
광유전학적 억제 실험에서도, 공복 상태의 생쥐에서 CRF 뉴런을 억제하면 동물은 더 이상 포도당을 선호하지 않게 됐으며, 이 회로가 영양소 선택에 있어 포도당 특이적 선호를 유도하는 데 필수적임이 드러났다.
이 연구는 서 교수가 뉴욕대(NYU) 재직 시절 초파리를 모델로, 장내 포도당(글루코스) 및 당을 선택적으로 감지하는 ‘DH44 뉴런’을 발견했던 점을 착안해, 포유류에서도 시상하부 뉴런이 포도당 특이적 반응에 있어 기능적 유사성을 보일 것이라는 가설에서 시작되었다.
이 가설을 입증하기 위해 서 교수 연구팀 김진은 박사(KAIST 박사 졸, 現 캘리포니아공과대학교 연수연구원)가 학위과정 중 생쥐 실험을 통해 배고픈 쥐는 장에 주입된 다양한 영양소 중 열량을 지닌 포도당을 선호하며, CRF 뉴런이 빠르고 특이적인 반응을 보인다는 사실을 확인했다.
또한, 같은 팀 정원교 연구원(KAIST 학사 졸, 現 캘리포니아공과대학교 박사과정)과 함께 실험과 모델링을 통해 CRF 뉴런의 중요성을 규명했고, 김신혜 박사는 협업을 통해 장-뇌 회로 중 특정 척추 신경세포가 장의 정보를 뇌로 전달 한다는 놀라운 발견을 입증했다.
김진은 박사와 김신혜 박사는 “이 연구는 ‘우리의 뇌는 어떻게 장내에서 흡수된 다양한 영양소 중 포도당을 구별해내는가?’라는 단순하지만, 본질적인 질문에서 시작됐고, 이번 연구에서 장-뇌 연결 회로의 핵심 축인 척수신경의 역할을 규명하고 장내 특정 영양소를 감지한 후 이를 뇌에 전달하는 척수 기반 신경 회로가 우리 몸의 에너지 대사 조절과 항상성 유지에 핵심적일 것이라는 것을 밝혀냈다”고 말했다.
서성배 교수는 “이번 연구는 포도당에 특화된 장-뇌 신호 경로를 규명함으로써, 비만·당뇨병 등 대사 질환의 새로운 치료 표적을 제시할 수 있다”며 “향후 아미노산, 지방 등 다른 필수 영양소를 감지하는 유사 회로의 존재와 그 상호작용 메커니즘을 밝히는 연구로 확장될 예정”이라고 밝혔다.
우리 대학 김진은 박사, 김신혜 박사, 정원교 학생이 공동 제1 저자로 참여한 이번 연구의 결과는 국제 학술지 ‘뉴런(Neuron)’에 2025년 6월 20일 온라인 게재됐다.
※논문명: Encoding the glucose identity by discrete hypothalamic neurons via the gut-brain axis
※DOI: https://doi.org/10.1016/j.neuron.2025.05.024
이번 연구는 삼성미래기술육성사업, 한국연구재단 리더과제, 포스코 청암재단 사이언스 펠로십, 아산재단 의생명과학 장학사업, 기초과학연구원, KAIST KAIX 사업의 지원을 통해 수행됐다.
2025.07.09
조회수 630
-
부작용·내성 극복한 신개념 칸디다증 치료제 개발
칸디다증은 곰팡이균(진균)의 일종인 칸디다(Candida)가 혈액을 통해 전신으로 퍼지며 장기 손상과 패혈증을 유발할 수 있는 치명적인 감염 질환이다. 최근 면역 저하 치료, 장기 이식, 의료기기 사용 등이 증가함에 따라 칸디다증 발병이 급증하고 있다. 한국 연구진이 기존 항진균제와 달리, 칸디다균에만 선택적으로 작용해 높은 치료 효능과 낮은 부작용을 동시에 갖춘 차세대 치료제를 개발하는데 성공했다.
우리 대학 생명과학과 정현정 교수 연구팀이 서울아산병원 정용필 교수팀과의 협력을 통해, 칸디다 세포벽의 두 핵심 효소를 동시에 저해하는 유전자 기반 나노치료제(FTNx)를 개발했다고 8일 밝혔다.
