본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%9D%B8%ED%84%B0%ED%8E%98%EC%9D%B4%EC%8A%A4
최신순
조회순
상상만으로 원하는 방향으로 사용가능한 로봇 팔 뇌-기계 인터페이스 개발
우리 대학 뇌인지과학과 정재승 교수 연구팀이 인간의 뇌 신호를 해독해 장기간의 훈련 없이 생각만으로 로봇 팔을 원하는 방향으로 제어하는 뇌-기계 인터페이스 시스템을 개발했다고 24일 밝혔다. 서울의대 신경외과 정천기 교수 연구팀과 공동연구로 진행된 이번 연구에서 정 교수 연구팀은 뇌전증 환자를 대상으로 팔을 뻗는 동작을 상상할 때 관측되는 대뇌 피질 신호를 분석해 환자가 의도한 팔 움직임을 예측하는 팔 동작 방향 상상 뇌 신호 디코딩 기술을 개발했다. 이러한 디코딩 기술은 실제 움직임이나 복잡한 운동 상상이 필요하지 않기 때문에 운동장애를 겪는 환자가 장기간 훈련 없이도 자연스럽고 쉽게 로봇 팔을 제어할 수 있어 앞으로 다양한 의료기기에 폭넓게 적용되리라 기대된다. 바이오및뇌공학과 장상진 박사과정이 제1 저자로 참여한 이번 연구는 뇌공학 분야의 세계적인 국제 학술지 `저널 오브 뉴럴 엔지니어링 (Journal of Neural Engineering)' 9월 19권 5호에 출판됐다. (논문명 : Decoding trajectories of imagined hand movement using electrocorticograms for brain-machine interface). 뇌-기계 인터페이스는 인간이 생각만으로 기계를 제어할 수 있는 기술로, 팔을 움직이는 데 장애가 있거나 절단된 환자가 로봇 팔을 제어해 일상에 필요한 팔 동작을 회복할 수 있는 보조기술로 크게 주목받고 있다. 로봇 팔 제어를 위한 뇌-기계 인터페이스를 구현하기 위해서는 인간이 팔을 움직일 때 뇌에서 발생하는 전기신호를 측정하고 기계학습 등 다양한 인공지능 분석기법으로 뇌 신호를 해독해 의도한 움직임을 뇌 신호로부터 예측할 수 있는 디코딩 기술이 필요하다. 그러나 상지 절단 등으로 운동장애를 겪는 환자는 팔을 실제로 움직이기 어려우므로, 상상만으로 로봇 팔의 방향을 지시할 수 있는 인터페이스가 절실히 요구된다. 뇌 신호 디코딩 기술은 팔의 실제 움직임이 아닌 상상 뇌 신호에서 어느 방향으로 사용자가 상상했는지 예측할 수 있어야 하는데, 상상 뇌 신호는 실제 움직임 뇌 신호보다 신호대잡음비(signal to noise ratio)가 현저히 낮아 팔의 정확한 방향을 예측하기 어려운 문제점이 오랫동안 난제였다. 이러한 문제점을 극복하고자 기존 연구들에서는 팔을 움직이기 위해 신호대잡음비가 더 높은 다른 신체 동작을 상상하는 방법을 시도했으나, 의도하고자 하는 팔 뻗기와 인지적 동작 간의 부자연스러운 괴리로 인해 사용자가 장기간 훈련해야 하는 불편함을 초래했다. 따라서 팔을 뻗는 상상을 할 때 어느 방향으로 뻗었는지 예측하는 디코딩 기술은 정확도가 떨어지고 환자가 사용법을 습득하기 어려운 문제점이 있다. 이 문제가 오랫동안 뇌-기계 인터페이스 분야에서 해결해야 할 난제였다. 연구팀은 문제 해결을 위해 사용자의 자연스러운 팔 동작 상상을 공간해상도가 우수한 대뇌 피질 신호(electrocorticogram)로 측정하고, 변분 베이지안 최소제곱(variational Bayesian least square) 기계학습 기법을 활용해 직접 측정이 어려운 팔 동작의 방향 정보를 계산할 수 있는 디코딩 기술을 처음으로 개발했다. 연구팀의 팔 동작 상상 신호 분석기술은 운동피질을 비롯한 특정 대뇌 영역에 국한되지 않아, 사용자마다 상이할 수 있는 상상 신호와 대뇌 영역 특성을 맞춤형으로 학습해 최적의 계산모델 파라미터 결괏값을 출력할 수 있다. 연구팀은 대뇌 피질 신호 디코딩을 통해 환자가 상상한 팔 뻗기 방향을 최대 80% 이상의 정확도로 예측할 수 있음을 확인했다. 나아가 계산모델을 분석함으로써 방향 상상에 중요한 대뇌의 시공간적 특성을 밝혔고, 상상하는 인지적 과정이 팔을 실제로 뻗는 과정에 근접할수록 방향 예측정확도가 상당히 더 높아질 수 있음을 연구팀은 확인했다. 연구팀은 지난 2월 인공지능과 유전자 알고리즘 기반 고 정확도 로봇 팔 제어 뇌-기계 인터페이스 선행 연구 결과를 세계적인 학술지 `어플라이드 소프트 컴퓨팅(Applied soft computing)'에 발표한 바 있다. 이번 후속 연구는 그에 기반해 계산 알고리즘 간소화, 로봇 팔 구동 테스트, 환자의 상상 전략 개선 등 실전에 근접한 사용환경을 조성해 실제로 로봇 팔을 구동하고 의도한 방향으로 로봇 팔이 이동하는지 테스트를 진행했고, 네 가지 방향에 대한 의도를 읽어 정확하게 목표물에 도달하는 시연에 성공했다. 연구팀이 개발한 팔 동작 방향 상상 뇌 신호 분석기술은 향후 사지마비 환자를 비롯한 운동장애를 겪는 환자를 대상으로 로봇 팔을 제어할 수 있는 뇌-기계 인터페이스 정확도 향상, 효율성 개선 등에 이바지할 수 있을 것으로 기대된다. 연구책임자 정재승 교수는 "장애인마다 상이한 뇌 신호를 맞춤형으로 분석해 장기간 훈련을 받지 않더라도 로봇 팔을 제어할 수 있는 기술은 혁신적인 결과이며, 이번 기술은 향후 의수를 대신할 로봇팔을 상용화하는 데에도 크게 기여할 것으로 기대된다ˮ고 말했다.
