-
초당 9,120프레임 포착 곤충눈 모사 카메라 개발
곤충의 겹눈은 빠르게 움직이는 물체를 병렬적으로 감지하고, 어두운 환경에서는 감도를 높이기 위해 시각세포가 여러 시간의 신호를 합쳐서 반응해 움직임을 결정한다. KAIST 연구진이 곤충의 생체를 모사하여 기존 고속 카메라가 직면했던 프레임 속도와 감도 간의 한계를 극복한 저비용 고속 카메라를 개발하는데 성공했다.
우리 대학 바이오및뇌공학과 정기훈·전산학과 김민혁 교수 연구팀이 곤충의 시각 구조에서 영감을 받아 초고속 촬영과 고감도를 동시에 구현한 새로운 생체모사 카메라를 개발했다고 16일 밝혔다.
고속 및 저조도 환경에서의 고품질 이미징은 많은 응용 분야에서 중요한 과제이다. 기존의 고속 카메라는 빠른 움직임을 포착하는 데 강점을 가지고 있지만, 프레임율을 높일수록 빛을 수집할 수 있는 시간이 줄어들어 저조도 환경에서는 감도가 부족한 문제가 발생해왔다.
이를 해결하기 위해 연구팀은 곤충의 시각 기관처럼, 여러 개의 광학 채널과 시간 합산을 활용하는 방식을 채택했다. 기존 단안 카메라 시스템과 달리, 생체 모사 카메라는 겹눈을 통해 서로 다른 시간대의 프레임을 병렬적으로 획득할 수 있다.
이 과정에서 각 프레임이 중첩되는 시간 동안 빛을 합산함으로써 신호대잡음비를 증가시킬 수 있다. 연구팀은 이러한 방식을 적용한 생체 모사 카메라가 기존의 고속 카메라 대비 최대 40배 더 어두운 물체까지 포착할 수 있었다고 밝혔다.
또한 연구팀은 카메라의 속도를 크게 향상하기 위해 ‘채널 분할’ 기술을 도입하여 패키징에 사용된 이미지센서보다 수천 배 빠른 프레임률을 획득할 수 있었다. 이에 더해 ‘압축 이미지 복원’ 알고리즘을 활용해 합산된 프레임에서 발생할 수 있는 흐림 현상을 제거하며, 선명한 이미지를 재구성했다.
연구팀은 제작된 생체 모사 카메라는 두께 1mm 이하의 매우 얇고, 작은 크기에도 불구하고 초당 9,120프레임을 촬영할 수 있고, 낮은 조도에서도 선명한 이미지를 제공한다.
향후 연구팀은 3D 이미징 및 초해상도 이미징을 위한 고급 이미지 처리 알고리즘을 통해 바이오의료 응용뿐 아니라 모바일 등 다양한 카메라 응용 기술을 개발할 예정이라고 밝혔다.
제1 저자인 바이오및뇌공학과 김현경 박사과정은 “제작된 곤충 눈 카메라가 작은 크기임에도 불구하고 고속 및 저조도 촬영에서 뛰어난 성능을 발휘하는 것을 실험적으로 검증했다”라며, “이 카메라는 이동식 카메라 시스템, 보안 감시, 의료 영상 등 다양한 분야에서의 응용 가능성을 열었다”라고 말했다.
바이오및뇌공학과 김현경 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)'에 1월 출판됐다. (논문명 : Biologically-inspired microlens array camera for high-speed and high-sensitivity imaging)
DOI: https://doi.org/10.1126/sciadv.ads3389
한편 이번 연구는 국방기술진흥연구소, 과학기술정보통신부, 그리고 산업통상자원부의 지원을 받아 수행됐다.
2025.01.16
조회수 112
-
정확한 우울증 예측 이제는 손목에서 가능하다
정신질환 팬데믹이 발생했다. 전 세계적으로 약 10억 명이 크고 작은 정신질환을 앓고 있다. 한국도 더욱 심각하여 현재 우울증 및 불안장애 환자는 약 180만 명이며 총 정신질환자는 5년 새 37% 증가하여 약 465만 명이다. 한미 공동 연구진이 웨어러블 기기를 통해 수집되는 생체 데이터를 활용해 내일의 기분을 예측하고, 나아가 우울증 증상의 발현 가능성을 예측하는 기술을 개발했다.
우리 대학 뇌인지과학과 김대욱 교수 연구팀이 미국 미시간 대학교 수학과 대니엘 포저(Daniel B. Forger) 교수팀과 공동연구로 스마트워치로부터 수집되는 활동량, 심박수 데이터로부터 교대 근무자의 수면 장애, 우울감, 식욕부진, 과식, 집중력 저하와 같은 우울증 관련 증상을 예측하는 기술을 개발했다고 15일 밝혔다.
WHO에 따르면 정신질환의 새로운 유망한 치료 방향은 충동성, 감정 반응, 의사 결정 및 전반적인 기분에 직접적인 영향을 주는 뇌 시상하부에 위치한 생체시계(circadian clock)와 수면(sleep stage)에 중점을 두는 것이다.
하지만 현재 내재적 생체리듬(endogenous circadian rhythms)과 수면 상태를 측정하기 위해서는 하룻밤 동안 30분 간격으로 피를 뽑아 우리 몸의 멜라토닌 호르몬 농도 변화를 측정하고 수면다원검사(polysomnography, PSG)를 수행해야 한다. 이 때문에 병원 입원이 불가피하여, 통원 치료를 받는 정신질환자가 대부분인 실제 의료 현장에서 두 요소를 고려한 치료법 개발은 지난 반세기 동안 큰 진전이 없었다. 더불어 검사 비용 또한 무시할 수 없어(PSG: 보험료 적용 없을 시 약 100만원) 사회적 약자는 현재 정신건강치료의 사각지대에 있다.
이러한 문제를 극복하기 위한 해결책은 공간의 제약 없이 실시간으로 심박수, 체온, 활동량 등 다양한 생체 데이터를 손쉽게 수집할 수 있다는 웨어러블 기기다. 그러나 현재 웨어러블 기기는 생체시계의 위상과 같은 의료 현장에서 필요로 하는 바이오마커(Biomarker)의 간접적인 정보만을 제공하는 한계를 가지고 있다.