현재 사용 중인 칸디다의 항진균제들은 표적 선택성이 낮아 인체 세포에도 영향을 미칠 수 있으며, 이에 내성을 가지는 새로운 균의 출현으로 인해 치료 효과가 점차 떨어지고 있다. 특히 면역력이 저하된 환자들에게는 감염의 진행이 빠르고 예후도 좋지 않아, 기존 치료제의 한계를 극복할 수 있는 새로운 치료법의 개발이 시급한 상황이다.
이에 연구팀이 개발한 치료제는 전신 투여가 가능하며, 유전자 억제 기술과 나노소재 기술을 융합함으로써 기존 화합물 기반의 약물들이 가지는 구조적 한계를 효과적으로 극복하고, 칸디다균에만 선택적으로 치료하는데 성공했다.
연구팀은 칸디다라는 곰팡이균의 세포벽을 만드는 데 중요한 두 가지 효소 — β‑1,3‑글루칸 합성효소(FKS1)와 키틴 합성효소(CHS3)를 동시에 표적하는 짧은 DNA 조각(antisense oligonucleotide, ASO)을 탑재한 금 나노입자 기반의 복합체를 제작했다.
여기에 칸디다 세포벽의 특정 당지질 구조(당과 지방이 결합된 구조)와 결합하는 표면 코팅 기술을 적용하여 표적유도장치를 장착함으로써, 인체 세포에는 아예 전달되지 않고 칸디다에만 선택적으로 작용하는 정밀 타겟팅 효과를 구현하는 데 성공했다.
이 복합체는 칸디다 세포 내로 진입한 후, FKS1 및 CHS3의 유전자가 만들어내는 mRNA를 잘라버려서 번역을 억제해 세포벽 성분인 β‑1,3‑글루칸과 키틴의 합성을 동시에 차단한다. 이로 인해 칸디다 세포벽은 구조적 안정성을 유지하지 못하고 붕괴되며, 세균의 생존과 증식이 억제된다.
실제로 쥐에서 전신 칸디다증 모델 실험을 통해 치료 효과를 검증한 결과, 치료군에서 칸디다의 장기 내 균 수 감소, 면역 반응 정상화, 그리고 생존율의 유의미한 증가가 관찰됐다.
연구를 주도한 정현정 교수는 “이번 연구는 기존 치료제가 인체 독성과 약제내성 확산 문제를 극복하는 방법을 제시하며, 유전자 치료의 전신 감염 적용 가능성을 보여주는 중요한 전환점”이라며, “향후 임상 적용을 위한 투여 방식 최적화 및 독성 검증 연구를 지속적으로 진행할 계획”이라고 밝혔다.
해당 연구는 생명과학과 정주연 학생 및 서울아산병원 홍윤경 박사가 제1 저자로 참여했으며, 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 7월 1일 자로 게재됐다.
※ 논문명 : Effective treatment of systemic candidiasis by synergistic targeting of cell wall synthesis
※ DOI : 10.1038/s41467-025-60684-7
이번 연구는 보건복지부 및 한국연구재단의 지원을 받아 수행됐다.
2025.07.08
조회수 1006
-
마이크로 OLED로 난치성 뇌질환 치료 '게임 체인저' 기술 제시
광유전학 기술은 빛에 반응하는 광 단백질이 발현된 뉴런에 특정 파장의 빛 자극을 통해 뉴런의 활성을 조절하는 기술로 다양한 뇌질환의 원인을 규명하며 난치성 뇌질환의 새로운 치료 방법을 개발할 가능성을 열고 있다. 이 기술은 인체의 뇌에 삽입하여 자극을 주는 의료 기기인 ‘뉴럴 프로브’를 통해 정확하게 자극하고 무른 뇌 조직의 손상을 최소화해야 한다. 이에 우리 연구진이 마이크로 OLED를 활용해 얇고 유연한 인체 삽입형 의료기기로 구현함으로써 뉴럴 프로브의 새로운 패러다임을 제시했다.
우리 대학 전기및전자공학부 최경철 교수와 이현주 연구팀이 공동 연구를 통해, 유연한 마이크로 OLED가 집적된 광유전학용 뉴럴 프로브 개발에 성공했다고 6일 밝혔다.
