본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%ED%95%A9%EC%84%B1%EC%83%9D%EB%AC%BC%ED%95%99
최신순
조회순
미래를 위한 대체 불가 바이오 제조 전략 제시
2021년 서울국제포럼과 KAIST가 공동 개최한 “글로벌 복합위기와 4차 산업혁명의 대전환기, 탄력성장의 도전과 기회” 포럼에서 KAIST 이상엽 특훈교수는 우리나라가 미래 국가경쟁력을 확보하기 위해서는 대체 불가 기술 (non-fungible technology; NFT)을 확보해야 한다고 처음으로 제시한 바 있다. 기후 변화의 심각성에 연간 약 1.1억 톤의 식품 폐기물을 포함한 다양한 유기 폐기물들, 그리고 이산화탄소도 바이오 제조를 위한 원료로 사용하도록 대체 불가능한 바이오기술(Bio-NFT)로 활용하는 것이 이제 선택이 아닌 필수가 됐다. 우리 대학 생명화학공학과 이상엽 특훈교수가 기술 혁신, 원료 공급 최적화 및 적절한 인프라를 통해 바이오 제조의 확장을 포함한 경쟁력 확보 전략 수립에 대한 논문을 네이처 화학공학지(Nature Chemical Engineering)에 월드뷰(Worldview)에 7월 22일 자로 제시했다고 24일 밝혔다. ※ 논문명 : Fungible and non-fungible technologies in biomanufacturing scale-up ※ 저자 정보 : 이상엽(한국과학기술원, 제1 저자, 교신저자) 1명 최근 신진 대사 공학과 합성 생물학의 급성장은 전통적인 화석 자원에 의존하는 제조 공정을 바이오 기반 대안으로 전환할 수 있는 잠재력을 보여주고 있다. 미생물 세포 공장을 통해 화학물질과 재료를 생산하는 바이오 기반 기술은 빠르게 발전하고 있으며, 이는 각각 5.7조 달러, 9.2조 달러, 22.5조 달러의 시장규모를 가진 화학, 식품 및 소비재 등 다양한 산업 부문에 혁신적인 변화를 가져오고 있다. 이는 2조 달러 규모의 제약시장 보다도 훨씬 크다. 그러나 이러한 바이오 제조로의 전환은 기술적, 경제적, 사회적 장벽으로 인해 어려움을 겪고 있다. 점점 더 많은 사람들이 지구 온난화의 현실과 그 악화되는 영향을 인식하면서 환경에 덜 해로운 제품에 대한 선호도가 높아지고 있지만, 실제 구매 결정에 있어서는 가격이 중요한 역할을 한다. 따라서, 각국 정부들은 규제 지원뿐만 아니라 대중과의 소통을 통해 지속 가능한 생산과 소비에 대한 이해와 헌신을 촉진해야 한다. 이 교수는 중요하게 떠오른 바이오 제조 확장, 특히 범용화학물질 생산 등 대체 불가능하지 않은 바이오기술 (not non-fungible)을 위해 풀어야 할 세 가지 주요 과제를 제시했다. 첫째, 미생물 세포 공장의 TRY(titer, rate, yield; 농도, 속도 및 수율)를 최대화하는 것으로 기존 대사공학에 데이터 과학, 인공지능 및 로봇 공학의 통합을 통해 이러한 역량을 강화해야 한다. 둘째, 원료 공급 및 물류의 최적화가 필요하다. 약 6억 톤의 바이오매스가 연간 바이오 기반 재료 생산을 위해 사용될 수 있지만, 최적의 분배 및 공급망이 완전히 구축되지 않았다. 다양한 원료의 사용을 가능하게 하는 기술 개발이 필요하다. 셋째, 인프라 및 시설 건설에 필요한 대규모 자본 투자 문제이다. 최근 들어 건설비용이 급격히 증가하여 최첨단 제조 시설을 구축하는 데 드는 높은 비용은 운영 확장의 재정적 실행 가능성을 어렵게 한다. 바이오 제조시설 구축을 위한 정책자금 투입 등 국가적인 인프라 개념에서의 투자가 요구되며, 단기적인 해결책으로는 완전히 유연한 중형 바이오 정제소를 건설하여 시장에 가장 적합한 제품을 생산할 수 있다고 제시했다. 이 교수는 “기술 혁신, 원료 공급 및 인프라 개발에의 집중적인 노력이 필요하다”고 강조하면서 “이를 통해 산업은 보다 지속 가능하고 경제적으로 실행 가능한 바이오 제조 공정으로 전환할 수 있으며, 이는 글로벌 시장에 큰 영향을 미칠 것이다. 지속 가능한 미래에 기여하고 산업에 상당한 경제적 기회를 제공할 것으로 기대된다.”고 밝혔다. 한편 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제책임자 KAIST 이상엽 특훈교수)의 지원을 받아 수행됐다.
2024.07.25
조회수 1757
이상엽 특훈교수, 합성생물학 개척자 상 수상
전 세계적으로 바이오 제조의 핵심기술인 합성생물학 분야 기술개발 경쟁이 치열하다. 우리 대학 생명화학공학과 이상엽 특훈교수가 합성생물학 분야 연구자, 기업인, 투자자 등이 대거 참여하는 세계 최대의 콘퍼런스인 ‘신바이오베타(SynBioBeta) 2024’에서 세계 합성생물학 개척자 상인 ‘신바이오베타 파이오니어 상(SynBioBeta Pioneer Award)’을 수상했다고 31일 밝혔다. 5월 6일부터 9일까지 미국 산호세 컨벤션센터에서 개최된 신바이오베타 2024는 순수한 학술대회와는 다르게 학계와 연구계 연구자들뿐 아니라 수많은 합성생물학 기업과 투자자들이 모여 기조 강연, 패널토론, 전시, 투자 네트워킹 등 다양한 형태의 방식으로 진행됐다. 인간 게놈서열을 처음으로 밝힌 크래그 벤터 박사, 바이오 투자계의 전설인 비노드 코슬라, 노벨상 수상자인 토마스 쉬도프 교수, 조인트 바이오에너지연구소의 제이 키슬링 CEO 등 600여 명의 참석자들이 활발한 토론을 했다. 이상엽 특훈교수는 ‘지속가능과 건강을 위한 합성생물학의 역할’을 주제로 기조 강연을 해 청중들의 큰 박수를 받았고, ‘생물학적 해결 용량 확장’세션에서 패널토론을 통해 세포공장 효율 극대화를 위한 기술적 혁신, 원료 수급의 최적화, 인프라 투자 등의 중요성을 강조했다. 신바이오베타는 전 세계 합성생물학 연구자 중 세 명의 개척자 상 후보자를 먼저 선정해 공개했고, 그중 이상엽 교수가 최종 수상자로 선정됐다. 콘퍼런스 마지막 날 이상엽 특훈교수는 합성생물학이 태동한 후 20여 년간 합성생물학 기반 바이오 제조 원천기술들과 석유 화학물질, 기능성 천연물질 등을 바이오 기반으로 만드는 다수의 기술들을 세계 최초로 개발하는 등 합성생물학 분야 연구를 개척한 공로로 세계 합성생물학 개척자 상을 받게 됐는데, 스탠퍼드 대학교 특강을 하는 중 발표되어 신바이오베타 2024에 참석 중이던 이 교수의 제자가 대리 수상했다. 상을 받게 된 이상엽 특훈교수는 “지난 30여 년간 제자들과 함께 연구해 온 시스템 대사공학이 바이오 제조분야에서 핵심 역할을 하게 될 것임을 합성생물학 전체 커뮤니티에서 인정받아 기쁘다”고 소감을 밝히며, “전 세계적으로 바이오 제조가 점점 더 중요해지는 시점에 인공지능, 바이오파운드리 활용 미생물 세포공장의 원천 및 응용 기술들을 지속 개발해 바이오산업 발전에 기여하고 싶다”고 향후 계획을 밝혔다.