2022.10.24
조회수 1767
생각만으로 정확하게 로봇팔 조종이 가능한 뇌-기계 인터페이스 개발
우리 대학 바이오및뇌공학과 정재승 교수 연구팀이 3차원 공간상에서 생각만으로 로봇팔을 높은 정확도 (90.9~92.6%)로 조종하는 `뇌-기계 인터페이스 시스템'을 개발했다고 23일 밝혔다. 정 교수 연구팀은 인공지능과 유전자 알고리즘을 사용해 인간의 대뇌 심부에서 측정한 뇌파만으로 팔 움직임의 의도를 파악해 로봇팔을 제어하는 새로운 형태의 뇌-기계 인터페이스 시스템을 개발했다. 뇌 활동만으로 사람의 의도를 파악해 로봇이나 기계가 대신 행동에 옮기는 `뇌-기계 인터페이스' 기술은 최근 급속도로 발전하고 있다. 하지만 손을 움직이는 정도의 의도 파악을 넘어, 팔 움직임의 방향에 대한 의도를 섬세하게 파악해 정교하게 로봇팔을 움직이는 기술은 아직 정확도가 높지 않았다. 하지만 연구팀은 이번 연구에서 조종 `방향'에 대한 의도를 뇌 활동만으로 인식하는 인공지능 모델을 개발했고, 그 결과 3차원 공간상에서 24개의 방향을 90% 이상의 정확도로 정교하게 해석하는 시스템을 개발했다. 게다가 딥러닝 등 기존 기계학습 기술은 높은 사양의 GPU 하드웨어가 필요했지만, 이번 연구에서는 축적 컴퓨팅(Reservoir Computing) 기법을 이용해 낮은 사양의 하드웨어에서도 인공지능 학습이 가능하여 스마트 모바일 기기에서도 폭넓게 응용될 수 있도록 개발해, 향후 메타버스와 스마트 기기에도 폭넓게 적용이 가능할 것으로 기대된다. 우리 대학 김훈희 박사(現 강남대 조교수)가 제1 저자로 참여한 이번 연구는 국제학술지 `어플라이드 소프트 컴퓨팅(Applied Soft Computing)' 2022년 117권 3월호에 출판됐다. (논문명 : An electrocorticographic decoder for arm movement for brain-machine interface using an echo state network and Gaussian readout). 뇌-기계 인터페이스는 사용자의 뇌 활동을 통해 의도를 읽고 로봇이나 기계에 전달하는 기술로서 로봇, 드론, 컴퓨터뿐만 아니라 스마트 모바일 기기, 메타버스 등에서의 이용될 차세대 인터페이스 기술로 각광받고 있다. 특히 기존의 인터페이스가 외부 신체 기관을 통해 명령을 간접 전달(버튼, 터치, 제스처 등)해야 하지만 뇌-기계 인터페이스는 명령을 뇌로부터 직접적 전달한다는 점에서 가장 진보된 인터페이스 기술로 여겨진다. 그러나 뇌파는 개개인의 차이가 매우 크고, 단일 신경 세포로부터 정확한 신호를 읽는 것이 아니라 넓은 영역에 있는 신경 세포 집단의 전기적 신호 특성을 해석해야 하므로 잡음이 크다는 한계점을 가지고 있다. 연구팀은 이러한 문제 해결을 위해 최첨단 인공지능 기법의 하나인 `축적 컴퓨팅 기법'을 이용해 뇌-기계 인터페이스에서 필요한 개개인의 뇌파 신호의 중요 특성을 인공신경망이 자동으로 학습해 찾을 수 있도록 구현했다. 또한 유전자 알고리즘(Genetic Algorithm)을 이용해 인공지능 신경망이 최적의 뇌파 특성을 효율적으로 찾을 수 있게 시스템을 설계했다. 연구팀은 심부 뇌파를 최종 해석하는 리드아웃(Readout)을 가우시안(Gaussian) 모델로 설계해 시각피질 신경 세포가 방향을 표현하는 방법을 모방하는 인공신경망을 개발했다. 이런 리드아웃 방식은 축적 컴퓨팅의 선형 학습 알고리즘을 이용해 일반적 사양의 간단한 하드웨어에서도 빠르게 학습할 수 있어 메타버스, 스마트기기 등 일상생활에서 응용이 가능해진다. 특히, 이번 연구에서 만들어진 뇌-기계 인터페이스 인공지능 모델은 3차원상에서 24가지 방향 즉, 각 차원에서 8가지 방향을 디코딩할 수 있으며 모든 방향에서 평균 90% 이상의 정확도 (90.9%~92.6% 범위)를 보였다. 또한 연구된 뇌-기계 인터페이스는 3차원 공간상에서 로봇팔을 움직이는 상상을 할 때의 뇌파를 해석해 성공적으로 로봇팔을 움직이는 시뮬레이션 결과를 보였다. 인공지능 시스템을 만든 제1 저자인 김훈희 박사는 "공학적인 신호처리 기법에 의존해 온 기존 뇌파 디코딩 방법과는 달리, 인간 뇌의 실제 작동 구조를 모방한 인공신경망을 개발해 좀더 발전된 형태의 뇌-기계 인터페이스 시스템을 개발해 기쁘다ˮ면서 "향후 뇌의 특성을 좀 더 구체적으로 이용한 `뇌 모방 인공지능(Brain-inspired A.I.)'을 이용한 다양한 뇌-기계 인터페이스를 개발할 계획이다ˮ라고 말했다. 이번 연구를 주도한 연구책임자 정재승 교수는 "뇌파를 통해 생각만으로 로봇팔을 구동하는 `뇌-기계 인터페이스 시스템'들이 대부분 고사양 하드웨어가 필요해 실시간 응용으로 나아가기 어렵고 스마트기기 등으로 적용이 어려웠다. 그러나 이번 시스템은 90%~92%의 높은 정확도를 가진 의도 인식 인공지능 시스템을 만들어 메타버스 안에서 아바타를 생각대로 움직이게 하거나 앱을 생각만으로 컨트롤하는 스마트기기 등에 광범위하게 사용될 수 있다ˮ고 말했다. 이번 연구 결과는 사지마비 환자나 사고로 팔을 잃은 환자들을 위한 로봇팔 장착 및 제어 기술부터, 메타버스, 스마트기기, 게임, 엔터테인먼트 애플리케이션 등 다양한 시스템에 뇌-기계 인터페이스를 적용할 가능성을 열어 줄 것으로 기대된다. 이번 연구는 한국연구재단 뇌 원천기술개발사업의 지원을 받아 수행됐다.