광유전학 연구에서 주요 기술은 광원의 빛을 뇌로 전달하는 방식으로 외부 광원으로부터의 깊은 뇌 영역까지 빛을 전달하기 위해 수십 년간 광섬유를 사용해 왔다. 하지만 단일 뉴런을 자극하기 위한 유연 광섬유, 초미세 광원 집적 뉴럴 프로브 등 관련 연구가 이뤄지고 있다.
연구팀은 마이크로 OLED는 높은 공간적 해상도와 유연성을 가져, 매우 작은 영역의 뉴런에서도 정확하게 빛을 조사할 수 있어 세밀한 뇌 회로 분석이 가능하고 동물의 움직임에 불편함을 주지 않으면서 부작용을 최소화하는 장점에 주목했다. 그뿐만 아니라, 미세한 파장 조절을 통해 정밀한 빛 조절이 가능하며 다중 자극을 통한 복잡한 뇌 기능 연구가 가능하다.
하지만, 체내 수분이나 물에 의해 전기적 특성이 쉽게 열화되기 때문에 생체 삽입형 전자장치로 활용되는데 한계가 있었고, 얇고 유연한 탐침 위 고해상도 집적 공정에 대한 세부적인 최적화도 필요했다.
공동연구팀은 수분과 산소가 많은 생체 내 환경에서 OLED의 구동 신뢰성을 높이며 생체 삽입 시 조직 손상을 최소화하고자, 산화알루미늄/파릴렌-C(Al2O3/parylene-C)로 구성된 초박막 유연 봉지막*을 얇은 탐침 형태인 260~600마이크로미터(μm) 너비로 패터닝해 생체친화성을 유지했다.
* 봉지막: 소자를 외부 환경요인인 산소와 물 분자로부터 완전히 차단하는 막 기술로 소자의 수명을 유지시키고 신뢰성을 줌
또한, 고해상도 마이크로 OLED를 집적함에 있어 전체 소자의 유연성과 생체친화성을 유지하기 위해, 봉지막과 동일한 생체친화 재료인 파릴렌-C(parylene-C)를 활용하였다. 아울러, 인접한 OLED 픽셀 간 전기적 간섭 현상을 제거하고 각 픽셀을 공간적으로 분리하기 위해 구조적 레이어인 ‘화소 정의막(pixel define layer)’을 도입함으로써, 8개의 마이크로 OLED를 독립적으로 개별 구동할 수 있도록 구현했다.
마지막으로, 소자 내 다중 박막층의 잔류 응력과 두께를 정밀하게 조절함으로써, 생체 내 환경에서도 소자의 유연성을 유지할 수 있도록 하였다. 이를 통해 외부 셔틀이나 바늘과 같은 보조 장치 없이도 단일 탐침만으로 휘어짐 없이 삽입이 가능하도록, 소자의 기계적 스트레스를 최적화해 설계했다.
결론적으로 연구팀은 채널로돕신2의 활성화에 적합한 470나노미터(nm) 파장에서 1밀리와트/제곱밀리미터(mW/mm2)이상의 광 파워 밀도를 가지는 즉, 광유전학 및 생체조직 자극 응용에서 상당히 높은 수준의 광출력을 가진 마이크로 OLED 집적 유연 뉴럴 프로브를 개발했다.
또한, 초박막 유연 봉지막은 2.66×10⁻⁵ g/m²/day의 낮은 수분 투습률을 보이며 소자 수명은 10년 이상 유지할 수 있고, 패릴렌-C(parylene-C)를 기반으로 생체 내 높은 봉지막 성능을 발휘하며, 전기적 간섭과 휨 이슈 없이 집적된 OLED의 개별 구동을 성공적으로 시연했다.
이번 연구를 주도한 최경철 교수 연구팀의 이소민 박사는 “고유연·고해상도의 마이크로 OLED를 얇은 유연 탐침 위에 집적하는 세부 공정 및 생체 적용성, 친화성 향상에 집중했다”며 “이번 연구는 기존 연구를 넘어 유연 프로브 형태에 최초로 개발해 보고된 사례로, 유연 OLED가 인체 삽입형 측정 및 치료 의료기기로서의 새로운 패러다임을 제시할 것으로 기대된다”고 말했다.
이번 연구는 전기및전자공학부 이소민 박사가 제1 저자로 나노 분야의 권위 있는 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials, IF 18.5)'에 지난 3월 26일 字로 온라인 게재됐으며, 전면 표지 논문으로 이번 7월에 선정됐다.
