본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5
최신순
조회순
인공지능으로 고성능 양자물성 계산시간 획기적 단축
인공지능과 고성능 과학계산 간의 밀접한 관련성은 최근 2024년도 노벨 물리학상과 화학상이 동시에 수상된 것을 보면 알 수 있다. 우리 연구진이 인공지능을 활용하여 3차원 공간에 분포하는 원자 수준의 화학결합 정보를 예측하여 양자역학적 고성능 컴퓨터 시뮬레이션의 계산 시간을 획기적으로 단축하는데 성공했다. 우리 대학 전기및전자공학부 김용훈 교수팀이 물질의 특성을 도출하기 위해 슈퍼컴퓨터를 활용해 수행되는 원자 수준 양자역학적 계산에 필요한 복잡한 알고리즘을 우회하는 3차원 컴퓨터 비전 인공신경망 기반 계산 방법론을 세계 최초로 개발했다고 30일 밝혔다. 슈퍼컴퓨터를 활용한 양자역학적 밀도범함수론(density functional theory, DFT)* 계산은 빠르면서도 정확하게 양자 물성을 예측할 수 있게 해 첨단 소재 및 약물 설계를 포함한 광범위한 연구·개발 분야에서 표준적인 도구로 자리 잡아 필수 불가결한 역할을 하고 있다. *밀도범함수론(DFT): 원자 단위에서부터 양자역학적으로 물성을 계산하는 제1원리 계산의 대표적인 이론 그러나 실제 밀도범함수론 계산에서는 3차원적인 전자밀도를 생성한 후 양자역학 방정식을 푸는 복잡한 자기일관장 과정(self-consistent field, SCF)*을 수십에서 수백 번씩 반복해야 해서 그 적용 범위가 수백~수천 개의 원자로 제한되는 한계가 있었다. *자기일관장(SCF): 상호 연결된 여러 개의 연립 미분 방정식으로 기술해야 하는 복잡한 다체 문제(many-body problem)를 해결하기 위해 널리 사용되는 과학계산법 김용훈 교수 연구팀은 자기일관장 과정을 최근 급속한 발전을 이룬 인공지능 기법으로 회피하는 것이 가능한지 질문했다. 그 결과 3차원 공간에 분포된 화학 결합 정보를 컴퓨터 비전 분야의 신경망 알고리즘을 통해 학습해 계산을 가속화하는 딥SCF(DeepSCF) 모델을 개발했다. 연구진은 밀도범함수론에 따라 전자밀도가 전자들의 양자역학적 정보를 모두 포함하고 있으며 이에 더해 전체 전자밀도와 구성 원자들의 전자밀도의 합 간의 차이인 잔여 전자밀도가 화학결합 정보를 담고 있는 점에 주목하고 기계학습의 목표물로 선정했다. 이후 다양한 화학결합 특성을 포함한 유기 분자들의 데이터 세트를 채택했고 그 안에 포함된 분자들의 원자구조들에 임의의 회전과 변형을 가해 모델의 정확도 및 일반화 성능을 더욱 높였다. 최종적으로 연구팀은 복잡하고 큰 시스템에 대해 딥SCF 방법론의 유효성 및 효율성을 입증했다. 이번 연구를 지도한 김용훈 교수는“3차원 공간에 분포된 양자역학적 화학결합 정보를 인공 신경망에 대응시키는 방법을 찾았다”며 “양자역학적 전자구조 계산이 모든 스케일의 물성 시뮬레이션의 근간이 되므로 인공지능을 통한 물질 계산 가속화의 전반적인 기반 원리를 확립한 것”이라고 연구의 의의를 부여했다. 전기및전자공학부 이룡규 박사과정이 제 1저자로 수행한 이번 연구는 소재 계산 분야의 권위 있는 학술지 '네이쳐 파트너 저널 컴퓨테이셔널 머터리얼즈(Npj Computational Materials)'에 10월 24일 字 온라인판에 게재됐다. (논문명 : Convolutional network learning of self-consistent electron density via grid-projected atomic fingerprints) 한편, 이번 연구는 KAIST 석박사 모험사업, 한국연구재단 중견연구자지원사업 등의 지원을 받아 수행되었다.
2024.10.30
조회수 6354
‘국가 인공지능 연구거점(National AI Research Lab)’ 개소식 개최
과학기술정보통신부(장관 유상임, 이하 과기정통부)와 정보통신기획평가원(원장 홍진배, 이하 IITP)은 10. 28일(월) 양재 서울 인공지능 중심지에서 「국가 인공지능 연구거점(National AI Research Lab)」 개소식을 개최하였다. 이날 개소식에서 우리 대학 이광형 총장, 오세훈 서울시장 등의 참석자들은 「국가 인공지능 연구거점」의 성공적 출범을 축하하며, 대한민국 인공지능 세계 3개 강국 도약을 위한 민관 한 팀 등에 대한 의지를 다졌다. 「국가 인공지능 연구거점」 주관기관인 우리 대학 이광형 총장은 “이 곳에서 국내외 인공지능 연구자들이 교류하며 창의적 인공지능 연구를 펼치길 바란다”고 밝혔고, 「국가 인공지능 연구거점」이 위치할 서울시의 오세훈 시장은 “「국가 인공지능 연구거점」에 기반하여 서울시가 세계적인 인공지능 연구자들이 모여드는 국제 인공지능 중심지로 성장할 수 있도록 전폭 지원하겠다”고 강조하였다. 이어진 기조연설에서, 「국가 인공지능 연구거점」 책임자인 한국과학기술원 김기응 교수가 “국가 인공지능 연구거점 운영계획”을, 국제공동연구에 참여할 캐나다 워털루대(Waterloo U.) 교수이자 벡터연구소(Vector Institute) 겸직교수인 파스칼 푸파(Pascal Poupart) 교수가 “인공지능 : 기술개발의 특이점”을 주제로 「국가 인공지능 연구거점」과 인공지능의 미래 전망을 제시하였다. 마지막으로 개소식 참석자들은 「국가 인공지능 연구거점」의 연구 현장을 찾아, 연구자들의 인공지능 국제공동연구 준비 상황과 앞으로의 운영 방향 등에 대한 심도있는 논의를 진행하였다. 「국가 인공지능 연구거점」은 대한민국을 대표하는 인공지능 연구 구심점으로서, 양재서울 인공지능 중심지(허브)*(약 2,132평, `25년까지 2,300평 규모로 확충 계획)에 설치되며, 국내외 유수 연구진이 역동적으로 교류하며 세계적 인공지능 국제공동연구를 수행하고, 국제 인공지능 지도자 양성 기능과 인공지능 산∙학∙연 생태계를 집약하는 온라인 체제 기반(플랫폼, Platform) 역할을 할 계획이다. 또한, 「국가 인공지능 연구거점」을 통해 미국, 캐나다, 프랑스, 아랍 에미리트 등 해외 유수기관의 연구자들도 일정기간 국내에 상주하여, 파괴적 혁신을 지향하는 뉴럴 스케일링 법칙 초월연구, 로봇 파운데이션 모델 연구 등의 도전적 인공지능 국제공동연구를 수행하며, 정기적인 국제 발표회 개최 등 국제 협력 관계망도 구축, 지속 확장해나갈 예정이다.