2022.02.24
조회수 6068
신경신호 모사를 통한 인공 감각 시스템 개발
우리 대학 바이오및뇌공학과 박성준 교수 연구팀이 고려대학교 천성우 교수, 한양대학교 김종석 박사 공동 연구팀과 함께 인간 피부-신경 모사형 인공 감각 인터페이스 시스템을 개발했다고 12일 밝혔다. 이번 연구 결과는 국제 학술지 `네이처 일렉트로닉스(Nature Electronics)'에 2021년 6월 3일 字로 출판됐다. (논문명: Artificial Neural Tactile Sensing System) 가상/증강 현실, 메타버스, 화상 환자를 위한 인공피부, 로봇형 의수/의족 등에 사용될 수 있는 인공 감각 시스템은, 구현해야 할 원리와 그 시스템의 복잡성 때문에 실제 감각기관처럼 만들기 어려운 상황이었다. 특히 사람은 다양한 유형의 촉각 수용기를 통해 (압력, 진동 등) 정보를 조합하여 촉각을 감지하므로, 완벽한 인공 감각 시스템의 구현은 더욱 어려울 수 밖에 없다. 연구팀은 문제 해결을 위해 나노입자 기반의 복합 촉각 센서를 제작하고, 이를 실제 신경 패턴에 기반한 신호 변환 시스템과 연결하는 방법을 사용하였다. 이 두 가지 기술의 조합을 통해 연구팀은 인간의 촉각 인식 프로세스를 최대로 모방하는 인공 감각 인터페이스 시스템을 구현하는데 성공했다. 연구팀은 우선 압전재료 및 압전 저항성 재료의 조합으로 이루어진 전자 피부를 제작했다. 이 센서는 나노입자의 적절한 조합을 통해 피부 내의 압력을 감지하는 늦은 순응 기계적 수용기(SA mechanoreceptor)와 진동을 감지하는 빠른 순응 기계적 수용기(FA mechanoreceptor)를 동시에 모사할 수 있다는 특징을 가지고 있다. 해당 센서를 통해 생성된 전위는, 연구팀이 제작한 회로 시스템을 통해 실제 감각 신호와 같은 형태의 패턴으로 변환된다. 이때 생체 내 상황을 최대한 모사하기 위해, 실제 감각신경을 추출, 다양한 감각에 의한 신호를 측정하여 함수화하는 방법이 사용됐다. 해당 시스템을 동물 모델에 적용한 결과, 연구팀은 인공 감각 시스템에서 발생한 신호가 생체 내에서 왜곡 없이 전달되며, 근육 반사 작용 등 생체 감각 관련 현상들을 구현할 수 있음을 확인했다. 또한 연구팀은 지문 구조로 만든 감각 시스템을 20여 종의 직물과 접촉함으로써, 딥 러닝 기법을 통해 직물의 질감을 99% 이상 분류할 수 있을 뿐만 아니라 학습된 신호를 기반으로 인간과 동일하게 예측할 수 있음을 보여줬다. 박성준 교수는 "이번 연구는 실제 신경 신호의 패턴 학습을 바탕으로 한 인간 모사형 감각 시스템을 세계 최초로 구현했다는 데 의의가 있다. 해당 연구를 통해 향후 더욱 현실적인 감각 구현이 가능할 뿐만 아니라, 연구에 사용된 생체신호 모사 기법이 인체 내 다양한 종류의 타 감각 시스템과 결합될 경우 더욱 큰 시너지를 낼 수 있으리라 기대한다ˮ 라고 말했다. 한편 이번 연구는 한국연구재단 신진연구사업, 범부처의료기기개발 사업, 나노소재원천기술개발사업, 차세대 지능형 반도체 개발사업, KK-JRC 스마트 프로젝트, KAIST 글로벌 이니셔티브 프로그램, Post-AI 프로젝트 사업의 지원을 받아 수행됐다.
2021.07.12
조회수 5371
하이드로젤 기반 유연성 뇌-기계 인터페이스 개발
우리 대학 바이오및뇌공학과 박성준 교수 연구팀이 메사추세츠 공과대학(MIT) 폴리나 아니키바(Polina Anikeeva) 교수, 쏸허 자오(Xuanhe Zhao) 교수, 육현우 박사 공동 연구팀과 함께 *하이드로젤 기반의 유연성 뇌-기계 인터페이스를 개발하는 데 성공했다고 21일 밝혔다. ☞ 하이드로젤: 물과 젤리가 합쳐진 합성어이며 주로 필러, 보톡스, 화장품에 쓰이는 반고체 상태의 물질이다. 인공적인 인체 조직을 만드는 원료로 적합해 의학적으로도 널리 쓰인다. 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 2021년 6월 8일 字로 출판됐다. (논문명: Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity) 뇌 구조를 연구하거나 뇌 신경 질환의 메커니즘을 파악, 치료하기 위해서는, 실시간으로 뇌를 자극하고 신호를 측정할 수 있는 인터페이스의 개발이 필수적이다. 그러나 기존의 신경 인터페이스는 기계적, 화학적 특성이 뇌 조직과 너무 달라서 일어나는 이물 반응(foreign body response) 때문에, 주변에 절연세포층이 형성돼 그 수명이 매우 짧아진다는 문제점을 가지고 있었다. 연구팀은 해당 문제의 해결을 위해, 직접 제작한 다기능성 파이버 다발을 하이드로젤 몸체에 넣는 방법을 이용해 `뇌 모사형 신경 인터페이스'를 제작했다. 해당 장치는 빛으로 특정 신경세포종만을 자극할 수 있는 광유전학 기술을 적용하기 위한 광섬유뿐만 아니라, 뇌에서 신호를 읽을 수 있는 전극 다발, 약물을 뇌 속으로 전달할 수 있는 미세 유체 채널을 모두 보유하고 있다. 해당 인터페이스는 하이드로젤 몸체를 건조시킨 상태에서는 단단한 성질이 고분자와 유사해 몸체에 삽입하기가 쉽다. 하지만 몸에 들어가면 체내의 수분을 빠르게 흡수해. 부드럽고 수분이 풍부한 주변 조직과 유사한 상태가 되므로 이물 반응을 최소화할 수 있다. 연구팀은 이러한 특성을 가진 장치를 동물 모델에 직접 적용해, 기존의 기록을 훨씬 뛰어넘는 삽입 후 6개월까지도 뇌 신호를 측정할 수 있음을 보였다. 또한 자유롭게 움직이는 쥐를 대상으로 초장기간 광유전학 실험, 행동 실험 등이 가능하며, 이물 반응에 의한 아교세포 및 면역세포의 발현이 기존 장치보다 현저히 줄어듦을 증명했다. 박성준 교수는 "이번 연구는 최초로 하이드로젤을 다기능 신경 인터페이스의 구성물질로 사용해 그 수명을 대폭 상승시켰다는 데에 의의가 있으며, 해당 연구를 통해 향후 알츠하이머병, 파킨슨병 등 초장기간 관찰이 필요한 뇌 신경 질환 연구가 더욱 발전할 수 있을 것으로 기대된다ˮ 라고 말했다. 한편 이번 연구는 한국연구재단 신진연구사업, 범부처의료기기개발 사업, 나노소재원천기술개발사업, 차세대 지능형 반도체 개발사업, KK-JRC 스마트 프로젝트, 카이스트 글로벌 이니셔티브 프로그램, 포스트 인공지능(Post-AI) 프로젝트 사업의 지원을 받아 수행됐다.