공동연구팀은 스마트워치로부터 수집된 심박수와 활동량 시계열 데이터 등 매일 변화하는 생체시계의 위상을 정확히 추정하는 필터링(Filtering) 기술을 개발했다. 이는 뇌 속 일주기 리듬을 정밀하게 묘사하는 디지털 트윈(Digital twin)을 구현한 것으로, 이를 활용해 일주기 리듬 교란을 추정하는 데 활용될 수 있다.
이 생체시계 디지털 트윈의 우울증 증상 예측 활용 가능성을 미시간 대학교 신경과학 연구소의 스리잔 센(Srijan Sen) 교수 및 정신건강의학과의 에이미 보너트(Amy Bohnert) 교수 연구팀과의 협업을 통해 검증했다.
협업 연구팀은 약 800명의 교대 근무자가 참여한 대규모 전향 코호트 연구를 수행해 해당 기술을 통해 추정된 일주기 리듬 교란 디지털 바이오마커가 내일의 기분과 우울증의 대표적인 증상인 수면 문제, 식욕 변화, 집중력 저하, 자살 생각을 포함한 총 6가지 증상을 예측할 수 있음을 보였다.
김대욱 교수는 “수학을 활용해 그동안 잘 활용되지 못했던 웨어러블 생체 데이터를 실제 질병 관리에 적용할 수 있는 실마리를 제공하는 연구를 진행할 수 있어 매우 뜻깊다”라며, “이번 연구를 통해 연속적이고 비침습적인 정신건강 모니터링 기술을 제시할 수 있을 것으로 기대된다. 이는 현재 사회적 약자들이 우울증 증상을 경험할 때 상담센터에 연락하는 등 스스로 능동적인 행동을 취해야만 도움을 받을 수 있는 문제를 해결해, 정신건강 관리의 새로운 패러다임을 제시할 것으로 보인다”고 말했다.
뇌인지과학과 김대욱 교수가 공동 제1 저자 및 교신저자로 참여한 이번 연구 결과는 국제 학술지 ‘npj Digital Medicine’ 12월 5일 온라인판에 게재됐다. (논문명: The real-world association between digital markers of circadian disruption and mental health risks) DOI: 10.1038/s41746-024-01348-6
한편 이번 연구는 KAIST 신임교원 연구지원사업, 미국 국립과학재단, 미국 국립보건원, 미국 육군연구소 MURI 프로그램의 지원을 받아 수행됐다.
2025.01.15
조회수 305
-
뇌 오가노이드의 매우 작은 전기신호도 측정 가능하다
오가노이드*는 인체 조직을 높은 정확도로 모사하기 때문에 질병 모델 개발이나 약물 스크리닝뿐만 아니라 개인 맞춤형 의학에도 활용이 가능하다. 하지만 매우 작은 크기의 전기 신호가 발생하는 심장과 뇌 오가노이드는 전기생리신호를 측정하는 것이 매우 어려웠다. 한국 연구진이 다양한 오가노이드에 손쉽게 적용가능한 전기생리신호 모니터링 시스템을 개발하는 데 성공했다.
*오가노이드 : 인간유래 줄기세포를 기반으로 제작되는 3차원 형태의 세포 집합체로, 동물 실험 모델과 2차원 세포 배양 모델을 대체할 실험 모델로 큰 주목을 받고 있다.
우리 대학 전기및전자공학부 이현주 교수 연구팀이 한국생명공학연구원(원장 김장성, KRIBB) 국가아젠다연구부 손미영 부장 연구팀 및 줄기세포융합연구센터 이미옥 박사 연구팀과 공동 연구를 통해 오가노이드의 비침습적 전기생리신호 측정을 위한 고신축성 돌출형 미세전극 어레이 플랫폼을 개발했다고 14일 밝혔다.
기존의 오가노이드 관련 연구는 유전자 분석을 위주로 진행되어 왔으며, 상대적으로 오가노이드의 기능성에 대한 연구는 미비한 상태다. 효과적인 약물 평가와 정밀한 생물학 연구를 위해서는 오가노이드의 3차원 형태와 상태를 보존하며 그 기능을 실시간으로 모니터링할 수 있는 기술의 개발이 필요하다.
이 중 전기신호가 발생하는 심장과 뇌 오가노이드의 전기생리신호 측정의 경우, 오가노이드의 제작 방식에 따라 그 크기가 수백 마이크로미터(μm)부터 수 밀리미터(mm)까지 다양하고 형태가 불규칙하기 때문에 오가노이드를 파괴하지 않고 외부 표면에 전극을 밀착하여 측정하는 것은 매우 어려운 일이다.
연구팀은 오가노이드의 크기와 형태에 맞춰 스스로 늘어나 그 표면에 밀착할 수 있는 고신축성 돌출형 미세전극 어레이를 개발했다. 또한, 이를 활용해 오가노이드에서 발생하는 전기생리신호의 실시간 변화를 성공적으로 측정하여 평가했다.
연구팀은 미소 전자 기계 시스템(Micro Electro Mechanical Systems; MEMS) 공정을 개발해 서펜타인(Serpentine) 구조 기반의 고신축성 미세전극 어레이를 제작했으며, 전기증착 공정을 통해 돌출형 미세전극을 제작했다. 돌출형 미세전극은 오가노이드에 전극을 좀 더 강하게 밀착시켜 주어 오가노이드에는 손상이 가하지 않으면서도 안정적으로 전기생리신호를 측정할 수 있게 하였다.
이현주 교수는 “다양한 크기의 오가노이드에 활용 가능한 고신축성 돌출형 미세전극 어레이를 개발하여 실시간으로 오가노이드의 상태를 평가할 수 있다. 이번 기술은 신약 개발 시 실험동물을 대체하거나 재생 치료제로써 사용되는 오가노이드의 품질 평가에 바로 적용할 수 있을 것”이라고 말했다.
