본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%ED%83%84%EC%86%8C%EB%82%98%EB%85%B8%ED%8A%9C%EB%B8%8C
최신순
조회순
동아일보, '10년 뒤 한국을 빛낼 100인' 선정
올해 동아일보가 선정한 "10년 뒤 한국을 빛낼 100인"에는 나이와 직업, 성별이 각기 다른 다양한 인물이 포함됐다. 대학교수 중에는 KAIST와 서울대가 각각 5명씩 선정돼 가장 많은 교수가 선정되는 쾌거를 이뤘다. 특히 안철수 교수는 세계 최고의 역량과 잠재력, 헌신성으로 향후 한국 사회에서 가장 주목받는 역할을 할 것이라는 기대감이 반영되어 많은 표를 얻었다. 신소재공학과 김상욱 교수는 고분자나 탄소나노튜브, 그래핀 등의 분자를 다양한 형태로 조립할 수 있는 ‘분자조립 나노기술분야’의 세계적 전문가이다. 특히 고분자 분자조립을 이용한 ‘저비용 대면적 나노패턴기술’은 기존 나노공정의 한계를 극복할 수 있는 신기술로서 반도체나 디스플레이등에 응용이 기대되고 있다. 물리학과 김은성 교수는 세계최초로 저온 고체 헬륨에서 새로운 양자현상, 초고체(supersolidity)를 발견하고 그 발현 원리를 이해하는 연구를 주도하는 과학자로 손꼽히고 있다. 저온에서 고체헬륨에 존재하는 숨겨진 상의 발견, 초고체 현상 발현에서 결정 결함의 역할 이해, 회전하는 고체를 통한 초고체 거시적 양자현상 파괴과정 연구 등으로 초고체 분야 연구를 주도하고 있다. 기술경영전문대학원 안철수 교수는 의대 교수로서 심장 전기생리학분야의 연구와 함께, 1988년부터는 컴퓨터 바이러스 백신 프로그램인 V3 제품군의 개발자로 활동했다. 1995년, 벤처기업 "안철수연구소"를 설립하였고, 벤처열풍과 몰락에 휩쓸리지 않는 내실있는 경영을 함으로써 국제적으로 한국을 대표하는 벤처 기업가로 손꼽히게 되었다. 2008년부터는 카이스트 기술경영전문대학원 석좌교수로서 기업가정신과 기술경영을 가르치며 연관 분야에서 활발한 사회활동을 하고 있다. 생명화학공학과 이상엽 교수는 세계최고 효율의 숙신산 생산기술 개발, 필수 아미노산인 발린과 쓰레오닌의 고효율 맞춤형 균주 개발, 바이오 에탄올보다 성능이 우수한 바이오부탄올 생산 균주 개발, 강철보다 강한 거미줄, 비천연 락트산 함유 고분자 등 재생 가능한 바이오매스로부터 화학물질을 효율적으로 생산하는 핵심기술인 대사공학 분야의 세계적 전문가로 손꼽히고 있다. 물리학과 정하웅 교수는 통계물리학을 이용하여 최근 집중적인 관심을 끌고 있는 “복잡계(Complex Systems)"라는 대상을 ‘네트워크’라는 개념을 이용하여 이해하는 새로운 시도를 통해 네이쳐 5편 등을 포함한 총 피인용횟수가 8,000번이 넘는 80여편의 논문을 발표, 여러 학문 분야를 아우르는 융·복합연구를 성공적으로 이끌며 복잡계 네트워크 과학의 국제적 전문가로 평가받고 있다.