2024.10.29
조회수 5117
뇌 기반 인공지능의 난제 해결
인간의 두뇌는 외부 세상으로부터 감각 정보를 받아들이기 이전부터 자발적인 무작위 활동을 통해 학습을 시작한다. 우리 연구진이 개발한 기술은 뇌 모방 인공신경망에서 무작위 정보를 사전 학습시켜 실제 데이터를 접했을 때 훨씬 빠르고 정확한 학습을 가능하게 하며, 향후 뇌 기반 인공지능 및 뉴로모픽 컴퓨팅 기술 개발의 돌파구를 열어줄 것으로 기대된다. 우리 대학 뇌인지과학과 백세범 교수 연구팀이 뇌 모방 인공신경망 학습의 오래된 난제였던 가중치 수송 문제(weight transport problem)*를 해결하고, 이를 통해 생물학적 뇌 신경망에서 자원 효율적 학습이 가능한 원리를 설명했다고 23일 밝혔다. *가중치 수송 문제: 생물학적 뇌를 모방한 인공지능 개발에 가장 큰 장애물이 되는 난제로, 현재 일반적인 인공신경망의 학습에서 생물학적 뇌와 달리 대규모의 메모리와 계산 작업이 필요한 근본적인 이유임. 지난 수십 년간 인공지능의 발전은 올해 노벨 물리학상을 받은 제프리 힌튼(Geoffery Hinton)이 제시한 오류 역전파(error backpropagation) 학습에 기반한다. 그러나 오류 역전파 학습은 생물학적 뇌에서는 가능하지 않다고 생각되어 왔는데, 이는 학습을 위한 오류 신호를 계산하기 위해 개별 뉴런들이 다음 계층의 모든 연결 정보를 알고 있어야 하는 비현실적인 가정이 필요하기 때문이다. 가중치 수송 문제라고 불리는 이 난제는 1986년 힌튼에 의해 오류 역전파 학습이 제안된 이후, DNA 구조의 발견으로 노벨 생리의학상을 받은 프랜시스 크릭(Francis Crick)에 의해 제기됐으며, 이후 자연신경망과 인공신경망 작동 원리가 근본적으로 다를 수밖에 없는 이유로 여겨진다. 인공지능과 신경과학의 경계선에서, 힌튼을 비롯한 연구자들은 가중치 수송 문제를 해결함으로써 뇌의 학습 원리를 구현할 수 있는, 생물학적으로 타당한 모델을 만들고자 하는 시도를 계속해 왔다. 지난 2016년, 영국 옥스퍼드(Oxford) 대학과 딥마인드(DeepMind) 공동 연구진은 가중치 수송을 사용하지 않고도 오류 역전파 학습이 가능하다는 개념을 최초로 제시해 학계의 주목을 받았다. 그러나, 가중치 수송을 사용하지 않는 생물학적으로 타당한 오류 역전파 학습은 학습 속도가 느리고 정확도가 낮은 등 효율성이 떨어져, 현실적인 적용에는 문제가 있었다. 연구팀은 생물학적 뇌가 외부적인 감각 경험을 하기 이전부터 내부의 자발적인 무작위 신경 활동을 통해 이미 학습을 시작한다는 점에 주목했다. 이를 모방해 연구팀은 가중치 수송이 없는 생물학적으로 타당한 신경망에 의미 없는 무작위 정보(random noise)를 사전 학습시켰다. 그 결과, 오류 역전파 학습을 위해 필수적 조건인 신경망의 순방향과 역방향 신경세포 연결 구조의 대칭성이 만들어질 수 있음을 보였다. 즉, 무작위적 사전 학습을 통해 가중치 수송 없이 학습이 가능해진 것이다. 연구팀은 실제 데이터 학습에 앞서 무작위 정보를 학습하는 것이 ‘배우는 방법을 배우는’메타 학습(meta learning)의 성질을 가진다는 것을 밝혔다. 무작위 정보를 사전 학습한 신경망은 실제 데이터를 접했을 때 훨씬 빠르고 정확한 학습을 수행하며, 가중치 수송 없이 높은 학습 효율성을 얻을 수 있음을 보였다. 백세범 교수는 “데이터 학습만이 중요하다는 기존 기계학습의 통념을 깨고, 학습 전부터 적절한 조건을 만드는 뇌신경과학적 원리에 주목하는 새로운 관점을 제공하는 것”이라며 “발달 신경과학으로부터의 단서를 통해 인공신경망 학습의 중요한 문제를 해결함과 동시에, 인공신경망 모델을 통해 뇌의 학습 원리에 대한 통찰을 제공한다는 점에서 중요한 의미를 가진다”고 언급했다. 뇌인지과학과 천정환 석사과정이 제1 저자로, 같은 학과 이상완 교수가 공동 저자로 참여한 이번 연구는 12월 10일부터 15일까지 캐나다 벤쿠버에서 열리는 세계 최고 수준의 인공지능 학회인 제38회 신경정보처리학회(NeurIPS)에서 발표될 예정이다. (논문명: Pretraining with random noise for fast and robust learning without weight transport (가중치 수송 없는 빠르고 안정적인 신경망 학습을 위한 무작위 사전 훈련)) 한편 이번 연구는 한국연구재단의 이공분야기초연구사업, 정보통신기획평가원 인재양성사업 및 KAIST 특이점교수 사업의 지원을 받아 수행됐다.