2021.06.21
조회수 23567
남택진 교수팀, 레드닷 어워드 2021 대상 수상
우리 대학 남택진 산업디자인학과 교수팀이 세계 최대 규모의 디자인 공모전인 독일 ʻ레드닷 디자인 어워드(Red Dot Design Award) 2021ʼ 제품디자인 부문에서 대상(best of the best award)을 받았다. 수상작은 남 교수팀이 개발한 ʻ코로나 중증 환자 치료용 이동형 감염병동(mobile clinic module, MCM)ʼ이다. 올해 공모전에는 60여 개국에서 총 7천8백여 개의 작품이 출품돼 제품 디자인·커뮤니케이션 디자인·콘셉트 디자인 등 3개 분야에서 경쟁을 펼쳤다. 주최 측은 "수상작들이 자동차·로봇·의료 기술·포장에 이르기까지 디자인을 통해 현대 사회가 가진 문제를 해결하고 인류의 생활 수준을 향상하는 데 중요한 역할을 했다ˮ라고 밝혔다. 특히, 남 교수팀의 이동형 감염병동은 "제품 디자인이 감염병 확산을 방지하는 일에 얼마나 가치 있게 기여할 수 있는지를 보여줬다ˮ라고 평가했다. 이동형 감염병동의 쾌거는 이뿐만이 아니다. 레드닷 디자인 어워드(Red Dot Design Award)와 함께 세계 최고 권위의 디자인 공모전으로 손꼽히는 iF 디자인 어워드(International Forum Design Award) 2021에서도 제품·실내건축·사용자인터페이스·사용자경험 등 총 4개 분야에서 본상을 수상했다. 이로써, 남 교수팀의 이동형 음압병동은 국제 권위의 디자인 공모전을 연이어 석권하며 기능성·경제성·효용성뿐만 아니라 독창적 디자인과 심미성까지 갖춘 의료 시설로서 가치를 인정받게 됐다. 이동형 음압병동은 고급 의료 설비를 갖춘 음압 격리 시설로 신속하게 변형하거나 개조해 사용할 수 있도록 디자인됐다. 음압 프레임·에어 텐트·기능 패널 등의 각 모듈을 조합해 단시간 내에 음압 병동이나 선별진료소 등을 구축할 수 있다. 또한, 소규모의 장비와 인력으로도 관리·이송·설치가 가능해 기존의 조립식 병동 대비 경제적·시간적 효율을 높인 것이 가장 큰 특징이다. 남택진 교수팀은 작년 7월부터 KAIST 코로나 대응 과학기술 뉴딜사업(단장 배충식)의 일환으로 이동형 음압병동을 개발했다. 조스리 스튜디오·20Plus 등과 협력해 디자인을 진행했고 신성이엔지가 제작을 담당했다. 배상민(산업디자인학과)·이태식(산업및시스템 공학과)·김형수(기계공학과) 교수 등이 자문했으며, 석현정(산업디자인학과), 박해원·김성수(기계공학과), 한동수(전산학과) 교수 등이 감염병원 서비스 주제로 연구에 참여했다. 현재 한국 원자력의학원·제주도 백신 접종센터에 시제품이 설치돼 코로나 환자 및 백신 접종자들을 대상으로 시범 운영 중이다. 향후, 건양대 병원 등으로 적용 범위를 확대해나갈 예정이다. 디자인 총괄한 남택진 교수는 "현실 세계의 문제를 발견하고 해결하여 책임지는 디자이너가 더 많아지기를 바란다ˮ라고 수상 소감을 전했다. 이어, 남 교수는 "MCM의 생산 효율성과 안정된 운영을 위해 엔지니어링 디자인 측면을 개선하는 연구를 진행 중이며, 빠른 시일 내에 상용화와 수출이 이뤄질 수 있도록 박차를 가할 예정이다ˮ라고 전했다. KAIST 코로나 대응 과학기술 뉴딜사업단은 KAIST의 과학기술 역량을 기반으로 감염 예방·보호·진단·치료 등 감염병의 전 주기에 대응하는 치료 분야에서 산·학·연·병이 협력해 방역 요소기술 개발과 과학기술 기반의 방역 시스템을 구축하는 연구를 수행하고 있다.