이번 연구 결과는 전기및전자공학부 김기업 박사과정과 한국생명공학연구원 이영선 박사과정이 제1 저자로 참여했으며, 국제 학술지 ‘어드밴스드 머티리얼스 (Advanced Materials)’지에 지난 12월 15일 자 온라인에 게재됐다.
(논문명: Highly Stretchable 3D Microelectrode Array for Noninvasive Functional Evaluation of Cardiac Spheroids and Midbrain Organoids), DOI: https://doi.org/10.1002/adma.202412953
한편, 이번 연구는 산업통상자원부 3D생체조직칩기반신약개발플랫폼구축기술개발사업 및 과학기술정보통신부 국산연구장비기술경쟁력강화사업, 바이오의료기술개발사업의 지원을 받아 수행됐다.
2025.01.14
조회수 375
-
신개념 생체형틀법 캠바이오(CamBio) 개발
생물학적 구조는 인공적으로 복제하기 어려운 정도의 복잡한 특징을 가지고 있지만 이러한 생체 구조체를 직접적으로 활용여 제작하는 생체형틀법*은 다양한 분야의 응용으로 사용됐다. KAIST 연구진이 이전에 활용할 수 없었던 생체 구조체를 활용하고, 생체형틀법을 통해 적용될 수 있는 영역을 넓히는데 성공했다.
*생체형틀법: 바이러스부터 우리의 몸을 구성하는 조직과 장기에 이르기까지 이러한 생체 구조의 기능을 활용하고자, 생체 구조를 형틀로 사용하여 기능성 구조재료를 만들어내는 방식
우리 대학 신소재공학과 장재범, 정연식 교수 공동연구팀이 생체 시료 안의 특정 내부 단백질을 활용하고 높은 조정성을 지닌 생체형틀법을 개발했다고 10일 밝혔다.
기존의 생체형틀법 방법은 주로 생체시료의 외부 표면만을 활용하거나, 한정된 치수와 샘플 크기로 인해 다양한 생체 구조체들의 구조-기능 상관성을 활용하여 기능성 나노구조체를 제작하기 어렵다는 한계를 가지고 있다.
이런 문제를 해결하고자 연구팀은 다양한 생체 내부 구조체를 활용하고, 높은 조정성을 가지는 생체형틀법을 연구했다.
연구 결과, 다양한 단백질들로 구성된 생체 시료 안에서 특정한 단백질 구조체로부터 선택적으로 다양한 특정 및 크기를 가진 나노구조체를 합성할 수 있는 ‘캠바이오(CamBio, Conversion to advanced materials via labeled Biostructure’라는 생체형틀법을 개발했다. 캠바이오(CamBio) 방식에서는 여러 제조·생물 분야 기술들을 병합하여 생체 시료에서 제작할 수 있는 기능성 나노구조체의 높은 조정성을 확보했다.
반복적으로 항체를 붙이는 기술, 세포를 일정한 모양으로 배열하는 기술, 그리고 조직을 얇게 자르는 기술을 통해, 캠바이오(CamBio)로 만든 기능성 나노구조체가 물질 감지에 사용되는 표면증강 라만산란(SERS)* 기판에서 향상된 성능을 보였다.
*표면증강 라만산란(SERS): 빛을 이용해 아주 적은 양의 물질도 감지할 수 있는 기술로, 금이나 은 같은 금속 표면에서 특정 물질이 빛과 반응하며 신호가 크게 증폭되는 원리
연구팀은 세포 속 골격 단백질을 이용해 만든 나노입자 체인은 반복적으로 항체를 붙이는 과정을 통해 구조를 더 자유롭게 조정할 수 있었고, 최대 230% 향상된 SERS 성능을 보였다.
또한, 연구팀은 세포 내부의 구조체를 활용하는 것에서 확장해 고기 내부에 있는 근육 조직을 동결 절편기를 활용해 시료를 얻고, 이에 캠바이오 과정을 수행해 금속 입자들로 이루어진 주기적인 밴드를 가지고 있는 기판 제작에도 성공했다. 이와 같은 방식으로 기판을 제작하는 것은 생체 시료를 활용해 대면적으로 제작할 수 있을 뿐만 아니라 가격 경쟁력을 가지는 방식임을 보인다.
연구팀이 개발한 캠바이오는 활용될 수 있는 생체시료의 범위를 넓힘으로써 다양한 연구 분야가 직면한 문제를 해결할 방식으로 생체형틀법이 사용될 것으로 기대된다.
제1 저자인 송대현 박사과정은 “캠바이오를 통해서 더욱 다양한 단백질 구조체를 활용할 수 있는 생체형틀법을 포괄적으로 적립했다”라며 “유전자 편집이나 3D 바이오프린팅과 같은 최신 생물 기술 및 새로운 물질 합성 기술과 결합이 계속된다면, 다양한 응용 분야에 생체 구조가 활용될 수 있을 것이다”라고 말했다.
신소재공학과 송대현 박사과정, 송창우, 조승희 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science )'에 지난해 11월 13일 자 온라인 공개됐다. (논문명 : Highly Tunable, Nanomaterial-Functionalized Structural Templating of Intracellular Protein Structures Within Biological Species) https://doi.org/10.1002/advs.202406492
한편 이번 연구는 과학기술정보통신부 과학난제도전융합연구개발사업 (한국연구재단 2024), 과학기술정보통신부 선도연구센터 (웨어러블 플랫폼소재 기술센터, 한국연구재단 2023), 과학기술정보통신부 선도연구센터 (글로벌 생체융합 인터페이싱 소재 센터, 한국연구재단 2024), 과학기술정보통신부 국가생명연구자원 선진화사업 (바이오 데이터 품질선도센터, 한국연구재단 2024) 등의 지원을 받아 수행됐다.