2024.06.03
조회수 1842
KAIST 첨단 연구의 체험·전시·제품을 짜릿하게 만나다
우리 대학이 4월 과학의 달을 맞아 첨단 연구성과를 체험형 전시 프로그램으로 구성해 시민과 소통에 나선다. 25일부터 28일까지 4일간 대전 엑스포 시민광장 및 과학공원 일대에서 열리는 '2024 대한민국 과학축제 & 과학기술대전'에 6개 연구팀 및 3개 창업기업이 참여해 기술을 선보인다. '과학 실험실' 구역에서는 수면·퍼스널 컬러·뇌구조 분야의 연구진이 체험형 전시로 관람객을 맞는다. 석현정 산업디자인학과 교수 연구팀은 인공지능 기반 퍼스널컬러 진단 서비스를 제공하는 '나의 퍼스널 컬러 찾기(The Authentic Color Play)' 부스를 설치한다. 방문객들은 현장에서 피부색 자동 측정 기술을 직접 체험해보고 개인 피부에 최적화된 색상을 추천받을 수 있다. 김재경 수리과학과 교수 연구팀은 방문객이 양질의 수면을 하고 있는지 3분 만에 알아볼 수 있는 '슬립스(SLEEPS)' 프로그램을 운영한다. 머신러닝 기반의 수면장애 예측 알고리즘을 활용해 간단한 설문과 신체 측정만으로 수면장애 위험도를 계산해보는 체험이다. 검사 결과를 바탕으로 수면장애 위험도를 낮출 수 있는 생활 습관도 함께 알아볼 수 있다. 최민이 뇌인지과학과 교수 연구팀은 '미니 브레인' 체험을 진행한다. 가상현실(VR) 프로그램을 이용해 뇌의 주요 부위들을 해체·조립하며 뇌의 구조를 학습할 수 있다. 또한, 주요 기능과 역할이 다른 뇌 모형의 각 부분을 색칠로 구분하고 스티커를 붙이는 ‘뇌 컬러링’과 세포로부터 미니 브레인이 생겨나는 과정을 시뮬레이션 한 동영상도 관람할 수 있다. 국가 12대 전략기술 성과를 모아놓은 '과학 뮤지엄' 구역에서는 첨단바이오·첨단로봇제조·첨단모빌리티 분야의 연구성과를 전시한다. 조병관 공학생물학대학원 교수 연구팀은 '합성생물학 기반 CO2-to-바이오소재 전환 미생물 세포공장 기술'을 전시한다. 쓰레기 매립 가스, 산업 부생가스 등 환경 오염의 주요 원인인 온실가스를 미생물에 흡수시킨 뒤, 합성생물학을 기반으로 하는 유전적 개량기술을 적용해 다양한 바이오소재로 전환할 수 있는 고효율 생체촉매 개발 기술이다. 박해원 기계공학과 교수 연구팀은 험지탐사용 4족보행 로봇인 '하운드(HOUND)'를 공개한다. 하운드는 시각 및 촉각 센서의 도움 없이도 계단이나 험지 같은 비정형 장애물 환경에서도 안정적인 동작이 가능한 로봇이다. 실내 최대 속도 6.5m/s까지 낼 수 있으며, 100m를 19.87초 주파한 기네스 기록도 가지고 있다. 하운드는 축제 기간 내내 행사 현장을 활보하며 방문객을 맞을 예정이다. 장기태 조천식모빌리티 대학원 교수 연구팀은 '디젤 트럭 개조용 박(薄)형 모터' 기술을 선보인다. 택배차량용 디젤 트럭을 하이브리드 방식으로 개조하는 기술이다. 기존 디젤 차량에 모터를 추가해 저속 주행에는 모터를 사용하고 고속 주행에는 기존 엔진을 활용하는 방식이다. 정차와 가속이 잦은 국내 택배 차량에 이 기술을 도입할 경우 연비와 미세먼지를 동시에 저감할 수 있어 국토교통부 우수물류신기술 1호로도 지정된 바 있다. 이 밖에도 KAIST 혁신 창업기업의 기술도 전시된다. 화학과 창업기업 '폴리페놀팩토리(대표 이해신)'는 폴리페놀 기술을 활용해 탈모의 진행을 완화하고 모발의 풍성함을 더해주는 '그래비티' 샴푸를 소개한다. 연구팀이 개발한 특허 성분이 샴푸 과정에서 순간적인 보호막을 만들어 모발을 보호하는 동시에 가늘어진 모발을 힘 있게 잡아주는 원리다. 부스 방문객에게는 기술을 체험할 수 있는 시제품을 선착순으로 제공할 예정이다. 기계공학과 창업기업 '㈜A2US(대표 이승섭)'는 ‘마법의 전기 물방울(Magic Electro Water droplets)' 기술을 사용해 세계 최초로 개발한 제품을 선보인다. 인체에는 해가 없으면서도 공기 중의 유기물과 세균 등을 없애는 천연물질인 '하이드록실 라디칼'을 포함한 물방울을 만들어내는 가습기 '뮤(MEW, Magic Electro Water droplets)'다. 미세한 노즐에 전기를 가해 만들어진 이 물방울을 분무하면 공기 중의 유해물질과 냄새를 제거할 수 있어 가습과 공기정화 기능이 동시에 가능하다. 문화기술대학원 창업기업 '㈜카이(대표 김범기)'는 '밍글 AI(Mingle AI)'을 전시한다. 이미지, 오디오, 비디오 등 다양한 유형의 데이터를 입력하면 3차원의 아바타나 오브젝트를 만들어주는 생성형 인공지능 툴이다. 전문 지식이 없는 일반 사용자도 손쉽게 디지털 휴먼을 제작할 수 있으며, 게임·엔터테인먼트·소셜미디어 등의 분야에서 활용할 수 있다.이광형 KAIST 총장은 "대중과 눈높이를 맞춘 체험 프로그램을 구성해 KAIST의 우수한 기술을 시민과 공유할 수 있어 뜻깊게 생각한다"라고 전했다. 이어, 이 총장은 "우수한 성과와 함께 과학기술로 사회 문제를 해결하기 위해 매진하는 연구자들의 노력과 진심이 함께 전달될 수 있는 자리가 되길 기대한다"라고 덧붙였다.
