본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%9C%B5%ED%95%A9%EC%97%B0%EA%B5%AC
최신순
조회순
융합 기초학부 설립 기념 행사 개최
〈18일 오전 열린 KAIST 융합기초학부 설치 기념식에 참석한 내빈들이 테이프 커팅을 하고 있다. (왼쪽에서 다섯번째가 신성철 총장)〉 우리 대학이 18일 오전 11시부터 대전 본원 행정 분관(N2)과 대강당(E15) 건물에서 각각 ‘융합기초학부’설치를 기념하는 행사를 가졌다. ‘융합기초학부’는 KAIST가 전문적인 역량뿐만 아니라 초학문적인 사고력을 갖춘 지식창조형 인재 양성을 목표로 설치한 새로운 학부 교육 과정이다. 특히 학생 스스로가 자신이 원하는 진로·관심 분야에 따라 개인맞춤형으로 전공 교과목을 직접 설계해서 공부한다는 게‘융합기초학부’의 가장 큰 특징이다. KAIST는 내년 3월부터 ‘융합기초학부’를 본격 운영할 방침인데 이를 위해 오는 11월에 1학년인 새내기과정 학생들을 대상으로 학생 모집에 나설 계획이다. 이날 기념행사에는 신성철 총장을 비롯해 이광형 교학부총장·박현욱 연구부총장·채수찬 대외부총장·김종득 융합기초학부 설립추진단장 등 주요 보직 교수와 학생·교직원 등 200여 명이 참석했다. 행사는 ‘융합기초학부’가 설치된 행정 분관(N2)에서 현판식 및 테이프 커팅식, 기념사진 촬영 등의 순으로 진행됐다. 대강당(E15)으로 자리를 옮겨 치러진 2부 행사에서는 신성철 총장의 ‘21C 미래사회에서 KAIST 새로운 역할과 준비’를 주제로 한 기념 강연에 이어 전기및전자공학부 이용훈 교수와 글로벌산학협력연구센터 배종성 교수가 각각 ‘최신교육은 현장(Co-op)에 있다’와 ‘이제 쌍방향 실시간 교육이다’라는 주제로 발표를 했다. 이와 함께 박현욱 연구부총장은 ‘융합연구, 미래의 먹거리를 만든다’라는 발표를 통해 4차 산업혁명 시대의 미래 융합연구에 대한 중요성과 새로운 흐름을 소개했다. 마지막으로 김종득 융합기초학부 설립추진단장이 ‘융합기초학부는 이런 일을 한다’라는 주제의 특강을 통해 융합기초학부의 설립 배경과 추진 경과, 학사운영 및 교육 방향 등에 관해 자세히 소개하는 시간을 가졌다. ‘융합기초학부’ 설치를 계기로 KAIST 학사조직은 기존 5개 단과대학, 6개 학부, 27개 학과에서 5개 단과대학, 7개 학부, 27개 학과체계로 1개 학부가 늘어나게 됐다. KAIST는 최근 ‘융합기초학부’학생에게 기초교육과 현장학습을 기반으로 사회와 대학원에서 융합적 연구 주제를 소화하고 다양하고 복잡한 문제를 창의적으로 해결하는 역량을 길러주기 위해 융합기초 교과목 6개, 중점분야별 전문 교과목군 8개와 인공지능(AI) 교육을 바탕으로 구성한 교과과정 설계를 마쳤다. 학문 사이의 경계를 허물 6개 융합기초 교과목은 ▲융합학문을 위한 기초 현대 물리 ▲유기화학 반응의 기초 ▲분자생물학과 유전체의 이해 ▲응용수리모델링 ▲초학제 간 데이터 구성 ▲경영자를 위한 경제학 등이다. 또 중점 교과목군은 ▲데이터 및 AI ▲기계 및 정밀 ▲헬스케어 ▲에너지 및 환경 ▲소재 및 물질 ▲스마트시티·라이프 ▲문화·미디어 ▲경영 ·창업 등 모두 8개로 이뤄졌다. 이들 교과과정은 학생의 관심 주제와 연계해 개인맞춤형 교과목 형태로 운영되며 멘토 교수로부터 교과목 설계와 진로 상담에 관한 조언을 받을 수 있다. 1학년 과정을 포함해 총 136학점 이상을 이수한 학생은 자신이 선택한 교과과정에 따라 ▲공학사 ▲이학사 ▲융합공학사 ▲융합이학사 등 4개의 학위 가운데 하나를 선택해 받을 수 있다. 한편 신성철 총장은 이날 기념 강연에서 “KAIST는 연구중심대학으로서 그동안 학문적 깊이와 다양성을 지향해왔고 또 국가가 필요한 우수 이공계 인재 양성의 선도적 역할을 수행해왔다”며 “4차 산업혁명 시대의 핵심기술인 IoT·클라우드·빅데이터·5G·AI 등 신산업과 혁신 창업을 주도하는 미래 융합형 인재 양성을 통해 국가경제발전과 인류사회 번영에 기여할 것”이라고 강조했다.