2021.04.19
조회수 36214
신인식 교수 연구팀, ACM MobiCom 최우수논문상
우리 대학 전산학부 신인식 교수 연구팀 10월 21부터 25일까지 멕시코 로스카보스에서 열린 ‘ACM 모비콤 2019(The 25th Annual International Conference on Mobile Computing and Networking)’ 국제 학회에서 최우수 논문상(Best Paper Award)’을 수상했다. (논문명 FLUID: Flexible User Interface Distribution for Ubiquitous Multi-device Interaction) 모바일 통신 및 컴퓨팅 분야에서 최고 권위의 학회인 ACM 모비콤에서 우리나라 주관기관에서 최우수 논문상을 받은 것은 25년 만에 최초이다. 미국 버팔로 대학교 스티브 고(Steve Ko) 교수와 공동으로 진행한 이 연구는 10월 22일 ACM 모비콤 2019 국제 학회에서 발표됐으며, 현장 기술 시연을 통해 다양한 다중 기기 사용 시나리오들을 선보이며 여러 글로벌 회사 및 학계의 주목을 받았다. 최근 모바일 및 IoT 추세는 다양한 스마트 기기의 등장이다. 듀얼스크린폰 및 폴더블폰 등 새로운 스마트폰 디스플레이가 속속 출시되고 있으며, 이미 우리 주위에서 다양한 스마트 기기들을 쉽게 접하고 있다. 그러나 현재의 모바일 앱 개발 및 사용 개념은 단일 기기 모델에 국한돼 새로운 추세인 다중 기기 활용의 잠재성을 활용하지 못하고 있다. 신 교수 연구팀은 이러한 고정 관념 및 기술적 한계를 뛰어넘어 새로운 다중 기기 개념을 제시하는 모바일 소프트웨어 플랫폼 기술 ‘플루이드(FLUID’를 개발했다. 논문의 제1 저자인 오상은 박사과정은 단일 기기 가상화(virtualization) 기술을 핵심 기반 기술로 소개하며, 플루이드를 통해 개별 앱의 사용자 인터페이스(UI) 요소들을 사용자가 원하는 대로 여러 기기에 배치할 수 있다고 전했다. 시중의 기존 모바일 앱을 수정하거나 재개발하지 않아도 다중 기기 환경에서 새로운 형태로 앱을 사용할 수 있다고 덧붙였다. 신인식 교수는 "제안하는 플루이드 플랫폼이 가지는 높은 유연성과 범용성은 단일 기기 패러다임에서 새로운 다중 기기 패러다임으로의 전환을 가속할 것으로 기대하며, 지금껏 생각할 수 없던 새 형태의 앱 활용을 가능하게 할 것이다"라며, “5G, 듀얼스크린폰, 폴더블폰 등 차세대 제품에 적용 가능하며 시장 선점 효과를 통한 기업의 국제 경쟁력을 높일 것으로 기대한다”라고 말했다.
2019.11.01
조회수 6077
신인식 교수, 스마트 기기 간 앱 UI 분산기술 개발
〈 신인식 교수 연구팀 〉 우리 대학 전산학부 신인식 교수와 美 버팔로 대학교 스티브 고(Steve Ko) 교수 공동 연구팀이 모바일 어플리케이션 내의 프로그램을 여러 스마트 기기에서 자유롭게 실행할 수 있는 새로운 모바일 플랫폼 기술을 개발했다. 오상은 박사과정이 주도한 이번 연구 결과는 모바일 컴퓨팅 분야 최고 권위 학술대회인 ACM 모비콤(MobiCom) 2019에 논문으로 출간되며, 올해 10월 21일부터 25일까지 멕시코 로스카보스에서 열리는 해당 학술대회에서 발표할 예정이다. 최근 5G 초고속 통신 시대 개막에 맞춰 모바일 및 사물인터넷 생태계의 경향은 듀얼 스크린 폰·폴더블 폰 등 새로운 디스플레이 형태의 등장, 스마트 워치·스마트 TV·스마트 자동차 등 다양한 스마트 기기의 등장이라고 할 수 있다. 그러나 현재의 모바일 어플리케이션 생태계는 하나의 기기에 하나의 스크린만을 사용하는 단일 기기 모델에 갇혀있어 새로운 패러다임인 다중 기기 사용에 대한 잠재성이 제한되는 실정이다. 연구팀은 이러한 고정 관념과 기술적 한계를 극복하기 위해 새로운 개념을 제시하는 모바일 소프트웨어 플랫폼 기술을 개발했다. 연구팀이 개발한 플랫폼을 사용하면 다양하고 새로운 사용자 경험(UX)을 창출할 수 있다. 최근 유튜브, 아프리카TV 등에서 유행하는 라이브 방송 스트리밍 앱을 이용하면 키보드 채팅창이 방송 화면을 가리게 된다. 연구팀의 플랫폼은 앱을 수정하지 않고 방송 화면과 키보드 채팅창을 각각 다른 기기로 분리해 띄움으로써 자유롭게 채팅을 하면서 방송 화면도 가리지 않고 시청할 수 있다. 운전 중 내비게이션 앱을 이용해 목적지를 입력할 때도 유용하게 활용할 수 있다. 택시 안에서 운전자가 운전 중 직접 목적지를 입력하는 행위는 사고의 원인이 된다. 동승자가 직접 입력하는 것 역시 탑승 위치에 따라 쉽지 않다. 이런 상황에서 내비게이션 앱의 목적지 입력창을 동승자의 기기로 옮길 수 있다면 쉽게 입력할 수 있다. 최근 주목받는 5G 멀티뷰 앱에도 적용할 수 있다. 5G 멀티뷰는 스포츠나 게임 등의 경기를 여러 각도로 시청할 수 있는 새로운 서비스로, 연구팀의 플랫폼 기술이 확장 적용되면 사용자는 여러 각도의 영상을 각각 다른 기기에서 동시에 시청할 수 있다. 연구팀은 사용자 편리성과 범용성을 최대화하기 위해 개별 앱의 UI(사용자 인터페이스, User Interface) 요소들을 사용자가 원하는 대로 자유자재로 배치하는 방식을 지원하고, 시판 중인 모바일 앱을 수정하거나 재개발하지 않아도 지원되는 것을 목표로 단일 기기 가상화를 제공하는 새 플랫폼을 개발했다. 연구팀은 단일 기기로 제한돼 있던 앱 UI의 실행 환경을 다중 기기 환경에 맞게 확장해 단일 기기 가상화에 성공했다. 이 가상화 기술은 앱의 수정 없이도 UI 요소가 지닌 그래픽 자원을 다른 기기로 전달함으로써 다른 기기에서도 UI 요소들이 렌더링되도록 지원한다. 연구팀은 안드로이드 플랫폼에 프로토타입을 구현해 20여 개의 기존 앱에 새로운 UX를 성공적으로 제공하는 것을 확인했다. 신인식 교수는 "개발한 플랫폼이 갖는 높은 유연성과 범용성은 단일 기기 패러다임에서 다중 기기 패러다임으로 전환의 가속화에 이바지할 것이며, 이러한 패러다임의 전환은 지금껏 생각할 수 없었던 새 형태의 앱 활용을 가능하게 할 것이다"라며, “듀얼스크린폰, 폴더블폰 등 국내 기업의 차세대 제품에 적용 가능하며 시장 선점 효과를 통한 국내 기업의 국제 경쟁력을 높일 것으로 기대한다”라고 말했다. □ 그림 설명 그림1. 방송 스트리밍 앱 사용 예제 그림2. 내비게이션 앱 사용 예제