2025.01.10
조회수 553
-
기존 양자점 뛰어넘는 적외선 센서 기술 개발
최근 양자 큐비트 기술 분야에서는 양자 상태를 확보하기 위해 결정질 반도체를 활용한 아발란체 광다이오드 소자*들이 활용되고 있으나, 높은 열잡음으로 인해 극저온 구동이 필수적이며, 적외선 대역에서 높은 탐지 효율을 갖는 소재의 부재로 기술적 한계에 직면했다. 우리 연구진이 양자점 소재가 차세대 양자 기술로 활용될 돌파구를 제시했다.
*아발란체 광다이오드 소자: 매우 미세한 빛을 증폭하여 감지하는 고성능 센서 소자로서 야간 투시경이나 자율주행차, 우주 관측, 양자통신 등에 사용
우리 대학 전기및전자공학부 이정용 교수 연구팀이 콜로이드 양자점을 활용해 하나의 적외선 광자 흡수를 통하여 85배의 전자를 생성할 수 있는 아발란체 전자 증폭 기술*을 개발하여 기존 기술의 한계를 뛰어 넘는 감도를 달성했다고 8일 밝혔다.
*아발란체 전자 증폭: 기술 강한 전기장이 인가된 반도체에서 전자가 가속되어 인접 원자와 충돌을 통해 다수의 전자를 생성하는 신호 증폭 기술
화학적으로 합성된 반도체 나노입자인 콜로이드 양자점은 용액 기반 반도체로서 적외선 센서의 실용적인 후보로 주목 받고 있으며, 결정질 반도체와 다른 에너지 구조를 가져 열잡음 생성을 억제하는 장점이 있지만, 전하 이동도가 낮고, 양자점 표면에서 자주 발생하는 불완전 결합 때문에 전하의 재결합이 촉진되어 전하 추출이 저하되는 문제가 있었다.
연구진은 강한 전기장을 인가해 전자를 가속하여 운동에너지를 얻고, 인접 양자점에서 다수의 추가 전자들을 생성함으로써 상온에서 적외선을 조사 시 신호가 85배 증폭되고 1.4×1014 Jones 이상의 탐지 감도를 가지는 소자를 구현하였는데 이는 일반 야간 투시경보다 수만 배 정도 높은 감도를 보여준다.
적외선 광검출기는 자율주행차부터 양자컴퓨팅에 이르기까지 다양한 응용 분야에서 핵심적인 역할을 하지만, 기존 양자점 기반 기술은 민감도와 잡음 문제로 한계가 있었다.
이번 연구는 새로운 패러다임 전환을 불러올 기술이 될 것으로 기대되며, 양자 기술이 관련된 핵심 원천 기술을 선점함으로써 글로벌 양자 기술 시장을 대한민국이 주도할 수 있는 중요한 기술적 토대를 확보했다고 평가받고 있다.
제1 저자인 김병수 박사는 “양자점 아발란체 소자는 기존에 보고된 바 없는 신개념 연구 분야로서, 본 원천 기술을 통해 글로벌 자율주행차와 양자 컴퓨팅, 의료 영상 시장 등을 선도할 벤처 기업 육성을 주도할 수 있을 것”이라고 말했다.
KAIST 정보전자연구소 김병수 박사와 IMEC의 이상연 박사 및 한국세라믹기술원의 고현석 박사가 공동 제1 저자로 참여한 이번 연구는 국제 최상위 학술지 `네이처 나노테크놀로지(Nature Nanotechnology)' 12월 18일 자 온라인판에 게재됐다. (논문명 : Ultrahigh-gain colloidal quantum dot infrared avalanche photodetectors DOI: https://doi.org/10.1038/s41565-024-01831-x)
한편 이번 연구는 한국연구재단의 지원을 받아 수행됐으며, 주요 지원 사업으로는 나노및소재기술개발사업(경쟁형), 미래디스플레이 전략연구실사업, 개인기초연구사업 중견연구가 있다.
2025.01.08
조회수 939
-
면역관문억제제의 한계를 극복할 수 있는 수지상세포 기반 면역치료
우리 대학 생명과학과 강석조 교수 연구팀이 성장인자 FLT3L에 의해 종양 내에서 증대된 제1형 수지상세포(cDC1, conventional dendritic cell type 1)가 종양침윤 항암 CD8+ T 세포의 기능과 클론의 다양성을 향상한다고 7일 밝혔다.
제1형 수지상세포는 종양 유래 항원을 림프절로 운반하여 CD8+ T 세포에 제시하고, IL-12를 비롯한 사이토카인(cytokine)을 생성하여 T 세포의 항종양 면역반응을 촉진한다고 이해되어 왔다. 하지만, 종양내에 존재하는 제1형 수지상세포가 항종양 CD8+ T 세포의 분화와 이들의 다양성에 어떤 영향을 미치는 지는 알려진 바가 없다.
강 교수 연구팀은 종양미세환경 내 CD8+ T 세포를 asialoGM1 (asGM1) 발현을 기반으로 두 집단으로 구별하고, 기존 연구에서 밝혀진 종양 침윤 T 세포 아형(subset)과 비교한 결과, asGM1neg CD8+ T 세포는 자가재생능을 갖는 Tpex (precursor exhausted T cells)와 전사체가 유사하고, asGM1pos CD8+ T 세포는 탈진된(exhausted) 세포와 유사함을 확인했다.
연구팀은 종양 내에 수지상세포의 성장인자인 FLT3L를 발현시켜 수지상세포를 증대시키고 활성화하였을 때, asGM1neg CD8+ T 세포의 Tpex 특성은 더욱 강화되었으며, 동시에 asGM1neg CD8+ T 세포가 asGM1pos CD8+ T 세포로의 분화가 촉진되었는데, 이 때 asGM1pos CD8+ T 세포가 작용 T 세포(effector T cell)의 기능을 확보하면서 항암 면역기능이 향상됨을 확인하였다. 특히 연구팀은 이러한 분화가 제1형 수지상세포의 확장 및 활성으로 분비되는 IL-12에 의해 매개됨을 밝혔다. 연구팀은 나아가 항암치료의 혁신을 가져온 면역관문억제제인 PD-1 억제제 처리가 공통적으로 asGM1을 발현하는 작용 T 세포로의 분화를 유도함을 보였다.