2024.04.25
조회수 3503
한-영, 합성생물학 글로벌 협력 본격화
우리 대학이 글로벌 연구 협력을 통해 합성생물학(Engineering Biology) 분야 인재 양성, 합성생물학 및 바이오파운드리 기술 확보에 나선다. 우리 대학은 현지 시간으로 22일 오후 영국 임페리얼 칼리지 런던 화이트시티 캠퍼스 I-HUB(Imperial College London, Translation & Innovation Hub)에서 양국 간 공동연구센터 구축 및 합성생물학 인재 양성, 파견·초빙 등 인력교류, 공동연구를 통한 핵심기술 확보, 첨단바이오 신산업 육성 등을 위한 협력 협정을 체결했다. 윤석열 대통령의 영국 국빈방문을 계기로 체결된 이번 협력 협정에는 우리 대학과 함께 한국생명공학연구원(원장 김장성, KRIBB), 영국 임페리얼 칼리지 런던(Imperial College London), 영국 국립 합성생물학센터(SynbiCITE)가 참여한다. 우리 대학은 올해 공학생물학대학원(원장 조병관)을 설립하고 바이오+인공지능+공학이 융합된 합성생물학 분야의 고급인재 양성을 시작했다. 한국생명공학연구원의 협력을 바탕으로 공학생물학 교육과정을 공동으로 개발했으며, 이번 협력 협정을 토대로 활발한 인력교류를 진행해 양국 간 관련 공동연구를 활성화할 예정이다.합성생물학은 생명과학에 공학적 기술개념을 도입한 분야다. 인공적으로 생명체의 구성요소나 시스템을 설계·제작·합성하는 학문적 연구와 기술개발을 주로 다루며, 국가 필수 전략기술 및 디지털바이오의 핵심 분야로 대두되고 있다. 바이오 연구개발과 디지털·인공지능·로봇자동화 기술을 융합해 고속·대량·저비용화를 실현할 수 있으며, 기존 바이오 기술의 한계를 극복할 수 있는 대안으로 부상하고 있다. 환경·의약·화학·에너지 등 산업 전반에 활용할 수 있어 막대한 시장 창출이 전망되는 분야이다.영국은 세계 최초로 합성생물학 로드맵을 수립('12)하고 글로벌 연구 생태계 조정에 주도적 역할 해왔다. 우리 대학은 이번 협력 협정을 계기로 향후 임페리얼 칼리지 런던 산하의 런던 바이오파운드리(센터장 폴 프리먼)와 긴밀히 협력할 예정이다. 바이오파운드리는 합성생물학 연구의 필수 인프라로 국내에서는 현재 과기부 주도로 예비타당성조사가 진행되고 있으며, 영국의 바이오파운드리 인프라 지원의 경험을 바탕으로 양국 바이오파운드리 간 협력도 추진된다. 이날 행사에서는 협정 체결과 함께 이종호 과학기술정보통신부 장관, 휴 브래디(Hugh Brady) 임페리얼 칼리지 런던 총장, 이상엽 연구부총장, 이승구 한국생명공학연구원 합성생물학연구소장, 임페리얼 칼리지 런던의 리차드 키트니(Richard Kitney) 교수, 폴 프리먼(Paul Freemont) 교수 등이 참여한 한-영 합성생물학 석학 간담회도 개최됐다. 김장성 한국생명공학연구원장은 "이번 양국 간의 협력이 기술 협력을 넘어 대한민국 바이오 분야에 제조혁신을 이끌 수 있는 도화선이 되길 희망한다"라고 말하며, "이를 실현하기 위한 공공 파운드리 구축과 인재 양성에도 KAIST와 적극 협력해 나가겠다"라고 전했다. 이광형 KAIST 총장은 "인공지능 등 4차 산업혁명 기술이 본격화되면서 첨단바이오 기술 역시 빠르게 발전하는 시대에서 합성생물학은 우리의 미래를 책임질 핵심 전략 분야"라고 강조했다. 이 총장은 이어 "양국의 협력은 합성생물학 분야에서 세계적으로 우수한 기술을 확보하는 것과 동시에 최고급 인력을 양성하는 주춧돌이 될 것"이라고 말했다.