2019.07.17
조회수 7086
성풍현 교수, 돈 밀러 어워드 수상
〈 성풍현 교수 〉 우리 대학 원자력 및 양자공학과 성풍현 석좌교수가 미국원자력학회 ‘돈 밀러 어워드(Don Miller Award)’ 수상자로 선정됐다. 돈 밀러 어워드는 2009년 원자력 계측제어 분야의 대가이자 미국원자력학회장을 역임한 도날드 W. 밀러(Donald W. Miller) 교수를 기리기 위해 제정됐으며, 원자력 계측제어와 인간기계인터페이스 분야 발전에 가장 뛰어난 공헌을 한 개인 또는 단체에 주어진다. 시상식은 오는 6월 10일 미국 미네아폴리스에서 열리는 2019년도 미국원자력학회 총회에서 개최될 예정이다. 성풍현 석좌교수는 우리나라 원자력계측제어와 인적요소공학 분야를 처음으로 개척했으며 뛰어난 연구성과와 후학양성을 통해 전 세계 원자력계로부터 그 성과와 기여를 크게 인정받고 있다. 성 교수는 원자력 분야 종합 국제학술지인 ‘뉴클리어 엔지니어링 & 테크놀로지(Nuclear Engineering and Technology)’의 초대 편집장, 한국원자력학회 회장, 미국원자력학회 원자력계측제어 및 인적요소분과 회장, 다수의 국제학회에서 의장으로 활동하는 등 국제 학술활동에서 선도적인 리더 역할을 했다. 2017년에는 그 역량과 공을 인정받아 미국원자력학회의 석학회원으로 선출된 바 있다. 대한민국 원자력안전위원회 위원을 역임하고, 현재는 대한민국 원자력진흥위원회 위원이다. 올해부터는 세계원자력학회연합회 (International Nuclear Societies Council)의 수석부의장으로 활동하고 있으며, 2021년부터 의장으로서 전 세계 원자력학회들의 협력 활동을 관장하는 임무를 수행할 예정이다. 더불어 현재 에너지 정책 합리화를 위한 교수협의회(에교협)의 공동대표로서 합리적인 국가 에너지 정책 수립에 노력하고 있다. 성 교수는 “우리나라는 현재 원자력계측제어와 인적요소공학 분야에서 세계적으로도 가장 왕성한 연구 활동을 수행하고 있는 나라 중의 하나이다. KAIST에서 해당 분야 박사학위를 마친 사람 중 여러 명이 우리나라와 미국에서도 교수로 왕성하게 활동 중이다.”라며 “이런 이유들로 수상하게 됐다고 생각한다. 이 수상이 우리나라 원자력의 어려운 시기에 작게나마 희망의 불꽃이 되기를 기대한다”라고 말했다.
2019.04.11
조회수 5702
신인식 교수, 스마트폰 기반 터치사운드 위치파악 기술 개발
〈 왼쪽부터 아니쉬 뱐잔카 석사과정, 김효수 연구교수, 신인식 교수 〉 1분 1초가 소중한 아침 출근 준비 시간, 거울을 보며 양치질을 하는 시간은 유일하게 멍하니 다른 생각을 할 수 있는 순간일 것이다. 만약 양치질 중 거울을 바라보는 것만으로 오늘의 중요한 뉴스, 궁금했던 유튜브 영상, 날씨 등을 미리 확인할 수 있다면 하루를 계획하는 데 큰 도움이 될 것이다. 우리 대학 전산학부 신인식 교수, 김효수 연구교수 연구팀이 가구, 거울 등의 주변 사물들을 터치 입력 도구로 사용할 수 있는 스마트폰 기반의 터치 사운드 위치파악 기술을 개발했다. 이 기술은 사람들이 항상 휴대하는 스마트폰, 태블릿 PC 등을 사용한 기술로, 언제 어디서나 책상 등의 주변 사물들을 가상 키보드로 활용해 장문의 문자, 메일 등을 손쉽게 작성할 수 있고 체스와 같은 보드게임도 즐길 수 있다. 또한 단순 디스플레이 기능만 제공하던 스마트 TV나 거울과 같은 스마트기기에 터치 입력 기능을 삽입해 좀 더 편리하고 효율적인 기기 활용을 할 수 있다. 연구팀이 개발한 시스템은 지난 11월 4~7일 중국 선전에서 열린 모바일 및 센싱 분야의 최고 권위 국제학회 ACM SenSys에서 발표돼 호평을 받았으며, 우수성을 인정받아 ‘베스트 페이퍼 러너-업 어워드(best paper runner-up award)’를 수상했다. 터치 사운드 기반 입력 기술은 다양한 사용 환경에서도 1cm 이내의 오차를 갖는 정확한 터치 입력을 일관성 있게 제공하는 것이 가장 중요하다. 사용자들은 책상, 벽, 거울 등 매번 다른 재질의 사물을 터치 입력 도구로 활용할 수 있어야 하고, 사용 중에도 책이나 가방과 같은 주변 물체의 위치 및 소음 수준이 바뀔 수 있기 때문이다. 연구팀은 사용자가 손톱 등으로 사물을 터치했을 때 발생하는 터치 충돌 소리가 고체 표면을 통해 전달되는 과정을 분석했다. 소리가 공기를 통해 전달될 때와는 달리 고체 표면에 전달될 때에는 주파수에 따라 다른 속도로 전달되는 분산(dispersion) 현상을 겪는다. 분산 현상으로 인해 주파수별로 소리 도달 시간 차이는 소리 전달 거리에 비례해 증가하며, 주변 소음이 변화해도 비례 관계는 변하지 않는다. 김효수 연구교수는 이러한 관찰에 기반해 고체 표면을 통해 전달된 터치 소리를 스마트폰에 녹음하고 간단한 조정 과정을 통해 주파수별 소리 도달 시간 차이와 소리 전달 거리의 관계를 파악했다. 이후 이 값을 이용해 사용자의 터치 입력 위치를 정확하게 계산하는 기술을 개발했다. 