※ 논문명: Advanced Micro-OLED Integration on Thin and Flexible Polymer Neural Probes for Targeted Optogenetic Stimulation
※ DOI: https://doi.org/10.1002/adfm.202420758
한편, 이번 연구는 과학기술정보통신부 한국연구재단의 전자약 기술개발사업(연구 과제명: 뇌인지-정서 향상 빛 자극 전자약의 핵심원천기술 개발 및 생체 적용가능성 검증)의 지원을 받아 수행됐다.
2025.07.07
조회수 708
-
60% 이상 챗GPT 추론 성능 향상할 NPU 핵심기술 개발
오픈AI 챗GPT4, 구글 Gemnini 2.5 등 최신 생성형AI 모델들은 높은 메모리 대역폭(Bandwidth) 뿐만 아니라 많은 메모리 용량(Capacity)를 필요로 한다. 마이크로소프트, 구글 등 생성형AI 클라우드 운영 기업들이 엔비디아 GPU를 수십만 장씩 구매하는 이유다. 이런 고성능 AI 인프라 구축의 핵심 난제를 해소할 방안으로, 한국 연구진이 최신 GPU 대비 약 44% 낮은 전력 소모에도 평균 60% 이상 생성형 AI 모델의 추론 성능을 향상할 NPU(신경망처리장치)* 핵심 기술을 개발하는데 성공했다.
*NPU(Neural Processing Unit): 인공신경망(Neural Network)을 빠르게 처리하기 위해 만든 AI 전용 반도체 칩
우리 대학 전산학부 박종세 교수 연구팀과 (주)하이퍼엑셀(전기및전자공학부 김주영 교수 창업기업)이 연구 협력을 통해, 챗GPT와 같은 생성형AI 클라우드에 특화된 고성능·저전력의 NPU(신경망처리장치) 핵심기술을 개발했다고 4일 밝혔다.
연구팀이 제안한 기술은 컴퓨터 아키텍처 분야에서 최고 권위를 자랑하는 국제 학회인 ‘2025 국제 컴퓨터구조 심포지엄(International Symposium on Computer Architecture, ISCA 2025)’에 채택됐다.
이번 연구의 핵심은 추론 과정에서 경량화를 통해 정확도 손실을 최소화하면서도 메모리 병목 문제를 해결해 대규모 생성형AI 서비스의 성능을 개선하는 것이다. 이번 연구는 AI인프라의 핵심 구성요소인 AI반도체와 AI시스템SW를 통합 설계했다는 점에서 그 가치를 높게 인정받았다.
기존 GPU 기반 AI 인프라는 높은 메모리 대역폭과 메모리 용량 요구를 충족하기 위해 다수의 GPU 디바이스가 필요한 반면, 이번 기술은 메모리 사용의 대부분을 차지하는 KV 캐시의 양자화*를 통해 적은 수의 NPU 디바이스만으로 동일 수준의 AI 인프라를 구성할 수 있어, 생성형 AI 클라우드 구축 비용을 크게 절감할 수 있다.
*KV 캐시(Key-Value Cache)의 양자화: 생성형 AI 모델을 작동할 때 성능을 높이기 위해 사용하는 일종의 임시 저장 공간에 데이터 크기를 줄이는 것을 의미(32비트로 저장된 수를 4비트로 바꾸면, 데이터 크기는 1/8로 줄어듬)
연구팀은 기존 NPU 아키텍처의 연산 로직을 변경하지 않으면서 메모리 인터페이스와 통합될 수 있도록 설계했다. 이번 하드웨어 아키텍처 기술은 제안된 양자화 알고리즘을 구현할 뿐만 아니라, 제한된 메모리 대역폭 및 용량을 효율적으로 활용하기 위한 페이지 단위 메모리 관리 기법*과 양자화된 KV 캐시에 최적화된 새로운 인코딩 기법 등을 개발했다.
*페이지 단위 메모리 관리 기법: CPU처럼 메모리 주소를 가상화하여 NPU 내부에서 일관된 방식으로 접근할 수 있게 함
또한, 최신 GPU 대비 비용·전력 효율성이 우수한 NPU 기반 AI 클라우드를 구성할 경우, NPU의 고성능, 저전력 특성을 활용해 운영 비용 역시 크게 절감할 수 있을 것으로 기대된다.