2011.04.04
조회수 21717
나노튜브를 이용한 유기태양전지 효율 향상 기술 개발
우리학교 신소재공학과 김상욱 교수팀과 전기및전자공학과 유승협 교수팀이 탄소나노튜브를 유기태양전지에 적용해 에너지 변환효율을 크게 향상시키는데 성공했다. 이 연구결과는 재료공학의 세계적 학술지인 어드밴스드 머티리얼스(Advanced Materials)지 최신호(11월 30일, 화) 온라인 판에 게재됐다. 반도체고분자의 광반응을 통해 전기에너지를 생산하는 유기태양전지는 고가의 실리콘을 사용하지 않아 가격이 저렴하다. 또한, 잘 휘고 투명해 여러 분야에 적용 가능한 미래 친환경 에너지원이다. 이 전지는 휴대 전자기기나 스마트 의류, BIPV(Building Integration Photovoltaic : 건물 외피에 전지판을 이용하는 건물 외장형 태양광 발전) 등 다양한 분야에 응용이 기대된다. 유기태양전지가 다른 태양전지에 비해 효율이 낮은 중요한 이유 중 하나는 태양빛을 받아 전자와 정공을 형성시키는 반도체고분자의 수송특성이 낮아 생성된 전자나 정공이 효율적으로 외부로 전달되지 못한다는 점이다. 이러한 문제를 해결하기 위해 반도체고분자의 수송특성을 향상하려는 다양한 연구들이 전 세계적으로 진행되어 왔다. 특히, 탄소나노튜브나 나노와이어 등을 이용해 전자나 정공의 빠른 수송 경로를 제공해주는 방법이 꾸준히 연구되어 왔다. 그러나 이들 연구에서는 전자와 정공이 동시에 탄소나노튜브나 나노와이어에 주입되어 자기들끼리 재결합 함으로써, 결국 외부에서 채집되는 전류가 증대되지 못하거나 오히려 감소하는 고질적인 문제가 발생했다. 이러한 문제를 포함해 유기태양전지들은 상용화하기에는 아직 낮은 광변환 효율을 보여 이에 대한 성능향상이 시급히 요구되어 왔다. KAIST 연구팀은 유기 태양전지의 반도체고분자에 붕소 또는 질소 원소로 도핑된 탄소나노튜브를 적용해 전자나 정공 중 한쪽만을 선택적으로 수송하도록 함으로써 이들의 재결합을 막아 유기태양전지의 효율을 33%까지 크게 향상시키는데 성공했다. 또한 도핑된 탄소나노튜브는 유기용매 및 반도체고분자내에서 매우 쉽고 고르게 분산되는 특성을 보여 기존의 값싼 용액공정을 그대로 사용해 효율이 향상된 태양전지를 만들 수 있음을 확인했다. 이 연구결과로 반도체고분자가 이용되는 유기트랜지스터나 유기디스플레이 등 다양한 전자기기의 성능향상도 가능할 것으로 기대된다. 김상욱 교수는 “이번 연구결과를 통해 나노소재 기술이 유기태양전지의 성능향상에도 크게 기여할 수 있음을 알아냈다”며 “앞으로 나노소재 기술을 이용한 차세 대 에너지개발을 위한 연구에 노력하겠다”고 말했다. 이번 연구는 KAIST EEWS(Energy, Environment, Water, and Sustainability)연구사업의 지원을 받아 김상욱, 유승협 교수의 지도하에 박사과정 이주민 학생이 진행했다.
2010.12.07
조회수 22794
장기주 교수, 불순물도핑없는 반도체나노선 양전하 생성원인규명
물리학과 장기주(張基柱, 56) 교수팀이 게르마늄-실리콘 나노선에서 불순물 도핑 없이도 양전하가 생성되는 원인을 최근 규명했다. 이 연구는 KAIST 박지상, 류병기 연구원, 연세대 문창연 박사와 함께 나노미터(nm=10억분의 1m)단위의 직경을 가진 코어-쉘(core-shell) 구조의 게르마늄-실리콘 나노선의 전기전도 특성을 조사해 이뤄졌다. 이번 연구결과는 나노과학기술 분야 최고 권위지인 ‘나노 레터스(Nano Letters)" 온라인판에 게르마늄-실리콘 코어-쉘 나노선의 양전하 정공 가스를 일으키는 결함(Defects Responsible for the Hole Gas in Ge/Si Core−Shell Nanowires)라는 제목으로 지난 17일 게재됐다. 