개발한 시스템은 약 17인치의 터치스크린에서 평균 0.4cm 이내의 측정 오차를 보였다. 특히 나무 책상, 유리 거울, 아크릴 보드 등 다양한 종류의 사물에서 주변 물체의 위치나 소음이 변하는 상황에서도 항상 1cm 이내의 측정 오차를 기록하는 정확성을 보였다. 특히 기존 기술이 터치 입력 위치파악에만 수백 초 소요되는 것과 달리 정확성과 편리한 사용을 위해 약 10초 이내의 간단한 조정을 통해 기술을 적용하는 데 성공했다. 연구팀은 실제 사용자를 대상으로 한 실험에서도 사용자 경험 및 정확성 등 모든 지표에서 긍정적인 반응을 얻었다고 밝혔다. 신 교수는 “우리가 주위에서 흔히 볼 수 있는 거울, 책상, 벽 등의 표면을 마치 터치스크린처럼 사용할 수 있다면 재미있고 유용한 앱들이 많이 활성화될 것이다”라며 “이 기술은 마이크로폰 3~4개 설치만으로도 터치 입력을 가능하게 하는 새로운 터치 인터페이스 기술이다”라고 말했다. 이번 연구는 Microsoft Research Asia(마이크로소프트연구소 아시아)의 지원을 받아 수행됐다. ※ 데모 비디오 링크 http://cps.kaist.ac.kr/research/ubitap/ubitap_demo.mp4 □ 사진 설명 사진1. 터치 입력 기술 사용 예제
2018.12.13
조회수 7112
강정구 교수, 급속충전 가능한 하이브리드 에너지 저장소자 개발
〈 강 정 구 교수〉 우리 대학 EEWS대학원/신소재공학과 강정구 교수 연구팀이 다공성 금속 산화물 나노입자와 그래핀을 이용해 고성능, 고안정성을 갖는 물 기반 하이브리드 에너지 저장 소자를 개발했다. 이 하이브리드 소자는 기존 배터리에 비해 100배 이상 빠른 출력 밀도를 보이며 수십 초 내로 급속 충전이 가능해 소형의 휴대용 전자기기 등에 활용될 수 있을 것으로 기대된다. 강원대학교 정형모 교수 연구팀과 공동으로 진행된 이번 연구 결과는 재료 분야 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 8월 15일자에 온라인 판에 게재됐다. 리튬 이온 배터리를 비롯한 기존 유계 에너지 저장 소자는 넓은 전압 범위와 높은 에너지 밀도를 갖지만 유기 전해질의 사용에 따른 화재 등의 안전 문제가 뒤따른다. 또한 전기화학적 반응 속도가 느리기 때문에 소자를 충전하는데 긴 시간이 필요하고 사이클이 짧다는 한계가 있다. 이에 반해 수계 전해질 기반 에너지 저장 소자는 안전하고 친환경적 소자로써 주목받고 있다. 하지만 제한된 전압 범위와 낮은 용량으로 인해 유계 기반 소자에 비해 에너지 밀도가 낮은 단점을 가지고 있다. 연구팀은 금속 산화물과 그래핀을 결합한 뒤 수계 기반 전해질을 사용해 높은 에너지 밀도, 고출력, 우수 한 사이클 특성을 갖는 에너지 저장 전극을 개발했다. 이번 연구에서 개발한 다공성의 금속 산화물 나노 입자는 2~3 나노미터 크기의 나노 클러스터로 이루어져 있으며 5 나노미터 이하의 메조 기공이 다량으로 형성돼 있다. 이러한 다공성 구조에서는 이온이 물질 표면으로 빠르게 전달되며 작은 입자크기와 넓은 표면적에 의해 짧은 시간 동안 많은 수의 이온이 금속 산화물 입자 내부에 저장된다. 연구팀은 철과 망간, 두 종류의 다공성 금속 산화물을 양극과 음극에 각각 적용해 2V의 넓은 전압 범위에서 작동 가능한 수계 전해질 기반 하이브리드 소자를 구현했다. 강 교수는 “다공성의 금속 산화물 전극이 가진 기존 기술 이상의 고용량, 고출력 특성은 새로운 개념의 에너지 저장장치의 상용화에 기여할 것이다”며 “수십 초 내의 급속 충전이 가능하기 때문에 휴대폰, 전기자동차 등의 주전원이나 태양에너지를 전기로 직접 저장해 플렉서블 기기에 적용될 수 있을 것이다”고 말했다. 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단(단장 김광호)의 지원을 받아 수행됐다. □ 그림설명 그래핀 위에 형성된 다공성 금속 산화물 나노입자 전극의 수계 이온 저장 특성을 나타낸 이미지
2018.08.27
조회수 8301
강정구 교수, 수십 초 내 충전가능한 물 기반 저장소자 개발
우리 대학 EEWS대학원 강정구 교수 연구팀이 수십 초 내 급속충전이 가능한 물 기반의 융합에너지 저장소자를 개발했다. 이 기술은 그래핀 기반의 고분자 음극 및 나노 금속 산화물 양극 개발을 통한 높은 에너지 밀도를 가지며 급속 충전이 가능한 융합 에너지 저장소자로 향후 휴대용 전자기기에 적용 가능할 것으로 기대된다. 옥일우 박사과정이 1저자로 참여한 이번 연구 결과는 에너지재료분야 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 1월 15일자에 게재됐다. 기존의 물 기반 에너지 저장장치는 낮은 구동전압과 음극재료의 부족으로 에너지 밀도가 낮고 급속 충전에 한계가 있었다. 에너지 저장장치는 두 전극에 의해 에너지 저장 용량이 정해지며 양극, 음극의 균형이 이뤄져야 고안정성을 갖는다. 일반적으로 두 전극은 전기적 특성에 차이를 보이고 이온 저장 과정이 다르기 때문에 불균형에 의한 낮은 용량 및 안정성을 보이곤 한다. 연구팀은 전극의 표면에서 빠른 속도로 에너지 교환을 이루게 하고 양극 사이의 에너지 손실을 최소화시킴으로써 고성능 에너지 저장장치를 구현하는 데 성공했다. 연구팀이 개발한 음극소재는 전도성 고분자 물질로 배터리, 슈퍼커패시터 전극 재료로 활용 가능하다. 그래핀 표면과 층 사이에서 그물 모양의 최적화된 외형으로 기존 음극소재에 비해 높은 에너지 저장용량을 갖는다. 