박종세 교수는 “이 연구는 (주)하이퍼엑셀과의 공동연구를 통해 생성형AI 추론 경량화 알고리즘에서 그 해법을 찾았고 ‘메모리 문제’를 해결할 수 있는 NPU 핵심기술 개발에 성공했다. 이 기술을 통해 추론의 정확도를 유지하면서 메모리 요구량을 줄이는 경량화 기법과, 이에 최적화된 하드웨어 설계를 결합해 최신 GPU 대비 평균 60% 이상 성능이 향상된 NPU를 구현했다” 고 말했다.
이어 “이 기술은 생성형AI에 특화된 고성능·저전력 인프라 구현 가능성을 입증했으며, AI클라우드 데이터센터뿐 아니라 능동적인 실행형 AI인 ‘에이전틱 AI ’등으로 대표되는 AI 대전환(AX) 환경에서도 핵심 역할이 기대된다”고 강조했다.
이 연구는 김민수 박사과정 학생과 ㈜하이퍼엑셀 홍성민 박사가 공동 제1 저자로 지난 6월 21일부터 6월 25일까지 일본 도쿄에서 열린 ‘2025 국제 컴퓨터구조 심포지엄(ISCA)’에 발표됐다. 국제적 저명학회인 ISCA는 올해는 570편의 논문이 제출됐으며 그중 127편 만이 채택됐다. (채택률 22.7%).
※논문 제목: Oaken: Fast and Efficient LLM Serving with Online-Offline Hybrid KV Cache Quantization
※DOI: https://doi.org/10.1145/3695053.3731019
한편 이번 연구는 한국연구재단 우수신진연구자지원사업, 정보통신기획평가원(IITP), 인공지능반도체대학원지원사업의 지원을 받아 수행됐다.
2025.07.04
조회수 1047
-
정확도·효율성 높인 생명과학 데이터 분석 도구 'scICE' 개발
기존보다 최대 30배 빠른 속도로 안정적인 결과만을 자동으로 선별하여 대규모 생명과학 데이터 분석의 정확도와 효율성을 획기적으로 향상하는 방법이 나왔다. 우리 대학 수리과학과 김재경 교수 연구팀은 세포 분류(클러스터링) 결과의 안정성을 수학적으로 평가해 불안정한 결과를 걸러내는 새로운 분석 도구인 ‘scICE(single-cell Inconsistency Clustering Estimator)’를 개발했다.
단일세포 수준에서 유전자 발현을 분석하는 기술인 단일세포 전사체 분석법(scRNA-seq)은 현대 생명과학 연구의 핵심 도구로 자리 잡았다. 이 과정에서 클러스터링은 유사한 유전자 발현 특성을 가진 세포들을 그룹으로 묶는 작업으로, 암세포와 정상 세포를 구분하거나 새로운 세포 유형을 발견하는 데 중요한 첫걸음이다. 하지만 클러스터링 알고리즘은 무작위로 세포를 분류해 같은 데이터를 분석해도 결과가 달라지는 경우가 많다.
제1 저자인 김현 선임연구원은 “일부 정상 세포가 암세포로 잘못 분류되거나 중요한 세포 유형이 누락되는 불안정성으로 인해 연구자들은 다시 분석하거나 복잡한 계산을 통해 신뢰도가 높은 결과를 선별해야 했다”며, “기존 방법들은 분석을 여러 번 반복해 합의된 결과를 도출하는 방식으로, 계산량이 방대하고 수만 개 이상의 세포가 포함된 대용량 데이터에는 적합하지 않다”고 말했다.
연구팀이 개발한 scICE는 한 번의 분석만으로도 얼마나 일관성 있게 결과가 도출됐는지를 수학적으로 평가한다. 새로 도입한 ‘불일치 계수(Inconsistency Coefficient, IC)’를 통해 많은 계산량이 요구되는 연산 없이도 클러스터 간 안정성을 정량적으로 판단할 수 있다. 모든 세포를 일일이 비교하던 기존 방식과 달리, 불일치 계수를 활용한 안정성 평가는 클러스터 구조 간 유사성만 평가해 비교 대상을 획기적으로 줄일 수 있어 분석 시간을 크게 단축한다.