반도체 기술이 소형화의 한계에 직면하면서 탄소나노튜브, 그래핀(graphene), 반도체 나노선 등 나노 소재를 이용한 새로운 반도체 소자 연구가 널리 수행되고 있다. 특히 실리콘 및 게르마늄 나노선은 기존 반도체 기술과 접목이 가능하기 때문에 큰 기대를 모으고 있다. 반도체 나노선의 소자 응용은 불순물을 첨가하여 양전하 혹은 음전하를 띤 정공(hole)이나 전자 운반자를 만들어 전류가 흐를 수 있게 해야 한다. 그러나 나노선의 직경이 작아져 나노미터 수준이 되면 불순물 첨가가 어려워 전기전도의 조절이 매우 어려워진다. 이에 반해 게르마늄 나노선을 얇은 실리콘 껍질로 둘러싼 코어-쉘(core-shell) 구조를 갖는 나노선을 만들면 불순물을 도핑하지 않아도 게르마늄 코어에 정공이 만들어지고 전하 이동도는 크게 증가한다. 연구진은 제일원리 전자구조 계산을 통해 게르마늄 코어와 실리콘 쉘의 밴드구조가 어긋나 있고, 이러한 이유로 게르마늄 코어의 전자가 실리콘 쉘에 있는 표면 결함으로 전하 이동이 가능하여 코어에 양공이 생성됨을 최초로 규명했다. 또한 반도체 나노선을 만드는 과정에서 촉매로 쓰이는 금(Au) 원자들이 실리콘 쉘에 남아 게르마늄 코어의 전자를 빼앗는다는 사실도 처음 밝혔다. 張 교수는 “이번 연구 결과는 그동안 수수께끼로 남아있던 게르마늄-실리콘 나노선의 양전하 생성 원인과 산란과정을 거치지 않는 정공의 높은 전하 이동도에 대한 이론적 모델을 확립하고, 이를 토대로 불순물 도핑 없는 나노선의 소자 응용과 개발에 크게 기여할 것으로 기대된다.” 고 말했다. * 용어설명○ 제일원리 전자구조 계산 : 실험 데이터 없이 순전히 양자이론에 기초하여 물질의 전자구조와 물성을 기술하는 최고급(state-of-the-art) 전자구조 계산방법. (그림1) 실리콘 나노선 및 게르마늄-실리콘 코어-쉘 나노선의 원자구조. (그림2) 게르마늄-실리콘 코어-쉘 나노선의 전자의 상태밀도 분포.
2009.12.30
조회수 23302
김상욱,이원종,이덕현 연구팀, 질소가 도핑된 전도성 탄소나노튜브의 고효율 제조공정 개발
- 세계적 학술지 나노 레터스지 3.13(금)일자 온라인판 발표 신소재공학과 김상욱(金尙郁, 37, 교신저자), 이원종(李元鐘, 52, 교신저자) 교수와 박사과정 이덕현(李德睍, 29, 제1저자) 연구팀이 분자조립(molecular self-assembly) 나노기술을 이용하여 질소가 도핑(doping)된 높은 전기전도성의 탄소나노튜브(Carbon Nanotube : CNT)를 탄소벽의 개수를 원하는 대로 조절하며 매우 빠른 속도로 합성할 수 있는 새로운 공정을 개발했다. 이 연구결과는 나노기술분야의 세계적 학술지인 나노 레터스(Nano Latters)지 최신호(3.13, 금) 온라인 판에 게재됐다. 탄소나노튜브는 전기적, 물리적 성질이 매우 우수하여 플렉서블 전자소자 등 다양한 미래기술에 적용될 것으로 예상된다. 그러나 탄소나노튜브를 이용한 나노소자를 실용화하기 위해서는 탄소나노튜브의 전기 전도도를 높이고, 물리적 특성을 결정짓는 탄소나노튜브의 직경과 탄소벽의 개수를 원하는 대로 조절할 수 있는 기술의 개발이 필요하다. 일반적으로 탄소나노튜브의 전기 전도도를 향상시키기 위해서는 실리콘 등의 반도체 물질에 이용되는 방법과 같이 붕소(B)나 질소(N) 등의 소량의 불순물을 첨가시키는 도핑 기술이 필요하다. 