2024.10.23
조회수 6603
박종세 교수팀, 2024 IISWC 다수 상 동시 석권
우리 대학 전산학부 박종세 교수 연구팀이 지난 9월 15일부터 9월 17일까지 캐나다 밴쿠버에서 열린 ‘2024 IEEE 국제 워크로드 특성화 심포지엄(IEEE International Symposium on Workload Characterization, 이하 IISWC 2024)’에서 최우수 논문상(Best Paper Award)과 최우수 연구 기록물 상(Distinguished Artifact Award)’을 동시에 수상했다고 26일 밝혔다. 박 교수 연구팀은 ‘초거대 언어모델 추론 서비스 제공을 위한 HW/SW 공동 시뮬레이션 인프라(LLMServingSim: A HW/SW Co-Simulation Infrastructure for LLM Inference Serving at Scale)’ 논문으로 두 상을 동시에 수상했다. IISWC는 컴퓨터 시스템 워크로드 특성화 분야에서 권위를 자랑하는 국제 학회이며, 개최시마다 최우수 논문상과 최우수 연구 기록물 상을 하나씩 수여하는데 올해에는 박 교수팀의 논문이 두 상을 모두 단독으로 수상했다. 이번 수상 연구는 대규모 거대언어모델(LLM) 추론 서비스를 위한 하드웨어와 소프트웨어 통합 시뮬레이션 인프라를 최초 개발한 점, 향후 LLM 추론 연구의 지속적인 발전을 위해 오픈소스로 공개한 코드의 완성도와 사용자 편의성 측면에서 높은 평가를 받았다. 이번 연구에서 연구팀은 챗GPT와 같은 LLM 추론 서비스를 실행하는 대규모 시스템을 여러 가지 하드웨어와 소프트웨어를 추가해 시뮬레이션할 수 있는 시뮬레이션 인프라를 제안했다. 이를 통해 GPU(그래픽처리장치), NPU(신경망처리장치)와 PIM(지능형메모리반도체)과 같은 다양한 하드웨어뿐만 아니라 반복 수준 스케쥴링, KV 캐시 페이징과 같은 초거대 언어모델 추론을 위한 소프트웨어적 요소를 모두 함께 시뮬레이션할 수 있었다. 이번 연구는 KAIST 전산학부 박종세 교수팀의 조재홍, 김민수, 최현민, 허구슬 학생들이 주도했다. 상을 받은 KAIST 전산학부 박종세 교수는 “이번 연구를 통해, LLM 클라우드 상에서 다양한 AI 반도체와 시스템 소프트웨어의 성능을 종합적으로 평가해 볼 수 있는 오픈소스 도구(Tool)을 공개할 수 있게 되어 기쁘고, 앞으로도 생성형 AI를 위한 클라우드 시스템 연구를 지속해 나갈 것이다”라고 소감을 전했다. 이번 연구 결과는, 챗GPT와 같이 LLM을 활용하는 단순한 챗봇 AI를 넘어, 생성형 AI(Generative AI)로 대표되는 미래 AI 산업에서 이종 AI 반도체 기반 클라우드 시스템을 구축하는 등 다양한 분야에 활용될 수 있을 것으로 기대된다. 한편 이번 연구는 한국연구재단 우수신진연구자지원사업, 정보통신기획평가원(IITP), 인공지능반도체대학원지원사업, 및 하이퍼엑셀의 지원을 받아 수행됐다.