연구팀은 뇌, 폐, 혈액 등 다양한 조직에서 수집된 48개의 실제 및 모의 scRNA-seq 데이터에 scICE를 적용하여 그 유효성을 입증했다. 그 결과, 기존 분석 결과 중 약 3분의 2는 통계적으로 불안정하며 신뢰하기 어렵다는 사실을 밝혀냈다. 반면, scICE는 신뢰할 수 있는 결과만을 선별해 연구자의 시간과 계산 자원을 절약하면서도 정확도를 한층 높였다.
또한, scICE는 일반적인 클러스터링으로는 놓치기 쉬운 희귀한 세포 유형을 효과적으로 탐지했다. 실제로 일부 데이터에서 찾기 어려웠던 희귀 면역세포들을 scICE 기반의 서브클러스터링을 통해 안정적으로 식별해냈다. 예를 들어, 매우 복잡한 분석을 거쳐야만 식별할 수 있던 여러 대식세포(macrophage) 아형들을 훨씬 간편하고 정확하게 구분해냈다.
scICE에 관심 있는 연구자는 누구나 깃허브 사이트(https://github.com/Mathbiomed/scICE)를 통해 쉽게 활용해볼 수 있다.
김재경 교수는 “이번 연구는 수학적 아이디어가 어떻게 생명과학의 핵심 문제를 해결하고 분석 과정을 혁신할 수 있는지를 보여주는 성과”라며, “클러스터링 신뢰도의 중요성이 간과되어 온 측면이 있는데, 이번 기회로 scICE가 생명과학 분야에서 신뢰도 높은 데이터 해석을 가능케 하는 표준 도구로 자리 잡기를 기대한다”고 전했다.
우리 대학 박종은 교수 연구팀, POSTECH 김종경 교수 연구팀, 고려대 서민석 교수 연구팀과 공동으로 참여한 이번 연구결과는 세계적인 국제학술지 네이처 커뮤니케이션즈(Nature Communications, IF 14.7)에 7월 2일 온라인 게재됐다.
2025.07.03
조회수 976
-
24시간 말하는 AI비서 가능성 여는 '스피치SSM' 개발
최근 음성 언어 모델(Spoken Language Model, SLM)은 텍스트 없이 인간의 음성을 학습해 음성의 언어적, 비언어적 정보를 이해 및 생성하는 기술로 텍스트 기반 언어 모델의 한계를 넘어서는 차세대 기술로 각광받고 있다. 하지만 기존 모델은 장시간 콘텐츠 생성이 요구되는 팟캐스트, 오디오북, 음성비서 등에서 한계가 두드러졌는데, 우리 연구진이 이런 한계를 뛰어넘어, 시간 제약 없이 일관되고 자연스러운 음성 생성을 실현한 ‘스피치SSM’을 개발하는데 성공했다.
우리 대학 전기및전자공학부 노용만 교수 연구팀의 박세진 연구원(박사과정)이 장시간 음성 생성이 가능한 음성 언어 모델 ‘스피치SSM(SpeechSSM)’을 개발했다고 3일 밝혔다.
이번 연구는 국제 최고 권위 머신러닝 학회인 ICML(International Conference on Machine Learning) 2025에 전체 제출된 논문 중 약 1%만이 선정되는 구두 논문 발표에 확정돼 뛰어난 연구 역량을 입증할 뿐만 아니라 우리 대학의 인공지능 연구 능력이 세계 최고 수준임을 다시 한번 보여주는 계기가 될 전망이다.
음성 언어 모델(SLM)은 중간에 텍스트로 변환하지 않고 음성을 직접 처리함으로써, 인간 화자 고유의 음향적 특성을 활용할 수 있어 대규모 모델에서도 고품질의 음성을 빠르게 생성할 수 있다는 점이 큰 강점이다.
그러나 기존 모델은 음성을 아주 세밀하게 잘게 쪼개서 아주 자세한 정보까지 담는 경우, ‘음성 토큰 해상도’가 높아지고 사용하는 메모리 소비도 증가하는 문제로 인해 장시간 음성의 의미적, 화자적 일관성을 유지하기 어려웠다.