하지만, 본 연구진은 놀랍게도 종양 내 FLT3L 발현은 PD-1 억제제와는 전혀 다른 T 세포 다이내믹스를 통하여 항종양 T 세포 클론의 다양성을 증대시킴을 밝혔다. 이러한 T 세포 수용체의 클론 다양성 증대는 면역관문억제제가 일부 환자에게만 작용하는 제한점을 극복하는 중요 전략이 될 것임을 시사하였다.
강석조 교수는 “본 연구는 제1형 수지상세포의 증대를 통하여 감춰져있던 종양항원의 제시를 증가시켰고, 이를 인식하는 새로운 항종양 CD8+ T 세포가 활성됨을 보인 연구”라고 언급하면서, “본 연구 결과는 면역관문억제제의 항암면역 활성기전과 차별적인 기전을 제시함으로써 합리적인 병용요법의 논거를 제공할 것으로 기대한다”라고 전했다.
이번 연구 결과는 국제 학술지 `셀 리포트 (Cell Reports)’에 11월 30일 字 온라인판에 게재됐다 (논문명: Flt3L enhances clonal diversification and selective expansion of intratumoral CD8+ T cells while differentiating into effector-like cells). KAIST 생명과학과 전동민 박사(現 아이엠바이오로직스), 박지연 박사가 공동 제1저자로 연구를 주도하였고, 이슬기 박사과정 학생과 의과학대학원의 박종은 교수와 김효재 박사(現 아산병원)가 함께 참여하였다.
이번 연구는 한국연구재단의 바이오∙의료기술개발사업과 선도연구센터지원사업의 지원을 받아 수행됐다.
2025.01.07
조회수 596
-
CES 2025 이노베이션 어워드 수상, 혁신기술 선보여
세계 최대 규모의 기술 박람회인 ‘국제전자제품박람회(이하 CES 2025)에 KAIST 혁신 기술을 선보인다. 또한, KAIST 창업기업인 ㈜버넥트, 스탠다드에너지㈜, ㈜에이투어스, (주)파네시아는 2025 CES 이노베이션 어워드(Innovation Award)를 수상했다.
우리 대학은 내년 1월 7일부터 10일까지 미국 라스베이거스에서 진행되는 CES 유레카파크에 140㎡ 규모의 단독 부스를 운영하며, KAIST 혁신 기술을 세계적인 기업과 투자자들에게 선보인다고 31일 밝혔다.
KAIST 창업기업인 ㈜버넥트, 스탠다드에너지㈜, ㈜에이투어스, (주)파네시아는 2025 CES 이노베이션 어워드를 수상했다. ▴(주)버넥트는 산업 현장을 위한 AI기반 스마트글라스인 ‘VisionX’으로 ‘산업 장비 및 기계’ 부문, ▴스탠다드에너지(주)는 바나듐 이온 배터리를 세계 최초로 개발한 기업으로, ‘스마트 시티’ 부문, ▴㈜에이투어스는 물방울만으로 공기 중의 세균과 악취 그리고 미세먼지 등을 없애는 휴대용 공기청정기로 ‘환경 & 에너지’부문, ▴(주)파네시아는 AI 인프라 구축 비용 대폭 절감이 가능한 ‘CXL 기반 GPU 메모리 확장 키트’으로 ‘컴퓨터 주변기기 및 액세서리’ 부문에서 혁신상을 수상했다.
이번 전시에는 인공지능(AI), 로보틱스, 모빌리티, 지속가능성 등 첨단기술 분야에서 두각을 나타내고 있는 15개 창업기업이 참여한다. 특히, 물류, 건축, 의료 등 다양한 산업 분야의 인공지능(AI) 기반 딥테크 스타트업이 절반을 차지하여 기업들의 혁신적 AI 기술을 선보이게 된다.
‘(주)폴리페놀팩토리’는 샴푸 과정에서 모발에 순간적인 보호막을 형성하는 ‘리프트맥스(LiftMax 308™)’ 특허 성분을 적용하여 국내 출시된 탈모 샴푸 ‘그래비티’를 소개한다. 이번 전시관에서 해당 성분의 효과를 참관객들이 직접 체험할 수 있도록 실시간 데모를 진행할 예정이며, 2025년 1월 미국 아마존 론칭을 시작으로 글로벌 시장 진출을 계획 중이다.
(주)버넥트’는 이번에 혁신상을 수상한 프로토타입의 ‘VisionX’를 선보일 예정이다. 해당 제품은 AI 음성 인터페이스를 통해 챗봇 AI를 제공하며, AI와 대화를 통해 설비의 상태를 실시간으로 확인하고, 트러블슈팅 가이드를 음성형 대화로 안내받을 수 있는 기능을 가지고 있어, KAIST관에서 직접 체험할 수 있을 것이다.
‘스탠다드에너지(주)’는 세계 최초로 개발한 바나듐 이온 배터리(이하 VIB)를 활용한 실내형 ESS인 ‘에너지타일’을 전시할 계획이다. VIB는 화재에 절대 안전하면서도 설치의 유연성이 높아 스마트 시티 및 AI 데이터센터 등에 적용이 가능하다.
‘(주)에이투어스’는 하이드록실 라디칼 물 생산기술을 세계에서 유일하게 가지고 있는데, 첫 제품인 공기청정기로 혁신상을 수상하였다. 향후 안전하고 환경친화적인 하이드록실 라디칼 물을 이용한 공기와 물 정화, 스마트팜, 푸드텍, 및 반도체 세정 등에 광범위한 사업화가 예상된다.
‘(주)파네시아’는 자사 CXL 3.1 IP를 탑재한 GPU 메모리 확장 솔루션으로 CES 혁신상을 수상했다. 파네시아의 CXL IP를 활용해 메모리 확장장치를 연결하면, GPU의 메모리 용량을 테라바이트 수준으로 확장할 수 있다. 작년 CES 2024 ‘CXL 탑재AI 가속기’ 혁신상 수상에 이어 2년 연속 인공지능향 CXL 솔루션으로 혁신상을 수상한 유일한 기업이다.