2024.10.11
조회수 5747
인공지능 화학 학습으로 새로운 소재 개발 가능
새로운 물질을 설계하거나 물질의 물성을 예측하는 데 인공지능을 활용하기도 한다. 한미 공동 연구진이 기본 인공지능 모델보다 발전되어 화학 개념 학습을 하고 소재 예측, 새로운 물질 설계, 물질의 물성 예측에 더 높은 정확도를 제공하는 인공지능을 개발하는 데 성공했다. 우리 대학 화학과 이억균 명예교수와 김형준 교수 공동 연구팀이 창원대학교 생물학화학융합학부 김원준 교수, 미국 UC 머세드(Merced) 응용수학과의 김창호 교수 연구팀과 공동연구를 통해, 새로운 인공지능(AI) 기술인 ‘프로핏-넷(이하 PROFiT-Net)’을 개발하는 데 성공했다고 9일 밝혔다. 연구팀이 개발한 인공지능은 유전율, 밴드갭, 형성 에너지 등의 주요한 소재 물성 예측 정확도에 있어서 이번 기술은 기존 딥러닝 모델의 오차를 최소 10%, 최대 40% 줄일 수 있는 것으로 보여 주목받고 있다. PROFiT-Net의 가장 큰 특징은 화학의 기본 개념을 학습해 예측 성능을 크게 높였다는 점이다. 최외각 전자 배치, 이온화 에너지, 전기 음성도와 같은 내용은 화학을 배울 때 가장 먼저 배우는 기본 개념 중 하나다. 기존 AI 모델과 달리, PROFiT-Net은 이러한 기본 화학적 속성과 이들 간의 상호작용을 직접적으로 학습함으로써 더욱 정밀한 예측을 할 수 있다. 이는 특히 새로운 물질을 설계하거나 물질의 물성을 예측하는 데 있어 더 높은 정확도를 제공하며, 화학 및 소재 과학 분야에서 크게 기여할 것으로 기대된다. 김형준 교수는 "AI 기술이 기초 화학 개념을 바탕으로 한층 더 발전할 수 있다는 가능성을 보여주었다ˮ고 말했으며 “추후 반도체 소재나 기능성 소재 개발과 같은 다양한 응용 분야에서 AI가 중요한 도구로 자리 잡을 수 있는 발판을 마련했다ˮ고 말했다. 이번 연구는 KAIST의 김세준 박사가 제1 저자로 참여하였고, 국제 학술지 `미국화학회지(Journal of the American Chemical Society)' 에 지난 9월 25일 字 게재됐다. (논문명: PROFiT-Net: Property-networking deep learning model for materials, PROFiT-Net 링크: https://github.com/sejunkim6370/PROFiT-Net) 한편 이번 연구는 한국연구재단(NRF)의 나노·소재 기술개발(In-memory 컴퓨팅용 강유전체 개발을 위한 전주기 AI 기술)과 탑-티어 연구기관 간 협력 플랫폼 구축 및 공동연구 지원사업으로 진행됐다.
2024.10.10
조회수 9160
지금 당신의 마음 건강은 어떠한가요?
최근 빠른 고령화 및 출산율 감소 등으로 1인 가구가 급속하게 증가하면서, 1인 가구의 정신건강 문제에 대한 관심도 함께 높아지고 있다. 서울시가 실시한 1인 가구 실태조사에 따르면, 1인 가구의 60% 이상이 외로움을 느끼고 있으며, 특히 사회적 고립과 함께 외로움을 겪는 비율이 상당히 높은 것으로 나타났다. 우리 대학 전산학부 이의진 교수 연구팀이 1인 가구의 정신건강 관리를 위해, 사용자 스스로가 자신의 심리 상태를 기록할 수 있도록 지원하는 상황 인식 기반 멀티모달 스마트 스피커 시스템을 개발했다고 24일 밝혔다. 연구팀은 사용자의 주변 상황을 실시간으로 파악해 최적의 시점에 정신건강 관련 질문하도록 이 시스템을 설계했고 기존의 무작위 설문보다 높은 응답률을 달성하는 것을 확인했다. 기존 스마트 스피커를 활용한 정신건강 자가 추적 연구에서 무작위 설문을 할 경우 사용자의 스트레스, 짜증 등 부정적인 감정이 유발시켜 설문 응답에 편향이 발생할 수 있어 각별한 주의가 필요했다. 이러한 문제 해결을 위해 이의진 교수 연구팀은 스마트 스피커에 멀티 모달 센서를 장착해, 사용자의 주변 상황의 변화를 감지해 스피커가 말 걸기 좋은 시점이 검출되면 정신건강 자가 추적 설문을 능동적으로 요청하는 상황 인식 기반 자가 추적 기술을 개발했다. 스피커는 실내 움직임, 조명, 소음, 이산화탄소 등 다양한 센서 데이터를 종합적으로 분석해 사용자의 존재 및 활동을 감지한 뒤, 사용자가 응답하기 적합한 시점에 자가 추적 설문을 능동적으로 요청함으로써, 설문 응답의 효율성을 극대화했다. 또한, 설문 입력 방식의 경우 최근 출시된 스마트 스피커는 명령뿐만 아니라 터치스크린도 지원하므로 사용자들이 음성 또는 터치 입력 방식을 자유롭게 선택할 수 있도록 해 상호작용의 폭을 넓혔다. 이를 통해 사용자는 상황에 맞는 최적의 인터페이스를 선택해 자가 추적을 쉽게 수행할 수 있도록 했다. 개발된 스피커의 사용자 경험을 평가하기 위해서 연구팀은 1인 가구 20세대에 자가 추적 스마트 스피커를 설치해, 한 달 동안 실증 연구를 수행해서 총 2,201개의 정신건강 설문 응답 데이터셋을 구축했다. 데이터셋 분석을 통해 설문 응답 시간, 활동 맥락에 따른 설문 응답 패턴 및 어떤 상황에서 음성 입력(VUI) 또는 터치 입력(GUI)이 더 선호되는지 파악했다. 특히, 스마트 스피커가 말로 사용자에게 요청을 하다 보니 스피커 근처에서 사용자의 활동을 감지하는 것이 정신건강 설문 응답률에 큰 영향을 미쳤다. 음성 입력의 편의성에도 불구하고 전반적으로 참가자들은 음성 입력보다는 빠른 응답이 가능한 터치 입력을 선호했다. 