2023.11.23
조회수 2689
공학생물학 인재 양성 본격화
국가 필수전략기술이면서 디지털바이오 분야의 핵심이라 할 수 있는 합성생물학 분야로 알려진 공학생물학(Engineering Biology)은 생명과학에 공학적 기술개념을 도입하여 인공적으로 생명체의 구성요소·시스템을 설계·제작·합성할 수 있는 미래가 주목하는 학문·기술 분야이다. 우리 대학은 `공학생물학대학원(Graduate School of Engineering Biology)'을 설립하고 공학과 생명과학의 최신 융합 분야에서 세계적인 연구 및 교육 혁신의 교두보 역할을 하겠다고 17일 밝혔다. 공학생물학은 바이오 R&D와 디지털·AI·로봇자동화 기술의 융합으로 고속·대량·저비용화를 실현하고, 기존 바이오 기술의 한계를 극복하며 환경·의약·화학·에너지 등 전방위적 산업적 활용과 막대한 시장 창출이 전망되는 분야다. 지금은 인공지능(AI) 기술이 빠른 속도로 발전하고 있어 인공지능 시대라 말할 수 있지만, 10년 후인 `포스트 인공지능 시대'에 미리 대비하기 위해 생명 시스템의 공학적 설계·합성을 연구하는 시대를 미리 준비한다는 목적이다. 미국, 영국, 중국, 일본 등 주요국들은 국가 차원에서 공학생물학(합성생물학)을 전략적 육성 분야로 지정, 핵심기술을 조기 확보하고, 글로벌 기술패권 경쟁에 선제적·전략적 대응을 위해 우수 인력 양성에 집중하고 있다. 이러한 공학생물학의 미래 가능성으로 인해 고급 인력에 대한 수요가 매우 높은 반면, 관련 학과의 부재 등으로 인력 공급이 매우 부족한 수요-공급 불균형의 문제를 해소하고 관련 산업을 활성화하고자 한다. 공학생물학 전공 졸업생은 관련 학계뿐만 아니라 바이오소재, 신약개발, 질병·감염병 진단기술, 기후환경대응기술, 디지털바이오 등 다양한 산업계로 진출하여 국내 바이오산업을 선도하는 정예 공학자로 활약이 기대된다. 이를 위해 KAIST의 생명과학기술대학과 공과대학이 한국생명공학연구원(KRIBB)와 협력하여 최적의 교수진을 구성하고 기초·응용 분야를 아우르는 세계 최고의 공학생물학 교육과정과 ‘First Mover’ 연구 프로그램을 구축하겠다는 계획이다. 현재 한국생명공학연구원은 합성생물학전문연구소를 설립(`22)하고, 세 개의 산하 연구센터(합성생물학, 세포공장, 유전자교정연구센터)를 통해 공학생물학 분야 육성을 본격화하고 있다. 우리 대학 조병관 공학생물학대학원 책임교수는 "생명과학, 화학, 화학공학, 컴퓨터공학, 로봇공학을 포괄하는 융합학문을 바탕으로 기존의 한계를 극복하는 새로운 생명시스템의 구현을 목표로 하고 있다ˮ며, "이를 통해 본 대학원은 생명과학을 새로운 시각으로 바라보고 ‘First Mover’ 연구를 추구하여 학계, 산업계, 경제계에 새로운 비전을 지속적으로 제공할 것ˮ이라고 전했다. 한편, 2023년 가을학기 공학생물학대학원의 석·박사과정 온라인 원서접수는 3월 31일부터 시작된다. 입시설명회는 3월 31일(금) 오후 4시부터 온라인으로 개최된다. 사전등록링크: https://forms.gle/4Fjc1FB19xmMFohf9). 입학 관련 자세한 사항은 홈페이지(https://admission.kaist.ac.kr/graduate/)에서 확인할 수 있다.
2023.03.17
조회수 6199
KAIST-생명연, 합성생물학 연구 및 바이오파운드리 구축 위해 협력
우리 대학과 한국생명공학연구원(원장 김장성, 이하 생명연)이 합성생물학과 바이오파운드리 분야의 발전을 위한 본격적인 협력에 나선다. 합성생물학(synthetic biology)은 공학 기술을 활용해 생명체가 가진 특성을 변화시키거나, 자연적으로 존재하지 않는 특성을 새롭게 설계하고 제작하는 연구 분야다. 자연에서 유래한 생명체는 저마다 고유하고 복잡한 시스템으로 이루어져 있어서 인간이 구조 그대로를 재현해내기 어렵다. 또한, 생물학 연구는 방법이 매우 복잡해 연구개발 속도가 느리다는 것이 기존 바이오 분야가 봉착한 기술적 한계였다. 합성생물학은 인공지능과 자동화된 설비, 표준화된 부품과 모듈을 사용해 연구개발의 속도와 효율을 동시에 개선할 수 있어 미래 바이오산업을 이끌어갈 핵심기술로 주목받고 있다. 미국, 영국, 일본, 중국 등의 국가들은 정부의 투자를 발판삼아 합성생물학에 인공지능, 로봇 기술 등을 적용해 제조공정을 자동화하는 바이오파운드리를 일찌감치 구축하고 기술 주도권 확보를 위한 경쟁을 가속화하고 있다. 두 기관은 주요 과학기술 강국들을 추격해 기술격차를 좁히고 관련 핵심기술을 선제적으로 확보해야 한다는 공감대를 바탕으로 이번 협력을 도모했다. 또한, 국내 열악한 바이오파운드리 환경을 개선하기 위해서는 지속적이면서도 안정적인 서비스 제공할 수 있으며, 기술 수요자들이 쉽게 접근할 수 있도록 공공인프라를 구축해야 한다는 공동의 목표를 추진하고 있다. 이를 위해 두 기관은 지난 6일 '합성생물학 연구 및 바이오파운드리 공동 구축을 위한 업무 협약' 체결을 완료했다. KAIST는 20여 년 전부터 합성생물학과 학문적 배경이 유사한 시스템생명공학과 시스템대사공학 분야를 개척해왔다. 세계 최초이자 최고효율을 내는 다양한 세포공장 개발하는 등 세계적 수준의 연구역량을 보유하고 있으며, 합성생물학 분야 인력양성을 위한 프로그램 확충 등을 추진하고 있다.생명연은 10여 년 전부터 합성생물학 전문 연구조직인 '합성생물학전문연구단'을 운영해 관련 원천기술을 확보해왔으며, 최근 ‘합성생물학연구소’로 조직을 확대 개편했다. 파일럿 규모의 연구용 바이오파운드리를 구축하는 등 미생물 세포공장, 산업용 효소, 생분해성 플라스틱 소재 등을 개발하는 연구를 진행하고 있다. 두 기관은 글로벌파운드리연맹(global biofoundries alliance, GBA)에도 함께 참여하는 등 우리나라 바이오파운드리 분야의 구심점 역할을 수행하고 있다. 이번 협력은 정부가 추진 중인 바이오파운드리 사업을 유치하기 위한 계획 수립은 물론 공동 연구 인프라 조성과 향후 원활한 사업 운영 및 활용까지 두 기관이 전방위로 긴밀한 유대를 맺는 교두보가 될 전망이다. 이광형 KAIST 총장은 "합성생물학의 속도와 규모, 경제성을 극대화하는 바이오파운드리 구축은 바이오산업 시대에 우리나라가 국제적인 리더십을 확보하는 가장 확실한 전략"이라고 강조했다. 이어, "국내 바이오 분야의 첨단 연구개발을 이끄는 두 기관이 손을 잡고 국가의 미래 경쟁력을 좌우할 핵심 인프라를 구축하는 일에 우수한 역량을 보탤 수 있길 기대한다"라고 밝혔다. 김장성 생명연 원장 또한 "바이오가 직면한 기술적 한계 극복과 미래 바이오로의 패러다임 전환에 핵심기술로 여겨지는 합성생물학 기술의 성패는 세계적인 경쟁력을 가진 바이오파운드리의 구축에 달려있다"라며, "관련 분야의 우리나라 대표 연구 주체인 KAIST와 생명연의 협력으로 바이오경제 실현에 한 걸음 내딛을 수 있기를 바란다"라고 전했다. 한편, 지난해 우리 정부는 다양한 기관과 기업이 연구에 활용할 수 있도록 바이오파운드리를 국가 핵심 인프라로 구축하겠다는 계획을 밝혔다. 또한, 바이오 제조 혁신을 위한 합성생물학 생태계 조성 및 지원 계획도 수립된 상태다. 현재, 바이오파운드리 구축 및 활용기술 개발 사업은 예비타당성조사가 진행 중이다.