이 밖에도 ▴오믈렛 ▴넥스트웨이브 ▴플랜바이테크놀로지스 ▴코스모비 ▴임팩트에이아이 ▴로엔서지컬 ▴디든로보틱스 ▴오토피디아 ▴오에이큐 ▴하이드로엑스팬드 ▴북엔드 ▴스테리 등 총 15개 업체의 기술이 소개된다.
KAIST관 중앙 스테이지에서는 CES 학생 서포터즈로 선발된 KAIST 재학생들이 참여기업과 인터뷰를 진행하며 기업의 혁신적인 기술과 솔루션을 홍보할 예정이며, 8일 오후 5시부터 오후 7시까지 사전에 초청된 투자자와 참여기업이 네트워킹하는 KAIST 나이트(NIGHT) 이벤트가 진행될 예정이다.
이건재 기술가치창출원장은 “CES 2025를 통해 KAIST의 딥사이언스와 딥테크를 기반으로 한 창업기업들의 혁신적인 기술과 솔루션을 선보이며, AI, 로보틱스, 모빌리티, 환경·에너지 등 첨단 기술 분야에서 사업화를 선도할 것입니다. KAIST는 기술가치창출원을 통해 혁신적인 창업기업들의 성장 및 마케팅을 지원하고, 글로벌 네트워크 강화 및 협력 기회를 확대함으로써 기술사업화를 더욱 촉진할 계획이다”라고 밝혔다.
2024.12.31
조회수 857
-
항공우주공학과 김준수 박사과정, IEEE/AIAA DASC 2024 국제학회 최우수논문상 수상
우리 대학 항공우주공학과 이지윤 교수 연구실의 김준수 박사과정 학생이 제43회 국제 디지털 항공전자 시스템 학회(Digital Avionics Systems Conference, 이하 DASC)에서 최우수논문상인 ‘The David Lubkowski Award’을 수상하는 쾌거를 이루었다.
DASC는 1975년에 시작하여 올해로 43회를 맞이한 항공전자시스템, 소프트웨어 아키텍처, 네트워크 및 보안 등을 다루는 국제 학술대회이다. 해당 학회는 국제전기전자공학자협회(IEEE)와 미국항공우주협회(AIAA)가 공동 주관하며 관련 분야에서 가장 권위 있는 학술대회 중 하나로 인정받는다.
김준수 박사과정 학생은 지난 10월 미국 샌디에고에서 개최된 DASC 2024 국제학술대회에서 ‘도심항공모빌리티(UAM) 충돌회피용 최소 이격거리 산출 방법론’을 제안한 논문을 발표하였다. UAM은 새로운 교통 수단으로, 기존의 민간항공기에 비해 협소한 공역에서 저가형 센서를 사용하여 안전한 운항을 해야하는 도전적 문제가 존재한다. 특히, 기존 민간항공기 교통관제에서 설정한 넓은 이격거리를 UAM 공역에서 사용할 수 없다. 본 연구팀(김준수 박사과정 학생, 남기훈 박사과정 학생, 민동찬 박사, 이지윤 교수, Sam Pullen 박사)은 센서 성능 및 안전성 평가기법을 기반으로 한 충돌회피용 최소 이격거리 산출 방법론을 세계최초로 제안하여 항공교통의 공역 효율을 획기적으로 높일 것으로 기대된다.
김준수 학생은 “이렇게 큰 상을 받게 되어 정말 영광이며, 이지윤 교수님의 지도와 연구실 동료들과의 협력이 큰 힘이 되었다”면서 “앞으로 UAM 항법시스템 및 항공교통관제 안전성 보장 연구 분야에서 혁신적인 연구를 이어가도록 노력하겠다”라고 수상 소감을 밝혔다. 한편 김준수 학생은 스탠퍼드 대학의 위성항법시스템 연구실에서 6개월간 방문 연구 중이며 본 연구 주제로 협력을 지속할 계획이다.
2024.12.30
조회수 1009
-
기존보다 5배 정밀하게 생체 임피던스 측정 가능
‘인바디(InBody)’란 기기로 체성분을 분석하는 것은 이제 우리의 일상이 되었다. 이렇듯 몸에 교류 전류를 흘릴 때 전류 흐름을 방해하는 인체의 저항 특성인 생체 임피던스* 측정 기술은 웨어러블 기기에 매우 중요하다. 국제 공동 연구진이 단 두 개의 전극만을 사용하면서도 기존보다 5배 정밀하게 생체 임피던스를 측정할 수 있는 기술을 개발해 화제다.
*생체 임피던스 측정 기술 : 생체 조직의 전기적 특성을 기반으로 체내의 다양한 생리적 상태를 모니터링할 수 있는 핵심 기술
우리 대학 전기및전자공학부 제민규 교수 연구팀이 뉴욕대학교 아부다비(New York University Abu Dhabi, NYUAD) 하소명 교수 연구팀과 공동연구를 통해 웨어러블 기기에 최적화된 고해상도 생체 임피던스 측정 기술을 개발했다고 26일 밝혔다.
생체 임피던스 측정 기술로 잘 알려진 기존 4개 전극 시스템*에 비해 2개 전극 기반 측정 시스템**은 소형화가 쉽다는 장점으로 웨어러블 기기에 적합하다고 평가받고 있다.
*4개 전극 시스템: 생체 임피던스를 측정하기 위해 네 개의 전극을 사용하는 시스템으로 웨어러블 기기의 소형화에 불리함
**2개 전극 시스템: 단 두 개의 전극만을 사용하여 생체 임피던스를 측정할 수 있는 시스템으로 웨어러블 기기의 소형화에 적합함
하지만, 2개 전극 시스템은 전극 자체의 임피던스 값이 포함된 신호를 측정하기 때문에 넓은 입력 범위가 필요하며, 측정하는 임피던스 값에 비례해 정확한 측정을 방해하는 잡음이 증가하는 한계로 활용이 어려웠다.