데이터 분석 결과, 사용자의 주변 상황을 실시간으로 파악해 최적의 시점에 정신건강 관련 질문을 할 경우 응답률이 더 높으며, 어떤 상황에서 음성 또는 터치 인터페이스를 선호하는지도 파악했다. 연구를 주도한 이의진 교수는 “이번에 개발한 스마트 스피커를 앞으로 수용전념치료 기법을 활용한 인간상담사와 같은 기능의 정신건강 관리 지원 스마트 스피커로 발전시키고자 한다. 나아가 실내에서 수집된 일상생활 데이터를 AI 모델로 학습해 사용자 정신건강 상태에 따라 라이프 스타일 패턴을 예측하는 시스템도 개발하여 향후 정신질환 조기 발견과 효율적인 관리를 가능케 할 인공지능 에이전트의 혁신을 이끌 것으로 기대된다” 라고 말했다. 한편 이 연구는 LG전자-KAIST 디지털 헬스케어 연구센터의 지원을 받아 수행됐고 인간 컴퓨터 상호작용(HCI) 분야 국제 최우수 국제학술대회인 미국컴퓨터협회(ACM) 소속 ‘Conference on Human Factors in Computing Systems (CHI)’에서 지난 2024년 5월에 발표됐다. 논문명: Exploring Context-Aware Mental Health Self-Tracking Using Multimodal Smart Speakers in Home Environments
2024.09.24
조회수 4861
NYU와 인공지능 분야 국내 최초 공동학위제 추진
우리 대학이 뉴욕대학교(New York University, 총장 린다 밀스, Linda G. Mills)와 인공지능 분야 공동학위제(Joint Degree) 도입을 위한 업무협약을 9일 오후 체결했다. 이번 협약은 인공지능 분야의 역량 강화하고 글로벌 인재를 양성하는 것은 단순한 기술 교육을 넘어 미래 사회 전반에 큰 발전을 도모할 수 있는 필수 요소라는 양교의 공감대를 바탕으로 추진됐다. 양교는 그간 인공지능 및 이와 융합한 다양한 산업 분야의 공동연구 그룹을 운영해 왔으며, 이번 협약을 바탕으로 인공지능 관련 분야 대학원 과정의 공동학위제를 설계하기 위한 운영위원회를 올해 안에 설치할 예정이다. 우리 대학 관계자는 "인공지능 공동학위제가 시행되면 KAIST가 뉴욕대와 힘을 합쳐 ‘하나의 인공지능 학위’를 창조하는 사상 초유의 혁신적 실험이 될 것으로 기대한다"라고 전했다. 위원회는 양교 교수진을 동수로 포함해 구성하며, ▴교육과정 구조 및 교과 구성 ▴교과 이수 로드맵 ▴교수진 및 학생 규모 산출 ▴예산 규모 산출 ▴운영시설 규모 및 내역 산출 ▴인증에 관한 법률적 사항 등이 포함된 공동학위제의 총괄 전략 기획을 본격적으로 논의할 예정이다. 또한, 우리 대학과 뉴욕대의 인공지능 공동학위를 상징하는 신규 로고의 개발도 진행된다. 양교는 이번에 추진하는 공동학위제가 인공지능 분야 교육 및 연구 역량을 고도화하고 현재 세계적으로 부족한 관련 분야 인재를 공동 발굴하고 양성하는데 이바지하는 것은 물론 글로벌 교육 및 연구 협력의 모범적인 사례로 자리 잡을 것이라 기대하고 있다. 우수한 역량을 보유한 양교 교수진은 인공지능 관련 분야의 혁신적이고 창의적인 교육을 제공할 예정이다. 학생들은 양교 교수진이 추진하는 다양한 국제 공동 연구 사업에 참여해 최고 수준의 연구 경험을 쌓을 수 있는 지원을 받게 된다. 이를 통해, 미래 글로벌 사회를 이끌어갈 우수 인적자원을 꾸준히 양성하는 것이 양교가 추진하는 이번 공동학위제의 핵심이다. 우리 대학과 뉴욕대학교는 2022년 6월 공동캠퍼스 구축을 위한 협력 협정을 체결한 이후, 캠퍼스 공유, 공동연구, 공동학사 사업 등을 추진해 왔다. 이를 포함하여, 혁신적인 조인트 캠퍼스 모델을 발전시켜 나가고 있으며, 활발한 국제협력 모델을 구축하고 있다. 특히, 2023학년도 2학기부터 학사과정 학생들의 교환학생 제도를 시행하고 있다. 선발 경쟁을 통해 우리 대학에서 30명, 뉴욕대에서 11명의 학생이 선발돼 참여 중이다. 우리 대학 학생들의 경우 뉴욕대학교에서 6개의 부전공 프로그램 중 하나를 이수하게 되면, 졸업 시 해당 부전공의 이수가 명시된 학위를 받게 된다. 양교는 학사과정 교환학생 운영 성과를 바탕으로 석·박사 과정 학생을 위한 복수학위(Dual Degree) 제도 도입에도 합의해 현재 구체적인 절차가 진행되고 있다. 이 밖에도, 2023년부터 현재까지 인공지능과 융합한 15개 분야에서 미래 공동연구 기획 사업을 수행하고 있으며, 올해 4분기부터는 본격적으로 인공지능과 바이오 분야를 중심으로 하는 10개 분야 국제 공동연구를 착수할 계획이다. 린다 밀스 뉴욕대 총장은 "인공지능 기술은 기후 변화, 헬스케어, 교육 격차 등 여러 사회적 문제를 해결하는 데 큰 역할을 할 수 있다"라며, "양교가 양성할 글로벌 인재는 이러한 사회적 문제를 해결하는 데도 혁신적인 기여를 하게 될 것이다"고 말했다. 이광형 총장은 "글로벌 기술 패권 경쟁 시대에 인공지능 기술의 개발은 국가와 기업이 경쟁력을 확보하는 데 필수적인 요소":라며 "뉴욕대학교와의 장기적 협력을 통해 인공지능을 다양한 분야에 혁신적으로 적용하고 발전시킬 수 있는 세계적 수준의 고급 인재 양성에 앞장서겠다"라고 밝혔다.서울 포시즌스 호텔에서 열린 이날 체결식에는 이광형 총장, 여현덕 G-School 원장 등 우리 대학 관계자와 린다 밀스 총장, 조경현 컴퓨터과학과 교수, 캐린 퍼베제 박사(Karin Pavese, Executive Director of NYU-KAIST Innovation Research Institute) 등 뉴욕대 관계자 및 국내 기업 주요 인사들이 참석했다.