2022.07.14
조회수 6591
합성생물학 기반 차세대 미생물 대사 조절 밸브 개발
국제 공동연구진이 대장균의 모든 전사종결부위*를 해독하고, 이를 바탕으로 미생물의 대사 경로를 수도꼭지처럼 자유자재로 조절하는 합성생물학** 기반 차세대 대사 조절 밸브 기술을 개발했다. *전사종결부위: DNA가 암호화하는 정보를 RNA로 전사할 때, RNA 합성이 종결되도록 조절하는 DNA 서열 **합성생물학: 생명현상의 복잡성, 다양성으로 인해 발생하는 낮은 재현성, 예측효율 저하 등의 기존 바이오기술의 문제를 해결하기 위해 생명체의 구성요소를 설계, 제작, 조립하는 공학적 접근방식의 바이오 기술 우리 대학 생명과학과 조병관 교수, 한국생명공학연구원 이승구 박사, 바이오융합연구소 조수형 교수, 미국 캘리포니아대학교 샌디에이고(UCSD) 생명공학과(Bioengineering)의 최동희 박사, 버나드 팔슨(Bernhard Palsson) 교수 국제 공동연구팀이 대장균에 존재하는 1,600여 개의 전사종결부위를 대량으로 해독 및 발굴하고, 이를 기반으로 고부가가치 바이오화합물 생산을 위한 미생물 대사 회로 설계를 가능케 하는 합성생물학 기반 기술을 개발했다고 14일 밝혔다. 전사종결부위는 DNA가 암호화하는 유전 정보가 RNA로 전사될 때, 원하는 유전자만이 정확히 전사되도록 조절하는 역할을 한다. 그 중요성에도 불구하고 기존에는 전사 종결에 관한 데이터의 부족으로, 구체적인 조절 기작에 대한 이해가 부족했다. 연구진은 전사종결부위가 다양한 세기를 가져 인접한 유전자들의 발현을 정교하게 조절한다는 사실을 발견하고, 이를 대사회로 조절에 이용했다. 한편 미생물은 다양한 유용 바이오화합물 생산에 이용되고 있는데, 효율적인 생산을 위해서는 대사 회로의 조절이 필수적이다. 그 이유는 단순히 원하는 물질 생산을 위한 유전자만을 과도하게 발현할 경우, 미생물 생장에 필요한 양분과 에너지까지 소모해 생산에 실패하기 때문이다. 공동연구진은 개발한 전사종결부위를 통해 서로 다른 대사 회로의 세기를 수도꼭지처럼 조절해 대사물질 생산을 최적화할 수 있는 '대사 밸브 기술'을 개발했다. 기존에는 전사의 시작이 되는 프로모터, 번역의 시작이 되는 리보솜 결합 부위를 통해 유전자 발현을 조절했는데, 이에는 수많은 인자가 관여하고 있어 실험 간 편차가 크고, 고가의 화학물질을 요구하는 등 한계를 지니고 있었다. 하지만 연구진이 개발한 대사 밸브는 실험 간 편차를 기존 시스템 대비 최대 75% 억제할 수 있는 것으로 나타났고, 대사 밸브를 이용한 생산 최적화를 통해 유용 대사물질인 비타민 B8의 생산을 최대 11배 증대하는 데 성공했다. 또한 개발된 기술은 미생물의 생장 조건(영양분 및 배양 환경)에 거의 영향을 받지 않는 것으로 나타나 실험실 조건에서 출발해 산업 규모로 확장할 시 부수적인 최적화 과정을 최소화할 수 있고, 목적 화합물에 따라 첨가하는 원료와 배양 조건이 변화해도 조절 기작이 유지되는 것으로 나타났다. 이번 연구 결과는 기존에 알려지지 않았던 전사종결부위의 특성을 규명하고, 이를 대사 조절에 이용한 획기적인 시도로 차세대 대사 조절 합성생물학 기반 기술로 기대받고 있다. 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 C1 가스 리파이너리 프로그램 및 한국 바이오 그랜드챌린지 프로그램의 지원을 받은 KAIST 조병관 교수 연구진과 한국생명공학연구원이 추진하는 KRIBB 연구 혁신 프로그램(Research Initiative Program)의 지원을 받은 이승구 박사(한국생명공학연구원), 기초과학 연구 프로그램(Basic Science Research Program)의 지원을 받은 KAIST 조수형 교수, 노보 노르디스크 재단(Novo Nordisk Foundation)의 연구지원을 받은 버나드 팔슨(Bernhard Palsson) 교수 연구진의 협업을 통해 수행됐으며, 국제적인 학술지인 `핵산 연구(Nucleic Acids Research, 영향력지수 16.971)' 에 3월 31일 게재됐다. (논문명 : Synthetic 3'-UTR valves for optimal metabolic flux control in Escherichia coli)
2022.04.17
조회수 8739
김재경 교수, 수학 모델 통해 세포 상호작용 원리 규명
〈김재경 교수〉 우리 대학 수리과학과 김재경 교수와 라이스 대학 매튜 베넷(Matthew Bennett), 휴스턴 대학 크레시미르 조식(Kresimir Josic) 교수 공동 연구팀이 합성생물학과 수학적 모델을 이용해 세포들이 넓은 공간에서 효과적으로 의사소통하는 방법을 발견했다. 이번 연구 결과는 국제 학술지 ‘네이처 케미컬 바이올로지(Nature Chemical Biology)’ 10월 14일 자 온라인판에 게재됐다. (논문명 :Long-range temporal coordination of gene expression in synthetic microbial consortia) 〈박테리아들의 복잡한 상호작용을 수학을 이용해 원위의 점들의 상호작용으로 단순화한 모식도〉 세포들은 신호 전달 분자(Signalling molecule)를 이용해 의사소통하는데 이 신호는 보통 아주 짧은 거리만 도달할 수 있다. 그런데도 세포들은 넓은 공간에서도 상호작용하며 동기화를 이뤄낸다. 이는 마치 넓은 축구장에 수만 명의 사람이 주변 3~4명의 박수 소리만 들을 수 있는데도 불구하고 모두가 같은 박자로 손뼉을 치는 것과 비슷한 상황이다. 이러한 현상이 가능한 이유는 무엇일까? 