연구팀은 기존 2개 전극 시스템의 기술적 한계를 극복하기 위해 전극 자체의 임피던스 값인 베이스라인과 그에 의해 발생하는 측정 잡음을 기존보다 훨씬 효과적으로 제거할 수 있는 반도체 회로 설계 기술을 새롭게 개발했다. 이번에 제안된 기술을 적용한 시스템은 기존 기술 적용 시 필요로 하던 별도의 전류 생성 회로를 없앨 수 있어 전력 소모 역시 줄일 수 있다.
이런 기술을 통해 생체 임피던스 측정 과정에서 발생하는 임피던스의 위상 및 크기 변화에 따른 잡음 문제를 효과적으로 해결해, 높은 정밀도와 효율성을 동시에 확보했다.
제민규 교수(교신저자)는 “이번 연구로 개발된 생체 임피던스 측정 기술은 다양한 임피던스 모델에 대해 기존의 방식 대비 최대 약 5배 가량 우수한 잡음 성능을 달성하였음을 입증했다”면서 “향후 생체 임피던스 측정을 활용한 개인 맞춤형 건강 관리와 질환 예측 기술 발전에 크게 기여할 것”이라고 말했다.
우리 대학 전기및전자공학부 최해담, 천송이 박사과정이 공동 제1 저자, 제민규 교수와 NYUAD 하소명 교수가 공동 교신 저자로 참여했으며 해당 논문은 세계 최고 권위의 반도체 집적회로 및 시스템 학회인 ‘ISSCC (International Solid-State Circuits Conference)’에 발표됐으며, 동 분야 세계 최고 학술지인 ‘IEEE JSSC (Journal of Solid-State Circuits)’의 초청을 받아 지난 11월 게재됐다.
IEEE Journal of Solid-State Circuits (2024), DOI:10.1109/JSSC.2024.3439865
(논문명: A Bio-Impedance Readout IC With Complex-Domain Noise-Correlated Baseline Cancellation)
한편 이번 연구는 NYUAD (New York University Abu Dhabi)와의 협업으로 진행됐으며, 과학기술정보통신부가 지원한 ‘상시 근골격 모니터링 및 재활을 위한 무자각 온스킨 센서 디바이스 기술’과제와 ‘인간 기능 확장을 위한 생체 신호 센서 기반의 내골격 장치 및 통합 시스템 개발’ 과제를 통해 수행됐다.
2024.12.26
조회수 1097
-
기계공학과 구승범 교수팀, NeurIPS 2024 MyoChallenge 대회 보행 부문 우승
우리 대학 기계공학과 구승범 교수 연구팀(박건우 박사과정, 신범수 박사과정, 박종현 박사과정)은 2024년 12월 캐나다 밴쿠버에서 열린 NeurIPS 학회의 경쟁 대회 중 하나인 MyoChallenge 대회에 참가하여, 15개국에서 54팀이 참여한 가운데, 보행 운동 부문 1위를 차지하였다. 이 대회는 Google Deepmind, Google Cloud와 Össur가 후원하였다.
이 대회에서는 인체의 신경근육제어 원리를 연구하기 위한 다물체 동역학 기반의 인체 근골격 시뮬레이션 환경이 제시되었다. 자체 알고리즘으로 작동하는 의족/의수 (Prosthetic limb)가 결합된 인체 모델이 일상 생활 동작(상지 운동, 보행 운동)을 할 수 있도록 인체 근육 제어기를 학습하고, 그 성능을 경쟁하였다. 보행 운동 부문에서는 의족을 장착한 인체 모델이 주어진 트랙(평지, 거친길, 언덕, 계단)에 맞춰 보행할 수 있도록 인체 제어기를 학습하고, 그 안정성과 속도를 평가하였다.
하지에 54개 근육과 오른 다리 의족이 장착된 인체 모델의 근육 활성도를 제어하여, 지면이 고르지 않은 5m x 120m 경기장에서 넘어지지 않고 앞으로 나아가는 경기가 진행되었다. 구승범 교수 연구팀은 심층강화학습 기술과 인체 운동 데이터 기반 동작 생성 기술을 적용하여, 실제 사람이 근육을 제어하여 운동하는 모습을 모방할 수 있는 고성능 인체 운동 제어기를 학습하였다. 특히, 올해는 연구실에서 자체 구축한 120명의 평지, 계단 및 경사로 보행 동작 데이터셋을 사용해서, 인체 모델이 계단 및 경사로 지형에서도 안정적으로 보행할 수 있도록 학습하였다.
이 기술은 인체의 신경운동제어를 모방하여 다양한 상황에서의 보행 동작을 생성할 수 있다. 또한 이번 대회와 같이 인체에 착용하는 보조 장비와 상호 작용 시뮬레이션이 가능하여, 장비/기구의 개발 및 성능 개선에 사용 가능하다.
이번 대회에는 과학기술정보통신부(IITP ETRI 연구개발지원사업, 연구재단 미래유망융합기술파이오니어사업, 연구재단 중견연구자지원사업)의 지원을 받아 참여하였다.
2024.12.24
조회수 1323
-
도심 항공 모빌리티는 리튬황전지로 세대교체 가능
전기자동차 시장의 성장에 이어, 항공 교통을 연결하는 도심 항공 모빌리티(Urban Air Mobility, UAM) 시장이 배터리 산업의 새로운 전환점으로 주목받고 있다. 항공 모빌리티를 위한 에너지원으로는 쓰이는 기존 상용 리튬이온전지는 무게당 에너지밀도가 낮은 한계점이 있어 대학과 기업 공동연구진이 이를 극복할 차세대 기술로 활용될 혁신적인 리튬황전지를 개발해서 화제다.
우리 대학 생명화학공학과 김희탁 교수팀이 LG에너지솔루션 공동연구팀과 협력 연구를 통해 배터리의 안정적 사용을 위해 전해액 사용량이 줄어든 환경에서 리튬황전지 성능 저하 원인을 규명하고, 이를 바탕으로 성능을 혁신적으로 개선할 수 있는 기술을 개발했다고 23일 밝혔다.