2024.09.10
조회수 5783
딥러닝 대부 요슈아 벤지오 교수와 AI 연구센터 설립
우리 대학 전산학부 안성진 교수 연구팀이 세계적인 인공지능 권위자인 캐나다의 요슈아 벤지오(Yoshua Bengio) 교수와 함께 ‘KAIST-밀라(MILA) 프리프론탈 인공지능 연구센터’를 KAIST에 7월 1일부로 설립했다고 4일 밝혔다. 이 사업은 과학기술정보통신부와 한국연구재단이 지원하는 ‘2024년도 해외우수연구기관 협력허브구축사업’의 일환으로, 안성진 교수 연구팀은 2024년 7월부터 2028년 12월까지 총 27억 원의 지원을 받게 된다. 이 센터는 차세대 인공지능 기술 개발을 위한 국제공동연구의 중심지로서 역할을 하게 될 예정이다. 요슈아 벤지오 교수는 딥러닝 분야의 창시자 중 한 명으로, 현대 인공지능 연구에 지대한 영향을 미친 인물이다. 그의 연구는 현재의 딥러닝 기술을 탄생시키고 발전시키는 데 중요한 역할을 했다. KAIST 안성진 교수팀과의 이번 협력은 요슈아 벤지오 교수의 몬트리올 학습 알고리즘 연구소(MILA, Montreal Institute for Learning Algorithms)와 KAIST의 선도적인 인공지능 연구 역량을 결합해, 차세대 인공지능 기술 발전에 새로운 지평을 열 것으로 기대된다. 이번 연구의 핵심은 인간의 고위인지 능력을 모방하는 ‘시스템2’ AI 기술의 개발이다. 시스템2는 데니얼 카네만의 듀얼프로세스 이론에서 제시된 개념으로, 직관적이고 빠른 인지를 담당하는 ‘시스템1‘과 달리, 수학적 논리 추론 같이 복잡하고 순차적인 사고 과정을 담당하는 기능을 수행한다. 이 과정은 주로 뇌의 전두엽에서 이뤄지며, 계획, 판단, 추론 등 고차원적인 인지 기능을 관리한다. 대형언어모델의 발전에도 불구하고, 현재의 딥러닝 기술은 이러한 고위인지 기능을 효과적으로 구현하는 데 여전히 한계를 보이고 있다. 이번 연구는 이러한 한계를 극복하고, 전두엽이 담당하는 고위인지 기능을 AI에 통합하는 ‘프리프론탈 AI’를 구현하기 위한 기반 기술을 확보하는 것을 목표로 한다. 또한, 이번 연구에는 우리 대학 홍승훈 교수와 포항공과대학교(POSTECH)의 안성수 교수도 공동 연구진으로 참여할 예정이다. 홍승훈 교수는 시스템2 메타 학습 알고리즘을 연구하며, 안성수 교수는 시스템2 기능을 ‘과학을 위한 AI(AI4Science)’ 응용에 적용하기 위한 연구를 진행할 예정이다. 안성진 교수는 “요슈아 벤지오 교수와의 협력은 차세대 인공지능 기술 개발에 있어 중요한 이정표가 될 것이다”라며, “이 연구를 통해 인간의 전두엽이 수행하는 고위인지 기능을 모방하는 딥러닝 알고리즘을 개발하고, 안전하고 신뢰할 수 있는 인공지능 에이전트를 구현하는 기술적 기반을 마련할 수 있을 것이다”라고 연구의 의의를 설명했다. 이번 연구센터 설립을 통해 우리 대학은 국제적인 연구 네트워크를 강화하고, 인공지능 분야에서 세계적인 선도 기관으로서의 위치를 더욱 공고히 할 전망이다.
2024.09.04
조회수 8071
윤국진 교수 연구팀, ECCV 2024에 논문 12편 채택
우리 대학 기계공학과 윤국진 교수 연구팀의 논문 12편이 세계 최고 권위 컴퓨터비전 국제학술대회 중 하나인 ECCV 2024 (European Conference on Computer Vision)에 채택되어, 컴퓨터 비전 분야 세계 최고의 연구 역량을 다시 한번 인정받았다. CVPR, ICCV와 함께 컴퓨터 비전 분야 뿐 아니라 전체 인공지능 분야에서도 세계 최고 권위 학술대회로 꼽히는 ECCV는 1990년부터 격년으로 개최되는 학술대회로, Google Scholar 기준 H5-색인 206을 기록하고 있으며, 공학 및 컴퓨터과학 (Engineering & Computer Science)전분야에서 최고 수준의 국제 학술대회 중 하나이다. 이번 ECCV 2024에는 총 8,585개의 논문들이 제출되었고 그 중 2,395개의 논문이 채택되어 약 27.9%의 낮은 채택률을 기록하였다. 단일 연구실에서 12편의 논문이 채택된 것은 극히 이례적인 경우다. 윤국진 교수 연구팀의 논문 12편은 학습 기반의 시각 지능 구현을 연구 논문들로, 가상 시점 합성, 약지도 의미론적 분할, 비디오 품질 개선, 3차원 의미론적 분할, 3차원 객체 인식, 점구름 완성, 이벤트 카메라 기반 낮과 밤 상태 전이, 이벤트 카메라 기반 스테레오 정합, 적대적 공격과 같은 컴퓨터비전 분야의 핵심 주제들에 대한 논문들이다. 특히, 양훈민 박사과정과 정종오 박사과정의 논문 “Prompt-Driven Contrastive Learning for Transferable Adversarial Attacks”은 전체 논문 중 상위 2.3%에 해당하는 구두 발표 논문으로 선정됐다. 앞서 윤국진 교수 연구팀은 올해 6월 개최된 CVPR 2024에도 9편의 논문을 발표한 바 있는데, 이번 ECCV 2024에도 12편의 논문을 발표하게 되어, 컴퓨터 비전 분야에서 세계 최고의 연구 역량을 가진 연구실로 인정받고 있다. 연구팀은 지속적으로 컴퓨터 비전 분야에서 좋은 연구 성과를 달성하고 있기에 앞으로도 도전적인 연구를 계속해 나가며 연구를 진행하겠다는 포부를 밝혔다. ECCV 2024는 2024년 9월 29일부터 10월 4일까지 이탈리아 밀라노의 Mico Milano에서 개최될 예정이다.