연구팀은 합성생물학을 이용해 만든 전사 회로(Transcriptional circuit)를 박테리아(E. coli)에 구축해 주기적으로 신호 전달 분자를 방출할 수 있도록 했다. 처음엔 제각기 다른 시간에 신호 전달 분자를 방출하던 박테리아들은 의사소통을 통해 같은 시간에 주기적으로 분자를 방출하는 동기화를 이뤄냈다. 하지만 박테리아를 넓은 공간으로 옮겼을 땐 이러한 동기화가 각 박테리아의 신호 전달 분자 전사 회로에 전사적 양성 피드백 룹 (Transcriptional positive feedback loop)이 있을 때만 가능하다는 것을 발견했다. 양성 피드백 룹은 단백질이 스스로 유전자 발현을 유도하는 시스템으로, 전달받은 신호를 증폭하는 역할을 한다. 연구팀은 이러한 역할을 자세히 이해하기 위해 편미분방정식(Partial differential equation)을 이용해 세포 내 신호 전달 분자의 생성과 세포 간 의사소통을 정확하게 묘사하는 수학적 모델을 개발했다. 그러나 전사 회로를 구성하는 다양한 종류의 분자들 사이의 상호작용을 묘사하기 위해서는 고차원의 편미분방정식이 필요했고 이를 분석하기는 쉽지 않았다. 이를 극복하기 위해 연구팀은 시스템이 주기적인 패턴을 반복한다는 점에 착안해 고차원 시스템을 1차원 원 위의 움직임으로 단순화했다. 달은 고차원인 우주 공간에서 움직이지만, 궤도를 따라 주기적으로 움직이기에 달의 움직임을 1차원 원 위에서 나타낼 수 있는 것과 같은 원리이다. 이를 통해 연구팀은 박테리아 사이의 복잡한 상호작용을 원 위를 주기적으로 움직이는 두 점의 상호작용으로 단순화할 수 있었다. 연구팀은 양성 피드백 룹이 있으면 두 점의 위치 차이가 커도 시간이 지날수록 점점 차이가 줄어들어 결국 동시에 움직이는 것을 확인했다. 연구팀은 이러한 수학적 분석 결과를 실험을 통해서 검증함으로써 넓은 공간에서 세포가 효과적으로 상호작용하는 방식을 규명했다. 김재경 교수는 “세포들이 자신의 목소리는 낮추고 상대방의 목소리에는 더 귀 기울일 때만 한목소리를 낼 수 있다는 점이 인상적이다”라며 “이러한 원리는 수학을 이용한 복잡한 시스템의 단순화 없이는 찾지 못했을 것이다. 복잡한 것을 단순하게 볼 수 있도록 해주는 것이 수학의 힘이다”라고 말했다.
2019.10.15
조회수 12501
이상엽 특훈교수, 중국 상해교통대 자문교수 선임
- 대사공학을 중심으로 한 생명공학분야 탁월한 업적 인정받아 - 우리 학교 생명화학공학과 이상엽 특훈교수가 중국 상해교통대 자문교수로 선임됐다. 이 교수는 생명공학분야 자문교수로 올해 8월부터 2018년 7월까지 5년간 활동하게 된다. 베이징대, 칭화대와 더불어 중국 3대 명문대 중 하나인 상해교통대는 노벨상 수상자 등 전 세계적으로 학문적 업적이 뛰어난 학자들을 위원회의 철저한 심사를 거쳐 자문교수로 임명한다. 자문교수들은 대학 연구 및 교육에 관한 제반 사항에 대한 자문을 하며, 특정 연구 분야 공동연구 등을 수행하게 된다. 이 교수는 대사공학을 중심으로 한 생명공학 분야에 탁월한 업적을 인정받아 자문교수로 선임됐다. 이 교수는 미생물 대사공학의 전문가로, 대사공학과 시스템생물학, 합성생물학 등을 접목해 ‘시스템대사공학’을 창시하고, 다양한 화학물질 생산 시스템 개발에 적용해 바이오연료, 친환경 화학물질 생산 공정들을 다수 개발했다. 최근 미국화학회 마빈존슨상, 미국산업미생물생명공학회의 찰스톰상, 암젠 생명화학공학상 등 해외에서 유명한 상을 다수 수상한 이 교수는 현재 한국과학기술한림원, 한국공학한림원, 미국공학한림원 외국회원, 세계경제포럼의 바이오텍 글로벌아젠다카운슬 의장으로 활동 중인 생명공학 분야 세계적인 리더다.
2013.08.14
조회수 11371
이상엽 특훈교수, 아시아 첫 ‘마빈존슨상’ 수상
우리 학교 생명화학공학과 이상엽(48, 생명과학기술대학 학장) 특훈교수가 아시아인으로는 최초로 미국화학회(American Chemical Society)에서 수여하는 ‘2012 마빈존슨상 (Marvin J. Johnson Award)’을 수상한다. 시상식은 27일 미국 샌디에고에서 열리는 미국화학회 연례 학술총회에서 갖는다. 미국화학회가 1978년 제정한 마빈존슨상은 미생물 및 생명화학공학분야에서 전 세계적으로 가장 탁월한 업적을 이룬 연구자를 매년 한명씩 선정해 주는 상으로 수상자는 미국화학회 연례학술총회에서 수상기념 강연을 하게 된다. 역대 수상자들로는 세계 생물화학공학계의 아버지들로 평가되는 故 데이비드 펄만, 故 제임스 베일리, MIT 다니엘 왕 교수 등이 있으며, 아시아에서는 이상엽 교수가 처음이다. 이 교수는 시스템대사공학 분야를 창시해 미생물의 대사회로를 시스템 수준에서 조작하고 다양한 원유 유래 화학물질을 바이오기반 친환경적으로 만드는 연구에서 세계적인 업적을 내고 있다. 아울러 아미노산, 폴리에스터 및 그 원료, 나일론 원료, 바이오연료 등의 효율적인 생산을 위한 균주개발 전략을 개발한 공로로 올해 수상자로 선정됐다. 이 교수는 현재 교육과학기술부 시스템생물학 연구개발사업, 글로벌프론티어 바이오매스사업단 사업, 그리고 글로벌프론티어 지능형합성생물학 사업단에 참여해 화석원료로부터 생산되는 화학물질들을 재생 가능한 비식용 바이오매스로부터 생산하기 위한 기술을 개발 중이다. 최근에는 세계경제포럼의 미래기술 글로벌 아젠다 카운슬 의장으로 선임돼 ‘2012년 세계 10대 떠오르는 기술’을 발표하기도 했다. 이 교수는 27일 미국 샌디에고에서 열리는 미국화학회 연례 학술총회에서 ‘미생물 시스템대사공학’을 주제로 마빈존슨상 기념강연을 할 예정이다.