또한 탄소나노튜브의 직경 및 탄소벽의 개수는 합성에 이용되는 금속 촉매의 크기에 의해 결정되므로 형태가 균일한 나노튜브를 대량으로 성장시키기 위해서는 균일한 크기의 촉매입자를 기판위에 대면적으로 제조할 수 있는 나노패턴 공정이 필요하다. 金 교수 연구팀은 고분자의 분자조립 나노패턴기술을 통해 탄소나노튜브의 성장에 필요한 금속 촉매의 크기를 대면적에서 수 옹스트롱 수준으로 균일하게 조절하고 이를 이용하여 탄소나노튜브의 직경 및 탄소벽의 개수를 원하는 대로 조절하는데 성공하였다. 또한, 질소가 도핑되어 높은 전기 전도도를 보이며, 화학적인 기능화가 용이한 탄소나노튜브를 분당 50마이크로미터의 높은 속도로 성장시키는데 성공하였다. 金 교수 연구팀은 그동안 ‘고분자 자기조립 나노기술’에 관련된 일련의 연구 결과들을 네이처지와 사이언스지 그리고 어드밴스드 머티리얼스지 등에 발표해 왔다. 이번 연구 결과로 고분자소재뿐만 아니라 유/무기 혼성소재공정 분야에서도 우수한 역량을 보여주게 됐다. 이번 연구는 金 교수와 李 교수의 공동 지도하에 박사과정 이덕현 씨가 진행했다. <용어설명> - 탄소나노튜브(carbon nanotube): 나노미터 수준의 직경을 가지는 일차원적 구조의 탄소소재로 높은 전하이동도와 전하 축척도를 가지며, 전 세계적으로 초미세/고효율 소자의 부품으로 활용하기 위한 연구가 활발하게 진행되고 있다. - 분자조립(molecular self-assembly): 분자들이 외부의 도움 없이 스스로 정렬되어 정형화된 구조를 형성하는 현상을 의미하며, 초미세 나노패턴구조를 형성시킬 수 있는 원리로 많은 관심을 모으고 있다.
2009.03.17
조회수 22494
최성민 교수팀의 탄소나노튜브에 대한 연구성과 미국 화학학회의 Research Highlight 로 선정
최성민 교수팀의 탄소나노튜브에 대한 연구성과 미국 화학학회의 Research Highlight 로 선정 KAIST 원자력 및 양자공학과 최성민 교수팀은 탄소나노튜브의 산업적 응용에 필수적인 수용액 및 유기용매에의 안정적인 분산기술을 개발하였으며, 중성자 산란기법을 이용하여 그 분산특성을 규명하였다. 이 연구결과는 재료과학 분야 최고권위지인 Advanced Materials (19, 929, 2007)에 게제되었으며, 미국 화학학회의 Research Highlight로 선정되어 ‘Heart Cut" 5월 7일자에 소개되었다. 탄소나노튜브의 산업기술적 응용을 위한 다양한 프로세싱을 위해서는 탄소나노튜브를 수용액 또는 유기용매에 분산할 필요가 있다. 이를 위하여 그간 계면활성분자, DNA 등을 이용한 탄소나노튜브 분산기술이 사용되어 왔으나, 건조 등 프로세싱 과정에서 분산이 쉽게 파괴되는 단점이 있었다. 최성민 교수팀은 이를 극복하기 위하여 계면활성분자를 이용한 탄소나노튜브 수용액 분산을 얻은 후 탄소나노튜브 표면에 흡착된 계면활성분자를 in-situ 상태에서 중합반응시킴으로써 친수성의 안정된 표면 분자막을 갖는 탄소나노튜브를 개발하였다. 이렇게 얻어진 기능성 탄소나노튜브는 냉동건조 등 프로세싱 이후에도 수용액 및 유기용매에 아주 쉽게 분산되는 특성을 갖고 있어 탄소나노튜브 응용기술 개발에 크게 기여할 것으로 기대된다. 과학기술부 원자력연구개발사업의 지원으로 수행된 이 연구에는 박사과정 김태환씨와 도창우씨가 중추적으로 참여하였으며, 관련기술을 특허출원 하였다. 탄소나노튜브의 수용액 분산 및 흡착된 계면활성분자의 in-situ 중합과정과 냉동건조 후의 수용액 재분산 특성 비교 (사진: 중합하지 않은 탄소나노튜브(좌), 계면활성분자를 중합한 탄소나노튜브(우))
2007.05.09
조회수 25175
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2