중국 CATL社는 2023년 ‘응축 배터리(Condensed battery)’기술을 발표하며 항공용 배터리 시장을 준비하고 있음을 밝힌 바 있다. 이와 같은 흐름 속에서, 기존 리튬이온전지를 뛰어넘는 차세대 기술로 리튬황전지가 주목받고 있다. 리튬황전지는 기존 리튬이온전지 대비 2배 이상의 무게당 에너지밀도를 제공할 수 있어 UAM 시장의 게임 체인저로 평가받는다.
그러나 기존 리튬황전지 기술은 배터리의 안정적 구동을 위해 많은 양의 전해액이 필요해 전지 무게가 증가하고, 결과적으로 에너지밀도가 감소하는 문제가 있었다. 더불어 전해액 사용량을 줄이는 희박 전해액 환경에서는 성능 열화가 가속화되는 한편, 퇴화 메커니즘조차 명확히 밝혀지지 않아 UAM용 리튬황전지 개발이 난항을 겪어 왔다.
연구팀은 전해액 사용량을 기존 대비 60% 이상 줄이고도 400Wh/kg 이상의 에너지밀도를 구현하는 리튬황전지를 개발했다. 이는 상용 리튬이온전지보다 60% 이상 높은 에너지밀도를 가지며, 안정적인 수명 특성을 확보해 UAM용 배터리의 가장 큰 장애물을 극복한 것으로 평가된다.
연구팀은 다양한 전해액 환경을 실험하며, 성능 저하의 주요 원인이 전극 부식으로 인한 전해액 고갈임을 밝혀냈다. 이를 해결하기 위해 불소화 에테르 용매를 도입해 리튬 금속 음극의 안정성과 가역성을 높이고 전해액 분해를 줄이는 데 성공했다.
생명화학공학과 김일주 박사과정 학생이 제 1저자로 참여한 이번 연구는 에너지 분야 최고 권위 학술지인 어드밴스드 에너지 머터리얼즈(Advanced Energy Materials)’에 게재되며 그 혁신성을 인정받았다.
(논문 제목: Moderately Solvating Electrolyte with Fluorinated Cosolvents for Lean-Electrolyte Li-S Batteries,
DOI: https://onlinelibrary.wiley.com/doi/10.1002/aenm.202403828)
연구 책임자인 우리 대학 김희탁 교수는 “이번 연구는 리튬황전지에서 전해액 설계를 통한 전극 계면 제어의 중요성을 밝힌 의미 있는 연구로 대학과 기업의 협력을 통해 이루어진 대표적인 성공 사례로 UAM과 같은 차세대 모빌리티 배터리 상용화를 앞당기는 데 큰 진전을 이룰 것”이라고 말했다.
KAIST와 LG에너지솔루션은 앞으로도 차세대 모빌리티를 위한 배터리 기술 협력을 강화해, 새로운 배터리 시장을 선도할 계획이다.
이번 연구는 2021년 KAIST와 LG에너지솔루션이 공동 설립한 ‘프론티어 리서치 랩(Frontier Research Laboratory)’에서 수행됐으며, 또한, 한국연구재단의 지원을 받아 수행됐다.
2024.12.23
조회수 1324
-
메타버스 시대 이끌 초고해상도 화면 구현 패터닝 기술 개발
생동감 있는 색상, 높은 효율과 긴 수명을 자랑하는 양자점(Quantum Dot) 기반 디스플레이가 주목받고 있다. 특히, 친환경 인듐 포스파이드(InP) 양자점은 현재 TV와 스마트폰을 비롯한 다양한 디스플레이에 폭넓게 활용되고 있다. 그러나 다가오는 메타버스 시대를 현실감 있게 구현하기 위한 디스플레이 구현을 위해서는 초고해상도 양자점 패턴 제작 기술의 개발이 필수적이다.
우리 대학 신소재공학과 조힘찬 교수 연구팀이 신규 양자점 리간드*를 개발하여 InP 양자점의 초고해상도 패턴을 형성하는 동시에 소자 효율을 향상시키는 신기술을 개발했다고 13일 밝혔다.
*리간드: 양자점 표면에 결합하여 양자점을 보호하고 계면활성제 역할을 하는 물질.
InP 양자점은 외부 환경에 민감하여 패턴 형성 공정 중 광학적 특성이 크게 저하되는 한계가 있었다. 또한, 디스플레이 효율에 직결되는 리간드를 조절하는 과정에서도 광학적 특성이 손상되는 문제가 있었다. 따라서, 소재 고유의 특성을 유지하면서 초고해상도 패턴을 구현하고, 소자의 효율까지 높일 수 있는 기술 개발은 큰 도전 과제로 남아 있다.
이에, 조힘찬 교수 연구팀은 양자점의 광학적 특성을 보존하는 동시에 초고해상도 패턴 구현을 가능하게 하는 리간드를 개발하였다. 개발된 리간드는 빛에 의해 절단되어 길이가 짧아지는 특성을 보이는 물질로, 양자점 표면이 변화하면서 용해도 차이가 생겨 패턴 형성이 가능해지는 원리이다. 더불어 짧아진 리간드는 소자에서의 전기 전도도를 증가시켜 향상된 효율의 디스플레이를 구현할 수 있었다.
조힘찬 교수는 “이번에 개발한 광민감성 양자점 소재와 패터닝 기술은 기존 기술과 달리 초고해상도 패턴 제작과 양자점 박막의 전기 전도도 향상을 동시에 달성하여 차세대 양자점 LED 기반 디스플레이, 양자점 이미지 센서 등 다양한 미래 산업 분야에 실질적으로 적용될 수 있을 것으로 기대된다”라고 언급했다.
연구팀의 이재환 박사과정, 연성범 석박사통합과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘에이씨에스 에너지 레터스 (ACS Energy Letters)’에 12월 13일 온라인 게재됐으며, 1월 호 부록 표지(Supplementary Cover)로 출판될 예정이다.(논문명: Photocleavable Ligand-Induced Direct Photolithography of InP-Based Quantum Dots).
한편 이번 연구는 한국연구재단 및 중소벤처기업부의 지원을 받아 수행됐다.
2024.12.18
조회수 1141