2024.08.29
조회수 7339
건설및환경공학과, GS건설과 미래 도시 디지털 기술 업무협약 체결
우리 대학은 GS건설(대표 허윤홍)과 '스마트시티 기술 선도 역량 상호 발전을 위한 협력관계 구축' 양해각서를 22일 체결했다. 이번 협약을 통해 양 기관은 미래 스마트 도시에 필요한 디지털 기술 연구센터를 연내 우리 대학에 설립한다. 해당 산학연구센터는 디지털 전환으로 생성되는 다양한 도시 데이터를 최적화, 머신러닝, 인공지능 학습 등을 통해 디지털 지능(Digital Intelligence)을 발굴하는 연구를 수행한다. 이를 통해 도시민의 편의, 건강 등 삶의 질을 향상하는 동시에 과밀화, 에너지 전환, 기후변화 등 도시가 당면한 복합적인 미래 도전에 대한 과학적 해결 방법을 연구한다. 국내 최초로 시도되는 이번 도시 디지털 지능 산학 협력은 ▴도시 인프라 디지털 전환 ▴디지털 도시 지능(Urban Digital Intelligence) 발굴 ▴도시-인간 상호작용(Urban-Human Interaction) ▴디지털 도시 툴킷(Urban Digital Toolkit) 개발을 중심으로 4년간 추진된다. 우리 대학은 ▴건설및환경공학과 ▴산업및시스템공학과 ▴전산학부 ▴김재철AI대학원 연구진 간의 융합 연구를 통해 문제 해결 중심의 디지털 기술을 개발하는 동시에, 해외 탑티어 대학 및 연구소와의 협력을 기반으로 도시 디지털 기술 분야 글로벌 선두 그룹으로 빠르게 성장할 계획이다. GS건설은 이를 통해 주민의 필요와 편의를 최우선 가치로하는 동시에 지속발전가능한 미래 도시 디지털 원천기술을 확보하는 것이 이번 산학협력의 핵심이다. 우리 대학 관계자는 "이번 GS건설과의 파트너십은 국내 최초로 미래 스마트 도시 구현 디지털 기술을 확보하기 위한 협력으로, '도시 인공지능(Urban AI)' 및 '현실 인공지능(Real-world AI)' 등 미래 신성장 분야에서 우리나라 기업과 대학이 기술적 리더십을 확보할 수 있는 계기를 마련했다는 점에서 큰 의미가 있다"고 언급했다.이날 오후 GS건설 본사에서 열리는 협약식에는 이광형 총장, 윤윤진 연구센터장(건설및환경공학과), 권창현 부연구센터장(산업및시스템공학과) 등 우리 대학 관계자와 허윤홍 대표이사, 허진홍 투자개발사업그룹장, 서상연 Nexus 팀장 등 GS건설 주요 경영진이 참석했다.
2024.08.22
조회수 5004
AI 연구거점 구축, KAIST-연고대-포스텍 컨소시엄 선정
과학기술정보통신부와 정보통신기획평가원은 대한민국 AI G3 도약을 위해, 대한민국을 대표하는 AI 연구거점을 구축·운영할 수행기관으로 KAIST(책임자 김기응)·고려대(책임자 이성환)·연세대(책임자 김선주)·POSTECH(책임자 조민수) 컨소시엄을 선정했다고 18일 밝혔다. 글로벌 AI 선진국은 AI의 경제·안보적 중요성을 인식하고, 국가 주도 대규모 투자를 통해 AI 연구 구심점을 조성해오고 있으며, 이에 발맞춰 우리나라도 세계 최고 수준 AI 산·학·연 협력 생태계를 집약하는 구심점 조성을 위해 대한민국을 대표하는 AI 연구거점 구축을 추진한다고 과기정통부는 밝혔다. 실제 캐나다는 정부 주도로 3대 국가 AI 연구소 구축(토론토 vector institute가 대표적)을, 영국은 정부기관 및 5개 대학이 공동 투자해 앨런 튜링 연구소 설립을, 미국은 국립과학재단(NSF)가 나서 미국 전역에 국립 AI 연구소를 확충중이다. 엄격한 공모와 전문가 평가 등을 거쳐 AI 연구거점 구축·운영 수행기관으로 선정된 KAIST·연세대·고려대·POSTECH 컨소시엄은 2024~2028년 간 국비 총 360억원(목표)을 투입한다. 여기에 지자체와 기업이 500억원 이상(현물·현금) 투자를 할 예정이다. 국내외 유수 AI 연구진이 함께 첨단 AI연구를 수행하고 교류의 장을 형성한다. AI 연구거점은 서울 AI허브(서울시 서초구 소재) 내 7050.5㎡(약 2132평) 규모로 조성되며, 국내 대학 뿐만 아니라 지자체, 대·중소 기업 등이 협력기관으로 참여해 AI 산학연 생태계 집약과 AI 기반 산업 생태계 활성화 기능을 수행한다. 아울러, 미국, 캐나다, 프랑스 등 해외 유수의 AI 연구기관도 협력기관으로 참여해 파괴적 혁신을 지향하는 △뉴럴 스케일링 법칙 초월 연구(국제공동책임자 Yejin Choi(U. Washington)) △로봇파운데이션 모델 연구 등의 AI 국제공동연구(국제공동책임자 Daniel D Lee(Cornell U.))