2012.03.07
조회수 13268
2012년 세상을 바꿀 10대 신기술 선정
- 미래기술 글로벌 어젠터 카운슬, 인류가 해결해야 할 난제들에 대한 해결책을 제시하기 위해 매년 10가지의 신기술을 발표 - 우리 학교 생명화학공학과 이상엽 특훈교수가 의장으로 있는 세계경제 포럼 산하 미래기술 글로벌 어젠더 카운슬은 지난해 아부다비에서 개최된 연례총회에서 ‘2012년 세상을 바꿀 10대 신기술’을 선정하고 지난달 다보스포럼에서 확정해 이달 15일 발표했다. 10대 기술에는 △정보기술 △합성생물학과 대사공학 △녹색혁명2.0 △물질설계 나노기술 △시스템생물학과 화학 생물시스템의 시뮬레이션기술 △이산화탄소의 원료로서 활용기술 △무선 파워전송기술 △고에너지밀도 파워시스템 △개인 맞춤형 의약, 영양, 질환예방 기술, 그리고 신교육기술이 포함됐다. 선정된 기술은 가까운 미래에 세상을 변화시킬 가능성이 높은 것으로 과학계, 산업계, 정부 등 다양한 분야에 걸친 전문가들의 의견을 바탕으로 정해졌다. 미래기술 글로벌 어젠더 카운슬은 인류가 해결해야 할 난제에 대한 해결책을 제시하기 위해 올해부터 매년 10가지의 신기술을 발표하기로 했다. 1위로 선정된 인포매틱스는 엄청난 양의 데이터에서 의사결정에 필요한 데이터를 걸러주어 정보에 가치를 더해주는 것으로 올해 다보스포럼에서도 많은 관심을 모았다. 생물학분야에서는 합성생물학과 대사공학이 신약을 제조하고 재생가능한 자원으로부터 화학물질과 소재를 생산하는 데 중요한 역할을 할 것으로 기대된다. 늘어나는 인구를 위해 식량을 안정적으로 공급하기 위한 2차 녹색혁명과 바이오 리파이너리를 생산하기 위한 바이오매스도 10가지 신기술에 선정됐다. 분자규모로 설계 고안된 나노 소재는 에너지, 물 그리고 자원과 관련된 다른 난제들을 해결하는 데 새로운 대안을 제시해 줄 것으로 기대된다. 시스템생물학과 컴퓨터모델링은 인간과 자원 그리고 환경에는 최소한의 영향을 끼치면서, 매우 효율적인 치료법, 소재 그리고 프로세스를 설계하는 데 점차 그 중요성을 더해지고 있다. 전 세계적으로 골치덩어리로 여겨지는 이산화탄소를 소중한 자원으로 변환시킬 수 있는 혁신적인 기술도 주목을 받았다. 이와 함께 무선전력, 고밀도 파원시스템, 개별로 제조된 맞춤형 약과 영양, 진보된 교육용 10대 기술에 포함됐다. 이상엽 교수는 “과학기술의 가속화된 발전으로 인해 새로운 발견이 많이 이루어지고 있다”며 “카운슬이 찾아낸 기술 가운데 많은 것들이 지속가능하고 굳건한 미래를 건설하는 데 매우 중요한 것들”이라고 강조했다. ► 2012년 세상을 바꿀 10대 신기술 1. 정보에 가치를 보태주는 인포매틱스 개인과 조직이 접속할 수 있는 정보의 양은 현재 인류 역사상 유래를 찾을 수 없을 만큼 많고, 정보의 양은 앞으로도 계속 기하급수적으로 늘어날 것이다. 그러나, 단순히 정보의 양으로만 보자면 현재는 가치를 창출하기보다는 불필요한 잡음 역할을 할 위험성이 있을 정도로, 정보의 효율적인 사용이 제한을 받고 있다. 정보를 분류하고, 처리하여 꼭 필요한 정보만을 간추리는 혁신적인 기술이 불필요한 정보를 걸러내고, 글로벌한 정보를 제공받음으로써 세계가 직면하고 있는 긴급한 문제들을 해결하는데 꼭 필요하다. 2. 합성생물학과 대사공학 생물체의 가장 핵심인 유전자 코드는 오랜 기간 진화 과정을 통해 타의 추종을 불허하는 유용성을 지니고 있다. 합성생물학과 대사공학의 빠른 발전으로 생물학자들과 공학자들은 이제까지 시도되지 않은 방법들을 통해 이 유용성에 좀 더 가까이 갈 수 있게 되었다. 또한 특정한 목적에 사용될 수 있는 유기체가 개발되었고, 새로운 생물학적 과정의 발달도 가능하게 되었으며, 바이오 매스를 화학약품이나 연료, 재료로 전환하여 새로운 치료제를 생산하거나, 해로운 물질로부터 인체를 보호 할 수 있게 되었다. 3. 녹색 혁명 2.0 식량과 바이오 매스를 증산하는 기술 곡물의 생산량을 획기적으로 늘리는 데 기여한 화학비료는 현대 화학이 이루어 낸 위대한 업적 가운데 하나이다. 그러나, 전세계적으로 건강에 좋고 영양가 높은 식량에 대한 수요의 증가는 한정된 에너지, 물 그리고 토지 자원에 새로운 위협이 되고 있다. 생물학과 물리학을 결합한, 새로운 녹색혁명은 환경에 대한 영향을 최소화하면서도, 에너지와 물에 대한 의존도를 줄이고, 탄소 발자국을 감소시키는 한편, 식량생산량을 더욱 증대시킬 수 있는 가능성을 높여주고 있다. 4. 나노 스케일 소재의 고안 천연자원에 대한 수요가 늘어남에 따라 효율성을 높이는 문제가 더욱 중요성을 띠게 되었다. 분자단위로 설계, 고안된 특성물질을 함유한 나노 구조의 물질들은 이미 그 새롭고 독특한 특성들로 인해 차세대 청정에너지 혁명을 이끌 것으로 기대를 모으고 있다. 이 물질들은 고갈되어가는 천연 자원에 대한 우리의 의존도를 줄이는 한편, 각종 제조업이나 가공에서 효율을 높이는 역할을 할 수 있다. 5. 시스템 생물학과 컴퓨터 모델링 화학과 생물시스템 시뮬레이션 의료분야나 바이오 관련 제조업의 기능 향상을 위해서는 생물학과 화학이 어떻게 함께 작용하는 지를 이해하는 것이 중요하다. 