양극소재는 나노크기 이하의 금속 산화물이 그래핀 표면에 분산된 외형을 이루고 원자와 이온이 일대일로 저장되는 형식이다. 두 전극을 기반으로 한 연구팀의 에너지 저장 소자는 고용량과 함께 높은 에너지 및 출력 밀도를 보이며 음극과 양극의 물리적 균형을 통해 매우 안정적인 충, 방전 결과를 보였다. 연구팀이 개발한 물 기반 융합에너지 저장소자는 기존의 물 기반 배터리에 비해 100배 이상으로 높은 최대 출력 밀도를 보이며 급속 충전이 가능하다. 또한 10만 번 이상의 높은 충, 방전 전류에서도 용량이 100퍼센트 유지되는 고 안정성을 보였다. 연구팀의 에너지 저장 소자는 USB 충전기나 소형태양전지 등의 저전력 충전 시스템을 통해서도 2~30초 내에 충전이 가능하다. 강 교수는 “친환경적인 이 기술은 제작이 쉽고 활용성이 뛰어나다. 특히 기존 기술 이상의 고용량, 고안정성은 물 기반 에너지 저장장치의 상용화에 기여할 것이다”며 “저전력 충전 시스템을 통해 급속 충전이 가능하기 때문에 휴대 가능한 전자 기기에 적용할 수 있을 것이다”고 말했다. 강원대학교 정형모 교수와 공동으로 진행한 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반미래소재연구단(단장 김광호)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 실험을 통해 구동된 저장소자 사진 그림2. 물 기반 융합 에너지 저장소자 모식도 그림3. 고분자 사슬 음극 및 금속 산화물 양극 표면 이미지
2018.02.20
조회수 10517
이동만 교수, 빅데이터로 SNS 분석해 맞춤형 장소 제공 기술 개발
<좌측부터 전산학부 이동만 교수, 신병헌 박사과정 학생, 최인경 박사과정 학생> 전산학부 이동만 교수 연구팀이 소셜 네트워크 서비스(SNS)의 사진과 글을 기반으로 장소의 특성을 분석해 사용자에게 맞춤형 장소를 제공하는 기술을 개발했다. 이 기술은 현재의 위치기반 추천서비스를 인공지능형 개인비서서비스로 도약시키는 원천기술이 될 것으로 기대된다. 이번 연구는 기존 위치기반 장소 검색 및 추천서비스의 검색 수준을 향상시켜 사용자들이 장소를 선택하는 기준을 다양하게 적용시킬 수 있다. 사용자의 트렌드를 반영해 실시간으로 변화된 장소 추천을 할 수 있을 것으로 보인다. 문화기술대학원 이원재, 박주용 교수와 전산학과 차미영 교수가 공동으로 참여한 이번 연구의 API(응용 프로그래밍 인터페이스)는 http://placeness.kaist.ac.kr:8080/ 을 통해 공개됐고 관련 정보는 http://placeness.kaist.ac.kr/wiki/doku.php 에서 열람할 수 있다. 맛집 추천서비스, 소셜 커머스 등 위치를 기반으로 정보 검색 및 추천서비스를 제공하는 업체들은 주로 고객의 후기를 수집하거나 직접 방문을 통해 경험한 내용을 토대로 음식점 혹은 매장을 평가한다. 이는 비교적 정확한 정보를 제공하지만 시간적, 경제적 비용이 많이 소모된다. 또한 사용자 전체의 관심과 선택의 평균에 중점을 두기 때문에 사용자 개인의 특성을 충분히 고려하지 못한다는 한계가 있다. 시간이 지날수록 사용자는 평균 중심의 예상 가능한 선택지를 추천받을 확률이 높아진다. 따라서 같은 장소라도 사용자가 방문하고자 하는 목적이 다르기 때문에(모임, 상견례, 소개팅 등) 방문 목적과 사회적 맥락을 파악할 수 있는 추가적인 기능이 필수적이다. 이를 위해 기본적으로 제공되는 정보 외에도 실제 사람들이 각 장소에서 어떤 세부적 활동을 하며 공간을 소비했는지에 대한 데이터 수집이 필요하다. 연구팀은 문제 개선을 위해 특정 소셜 네트워크 서비스(인스타그램)에 올라온 사진과 텍스트 자료를 바탕으로 이를 분석하는 알고리즘을 개발했다. 기존에 존재하는 딥러닝 방식을 이용해 사진을 분석하는 기술과 연구팀이 새로 개발한 텍스트 분석 기술인 워드백(Wordbag) 기술을 결합했다. 특정 상황이나 분위기에 사용되는 단어들을 분석하고 단어마다 가중치를 둬 분류하는 기술이다. 연구팀은 API에서 주요 연구 이슈에 따라 크게 4개의 세부 분야별 정보를 제공한다. ▲상위 장소의 장소성(장소의 성격 : placeness), ▲상위 장소 내에 있는 세부 장소의 장소성 추론, ▲감성분석 기반의 장소 분위기 추론, ▲사용자와 장소성 간 연관성을 제공한다. 연구팀의 API는 SNS에 존재하는 연구개발 대상으로 지정된 특정 상위장소(코엑스. 아이파크 몰) 및 그 내부의 세부장소에 대해 언급된 데이터를 분석해 행위, 방문자, 시간, 분위기 등 다양한 관점에서 공간의 활용 가능성을 제공한다. 이는 같은 장소라도 사용자가 시간대, 목적에 따라 다르게 활용했던 이력이나 기존 서비스에서 제공이 어려웠던 분위기(ex. 밝은, 전통적인 등)나 방문 목적(ex. 데이트, 공부, 회의)을 데이터로 수집할 수 있기 때문에 사용자의 의도에 따라 장소를 추천할 수 있다. 이 교수는 “이 연구에서 개발된 API를 통해 기존의 위치기반 장소 검색 및 추천 서비스의 검색 수준을 향상시키고 방문자들의 트렌드 변화에 따라 자동으로 변화된 장소를 추천할 수 있다”고 말했다. 또한 “기존 비정형 텍스트 데이터 분석의 한계를 극복하기 위해 사진과 텍스트를 동시에 분석해 공간에 대한 사회적 정보를 추론할 수 있어 현재의 위치기반 추천 서비스가 인공지능형 개인비서서비스로 도약하는 핵심 기술이 될 것이다”고 말했다. 이번 연구는 과학기술정보통신부 디지털콘텐츠 원천기술개발사업의 지원을 받아 수행됐다.
2017.08.29
조회수 12081
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2