도 수행, 세계적 수준을 지향하는 AI 국제공동연구 거점 역할도 지향한다. '뉴럴 스케일링 법칙 초월 연구'는 AI 모델 훈련과 운용에 필요한 비용 곡선의 법칙(Neural Scaling Law) 한계를 초월하는 성능과 효율성을 달성하는 새로운 학습 방법 및 모델을 개발하는 거고, '로봇파운데이션 모델 연구'는 차세대 인공지능 로봇을 위한 다목적 파운데이션 모델을 개발한다. 특히 해외 AI 우수연구자(15명 이상)가 일정 기간 국내에 상주, 국내 연구진과 공동연구를 수행하며, 공개 세미나와 국제 포럼도 정례 개최, 국제 지위를 갖춘 대한민국 AI 연구거점 설립에 기여할 예정이다. 과기정통부는 AI 연구거점 개소식(9월 잠정)을 통해 AI 연구거점의 구체적인 청사진을 제시하는 한편 독립법인화 등을 통해 지속가능한 성장 모델을 구축, 대한민국 AI 혁신의 새로운 지평을 열어갈 방침이다. 과기정통부 강도현 제2차관은 "AI 연구거점을 통해 대한민국을 세계적인 AI 혁신의 중심지로 도약시키겠다"며 "국내외 최고의 AI 연구진과 함께 혁신적인 AI 기술을 개발·활용하고, 이를 바탕으로 대한민국이 글로벌 AI 리더십을 확고히 하는 데 전력을 다하겠다"고 강조했다.
2024.08.19
조회수 6070
누구나 천연물 합성 경로 예측 가능하다
식물은 고착생활을 하면서 환경 스트레스에 대응하기 위해 진화적으로 다양하고 복잡한 천연물을 만들고 있다. 이 천연물들은 인류의 생존에도 필수적인 역할을 하고 있는데 미국식품의약국(FDA) 승인 저분자 약물의 30% 이상이 식물 천연물에 기초하고 있다는 사실이 이를 증명하고 있다. 한국 연구진이 딥러닝을 활용, 천연물의 역-생합성 경로를 예측하는 모델을 제시해 천연물 기반 의약품 대량 생산에 활용될 수 있도록 해 화제다. 우리 대학 생명과학과 김상규 교수 연구팀과 김재철AI대학원 황성주 교수 연구팀의 공동연구를 통해 천연물 생합성 경로를 예측하는 딥러닝 모델을 개발하고 부산대학교 박정빈 교수 연구팀과 협업을 통해 관심있는 누구나 모델을 활용할 수 있도록 인터넷 웹사이트(readretro.net)를 구축했다고 14일 밝혔다. 천연물 활용 및 대량 생산을 위해서는 생합성 경로를 밝히는 것이 필수적이다. 하지만 복잡한 구조를 가진 많은 약용 천연물의 생합성 경로가 잘 밝혀져 있지 않아 현재는 식물로부터 직접 추출해 사용하고 있다. 생합성 경로 연구는 도전적이지만 이를 밝히고 생합성 효소를 찾을 수 있다면 천연물의 활용 가치를 증진할 수 있다. 식물 천연물 생합성 경로 연구의 첫 단계는 식물이 어떻게 물질을 합성하는지 그 경로를 역추적(역합성 경로를 제시)하는 것으로 시작된다. 공동연구팀은 딥러닝을 활용해 천연물의 역-생합성 경로를 예측하는 모델을 제시했다. 이번 연구에서 연구팀은 발전된 역합성 모델과 생화학적 직관을 결합해 성공적으로 천연물 생합성 경로 예측을 수행하는 인공지능 모델을 개발했다. 연구팀은 개발한 인공지능의 이름을 ‘역합성을 읽어내는 모델’이라는 뜻을 담아 ‘리드레트로(READRetro)’라고 명명했다. 이 모델은 천연물 역합성을 예측하는 인공지능 모델 중 최고의 성능을 보이는 것으로 확인되었고 이를 개별 연구자들이 쉽게 활용할 수 있도록 구현했다는 데 의미를 가진다. 김상규 교수는 “식물이 어떻게 복잡한 천연물을 만들 수 있게 되었는지 이해하는 기초 연구에서부터 천연물 기반 의약품을 대량으로 생산하기 위한 합성생물학 연구 등에 활용이 기대된다. 추후 합성 경로를 매개하는 효소를 예측하거나 거대 분자의 역합성 예측 정확도를 높이는 연구를 실시할 계획이다” 라고 말했다. 또한 김 교수는 “이번 연구는 2022년 KAIST 인공지능연구원에서 주최한 멜팅 팟(Melting pot) 세미나에서 저와 황성주 교수가 발제자와 토론자로 만난 인연으로 시작됐다. KAIST가 표방하는 융합이 생화학자와 전산학자의 힘을 합쳐 이끌어 낸 좋은 연구로 큰 의미를 갖는다고 생각한다”고 강조했다. 생명과학과 김태인 석박사통합과정과 김재철AI대학원 이슬 석박사통합과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘뉴 파이톨로지스트(New Phytologist)'에 출판됐다. (논문명 : READRetro: natural product biosynthesis predicting with retrieval-augmented dual-view retrosynthesis). 한편 이번 연구는 KAIST POST-AI, 한국연구재단, 과학기술정보통신부 등의 지원을 받아 수행됐다.
2024.08.14
조회수 6559
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 20