시스템 생물학과 컴퓨터 모델링/시뮬레이션은 인간의 신체와 환경에 대한 영향을 최소화하면서도, 매우 효율적인 치료약품, 물질 혹은 제조과정을 설계하는 데 점차 그 중요성이 강조되고 있다. 6. 이산화탄소를 자원으로 활용 지구에서 탄소는 생명의 가장 기본이 되는 물질이다. 그러나, 지구 온난화를 막기 위하여 이산화탄소 배출을 규제하는 것이 사회, 정치, 경제적으로 중요한 일이 되었다. 이산화탄소 관리에 관한 혁신적인 새로운 접근방법은 그것을 골치덩어리에서 하나의 자원으로 전환하는 것이다. 나노 구조의 물질을 바탕으로 한 촉매제는 이산화탄소를 값비싼 탄화수소와 다른 탄소를 함유한 분자로 전환시킬 수 있다. 이것들은 건물을 짓는데 사용되는 벽돌이나 화학산업의 클리너, 혹은 지속가능성이 더욱 뛰어난 석유화학물질의 대용물로 사용될 수 있다. 7. 무선 파워 전달 현대 사회는 전기를 동력으로 사용하는 기구들에 크게 의존하고 있다. 그러나 유선 송전망이나 또는 전지를 계속 재충전하는 방법을 사용해야 한다는 점 때문에 많은 제약이 있다. 전선없이 무선으로 전기나 에너지를 전달하는 기술이 전기기구를 쓰기 위해 플러그를 꼽아야 일에서 해방을 시켜줄 것이다. 이 기술은 와이파이가 인터넷 사용에 영향을 끼친 것과 마찬가지로 개인 전자 장비에 커다란 영향을 줄 것이다. 8. 고밀도 파워시스템 차세대 클린에너지 기술의 실용화 되기 위해서는 고밀도 충전시스템이 필요하다. 이러한 수요에 맞추어 신기술들이 속속 개발되고 있는데, 여기에는 나노소재 전극이나 고체전극 또는 새로운 형태의 고성능 축전지를 이용하는 방법들이 해당된다. 이런 기술들은 차세대 청정에너지 산업에 필수적이다. 9. 개인 맞춤의학과 영양 그리고 질병예방 전세계 인구가 70억이 넘고, 모든 사람들이 건강하게 오래 살기를 원하면서, 건강을 유지하기 위한 전통적인 방법들이 점차로 그 설 자리를 잃고 있다. 유전채학, 단백질체학, 대사체학의 발달로 각 개인에 맞추어 약을 제조하거나 영양을 공급하고, 사전에 질병 예방 조치를 취하는 것이 가능한 시대가 열리고 있다. 합성 생물학과 나노 기술과 같은 신기술의 발달은 의료계의 혁명이라 할 수 있는 개인 맞춤의학의 보급을 위한 초석이 되고 있다. 10. 진보된 교육 기술 젊은 세대에게 지식경제사회에 꼭 필요한 기술을 전달하기 위해서는 새로운 접근방법이 필요하다. 빠르게 발달하고, 하이퍼 커넥티드(hyperconnected) 되어있는 글로벌 사회에서는 이것이 더욱 중요하다고 할 수 있다. 각 개인의 비판적 사고력을 높이면서도, 창조성을 키울 수 있는 방향으로 IT기술을 바탕으로 각 개인에 맞춤 교육을 제공하는 교육방법이 주목 받고 있다. 소셜 미디어와 오픈코스웨어 (열린 강의자료), 그리고 상시 가능한 인터넷 접속 덕분에 교실 밖에서의 교육이 더욱 활성화되고 있다.
2012.02.28
조회수 20291
이상엽 특훈교수, ‘합성생물학’ 부편집인으로 선임
- ‘12년 발간, 합성생물학 분야 논문심사 및 편집방향 설정 - 우리 학교 생명화학공학과 이상엽(47) 특훈교수가 미국 화학회 (American Chemical Society, ACS)에서 2012년부터 발간하는 학술지인 ‘합성생물학(Synthetic Biology)’지의 부편집인(Associate Editor)로 최근 선임됐다고 31일 밝혔다. 임기는 2011년 10월 1일부터 2012년 12월 31일까지다. 이상엽 특훈교수는 미국 캘리포니아 주립대학의 제프 해스티(Jeff Hasty) 교수와 함께 부편집인으로 논문의 심사, 편집방향 설정 등을 수행하게 되고, 편집장은 미국 MIT 크리스 보잇(Chris Voigt) 교수가 맡았다. 합성생물학은 세포나 생물시스템을 DNA수준에서 합성, 조절, 최적화해 새로운 대사회로나 조절회로를 만들고, 이를 이용해 신약을 개발하거나 바이오기반 화학물질을 환경 친화적으로 생산해 삶의 질을 높이고 환경을 보호하는 데 기여를 할 것으로 기대되는 신학문이다. 최근 우리나라에서도 이 분야의 중요성을 인식해 교육과학기술부의 글로벌프론티어사업단의 하나로 합성생물학을 연구 주제로 하는 ‘지능형 바이오디자인사업단’이 올 9월 출범하기도 했다. 이상엽 교수는 “미국 화학회에서 발간하는 학술지는 해당 학문분야에서 영향력이 매우 크다”며 “앞으로 우리나라 연구자들이 합성생물학 분야에서 훌륭한 연구결과를 많이 내고 그 결과들이 이 학술지에 많이 실리는 데 기여하고 싶다”고 포부를 밝혔다. 이 교수는 시스템대사공학을 창시하고 이 분야에서 380여편의 논문을 집필한 세계적 석학이다. 최근에는 가상세포 상용화를 주도하는 미국 제노마티카사와 공동으로 ‘원유로부터 생산되는 부탄다이올을 생물학적으로 생산하는 기술’을 개발해 네이처 케미컬 바이올로지(Nature Chemical Biology) 표지논문으로 선정되기도 했다. 또 ‘2011년 미국 대통령 녹색화학 도전상(2011 Presidential Green Chemistry Challenge Award)’을 수상해 세계적으로 인정받았으며, 미국 산업미생물학회 암젠기조강연과 미국 화학공학회 대사공학 20주년기념 심포지엄 기조강연을 하는 등 활발한 활동을 하고 있다.
2011.10.31
조회수 15630
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2