연구팀은 이러한 문제를 해결하기 위해 하이브리드 상태공간 모델(Hybrid State-Space Model)을 사용한 음성 언어 모델인‘스피치SSM’를 개발해 긴 음성 시퀀스를 효율적으로 처리하고 생성할 수 있게 설계했다.
이 모델은 최근 정보에 집중하는 ‘어텐션 레이어(attention layer)’와 전체 이야기 흐름(장기적인 맥락)을 오래 기억하는 ‘순환 레이어(recurrent layer)’를 교차 배치한 ‘하이브리드 구조’를 통해 긴 시간 동안 음성을 생성해도 흐름을 잃지 않고 이야기를 잘 이어간다. 또한, 메모리 사용량과 연산량이 입력 길이에 따라 급격히 증가하지 않아, 장시간의 음성을 안정적이고 효율적으로 학습하고 생성할 수 있다.
스피치SSM은 음성 데이터를 짧은 고정된 단위(윈도우)로 나눠 각 단위별로 독립적으로 처리하고, 전체 긴 음성을 만들 경우에는 다시 붙이는 방식을 활용해 쉽게 긴 음성을 만들 수 있어 무한한 길이의 음성 시퀀스(unbounded speech sequence)를 효과적으로 처리할 수 있게 했다.
또한 음성 생성 단계에서는 한 글자, 한 단어 차례대로 천천히 만들어내지 않고, 여러 부분을 한꺼번에 빠르게 만들어내는 ‘비자기회귀(Non-Autoregressive)’방식의 오디오 합성 모델(SoundStorm)을 사용해, 고품질의 음성을 빠르게 생성할 수 있게 했다.
기존은 10초 정도 짧은 음성 모델을 평가했지만, 연구팀은 16분까지 생성할 수 있도록 자체 구축한 새로운 벤치마크 데이터셋인 ‘LibriSpeech-Long'을 기반으로 음성을 생성하는 평가 태스크를 새롭게 만들었다.
기존 음성 모델 평가 지표인 말이 문법적으로 맞는지 정도만 알려주는 PPL(Perplexity)에 비해, 연구팀은 시간이 지나면서도 내용이 잘 이어지는지 보는 'SC-L(semantic coherence over time)', 자연스럽게 들리는 정도를 시간 따라 보는 'N-MOS-T(naturalness mean opinion score over time)' 등 새로운 평가 지표들을 제안해 보다 효과적이고 정밀하게 평가했다.
새로운 평가를 통해 스피치SSM 음성 언어 모델로 생성된 음성은 긴 시간 생성에도 불구하고 초기 프롬프트에서 언급된 특정 인물이 지속적으로 등장하며, 맥락적으로 일관된 새로운 인물과 사건들이 자연스럽게 전개되는 모습을 확인했다. 이는 기존 모델들이 장시간 생성 시 쉽게 주제를 잃고 반복되는 현상을 보였던 것과 크게 대조적이다.
박세진 박사과정생은 “기존 음성 언어 모델은 장시간 생성에 한계가 있어, 실제 인간이 사용하도록 장시간 음성 생성이 가능한 음성 언어 모델을 개발하는 것이 목표였다”며 “이번 연구 성과를 통해 긴 문맥에서도 일관된 내용을 유지하면서, 기존 방식보다 더 효율적이고 빠르게 실시간으로 응답할 수 있어, 다양한 음성 콘텐츠 제작과 음성비서 등 음성 AI 분야에 크게 기여할 것으로 기대한다”라고 밝혔다.
이 연구는 제1 저자인 우리 대학 박세진 박사과정 학생이 구글 딥마인드(Google DeepMind)와 협력해, ICML(국제 머신러닝 학회) 2025에서 7월 16일 구두 발표로 소개될 예정이다.
※ 논문제목: Long-Form Speech Generation with Spoken Language Models
※ DOI: 10.48550/arXiv.2412.18603
한편, 박세진 박사과정생은 비전, 음성, 언어를 통합하는 연구를 수행하며 CVPR(컴퓨터 비전 분야 최고 학회) 2024 하이라이트 논문 발표, 2024년 ACL(자연어 처리 분야 최고 학회)에서 우수논문상(Outstanding Paper Award) 수상 등을 통해 우수한 연구 역량을 입증한 바 있다.
[데모 페이지 링크]
https://google.github.io/tacotron/publications/speechssm/
2025.07.03
조회수 1118