2019.09.18
조회수 10785
신경과학-인공지능 융합 연구센터 개소
우리 대학이 6일 대전 본원 양분순빌딩에서 `신경과학-인공지능 융합연구센터(KAIST Center for Neuroscience-inspired AI, 이하 CNAI 연구센터)'를 개소한다. 과학기술정보통신부의 재원과 정보통신기획평가원의 지원을 바탕으로 설립되는 CNAI 연구센터는 인간 두뇌를 닮은 차세대 인공지능 연구를 수행할 예정이다. CNAI 연구센터는 국내에서 유일하게 뇌기반 인공지능의 독자적 원천기술을 확보한 것이 특징이다. 발달인지·뇌과학 실증 연구와 뇌기반 인공지능 기술을 AI에 이식해 인간이 수행할 수 있는 높은 수준의 기능까지 구현할 수 있는 차세대 인공지능 기술을 개발하는 것을 연구 목표로 삼았다. 이를 통해 `AI-신경과학-로봇', `이론-소프트웨어-하드웨어'의 균형을 통한 세계 최정상급 연구를 추진하고 세계적 수준의 인공지능 기술을 선도하겠다는 취지다. 실제로, CNAI 연구센터가 수행한 강화학습 관점에서의 접근 방법은 올해 초 사이언스(Science)의 자매지인 사이언스 로보틱스(Science Robotics) 지에 발표됐다. 이러한 `인지발달–신경과학/뇌기반 인공지능–기계학습' 융합연구를 위해 다양한 전문성과 상호보완적 성격을 가진 다학제적 연구팀이 참여한다. KAIST, 서울대학교, 고려대학교, 영국 케임브리지대학교(University of Cambridge), 인공지능 스타트업 기업 휴멜로(Humelo) 등이다. 또한, 국제공동연구 네트워크를 통한 세계 최정상급 연구진과 공동연구 및 인적 교류도 활발히 진행하고 있다. 세계 최고 수준 뇌기반 인공지능 연구개발 기관인 미국 메사추세츠 공과대학(MIT), 구글 딥마인드(Google DeepMind), 아이비엠 인공지능 연구센터(IBM AI Research)를 비롯해 영국 케임브리지 대학교(University of Cambridge) 및 버밍엄 대학교(University of Birmingham) 등과 국제 공동 연구 협약을 맺고 다양한 도전적 연구 주제를 발굴하여 연구를 진행하고 있다. 지난 5월에는 구글 딥마인드(Google DeepMind) 연사를 초청해 `딥마인드의 신경과학-인공지능(DeepMind's Neuroscience-Inspired AI)' 세미나를 시리즈로 개최한 바 있으며, 오는 10월에는 미국 하버드 대학교와 하버드 메디컬 스쿨 연사들을 초청해 `신경과학-인공지능' 국제공동 심포지엄을 개최할 예정이다. 이어, 12월 2일에는 한국 계산뇌과학회와 공동으로 구글 딥마인드와 케임브리지 대학 연구자 등을 연사로 초청해 뇌기반 인공지능 국제 심포지엄을 개최할 계획이다. 이러한 세계적 석학 및 연구진들과의 국제공동 학술행사들을 통해 세계 유수의 선진 연구기관들이 보유한 최고 수준의 기술 현황을 파악하는 인적·기술적 교류 기회를 넓혀가며, 뇌-인공지능 융합 분야에서 KAIST가 국제적 뇌기반 인공지능 허브의 역할을 수행할 방침이다. 이상완 CNAI 연구센터 소장은 "인간의 두뇌가 가지고 있는 무한한 잠재력을 기술의 영역으로 풀어내고 이를 인공지능으로 이식하는 신경과학-인공지능 융합연구는 현재 인공지능의 수준을 한 단계 높이는 출발점이며, 인간과 인공지능이 함께 진화해 나갈 수 있는 미래사회의 밑그림을 그려가는 과정ˮ이라고 설명했다. 이 소장은 이어, "한국이 차세대 뇌기반 인공지능 연구를 선도하려면 정부와 기업의 많은 관심과 적극적인 지원이 필요합니다ˮ고 강조했다. 한편, 6일 열릴 개소식에는 박현욱 KAIST 연구부총장, 조광현 KAIST 연구처장, 정기훈 KAIST 바이오및뇌공학과 학과장 등 40여 명의 내·외빈이 참석할 계획이다.
2019.09.05
조회수 11612
최원호 교수, 플라즈마에 의한 수산기(OH radical) 생성원리 규명
〈 박주영 박사, 최원호 교수, 박상후 박사 〉 우리 대학 원자력및양자공학과 최원호 교수 연구팀이 대기압 플라즈마에서 수산기(OH radical)가 생성되는 원리를 규명하는 데 성공했다. 박상후 박사, 박주영 박사과정 학생이 공동 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘케미컬 엔지니어링 저널(Chemical Engineering Journal)’ 7월 8일 자 온라인판에 게재됐다 (논문명: Origin of Hydroxyl Radicals in a Weakly Ionized Plasma-Facing Liquid). 플라즈마란 강한 전기적 힘으로 인해 기체 분자가 이온과 전자로 나누어지는 상태를 말한다. 특히 대기압 플라즈마는 대기 중에 여러 형태로 플라즈마 효과 및 2차 생성물을 방출하는 장점이 있어 살균, 정화, 탈취 등 에너지 및 환경 분야부터 생의학 분야까지 다양한 연구 및 산업 분야에 활용되고 있다. 다양한 분야에서 시도되는 플라즈마는 물과 밀접한 관련이 있다. 물을 플라즈마로 처리한 방전수를 만들어 농업용수 및 살균수로 사용하기도 하고, 생의학 분야에서도 70%가 수분으로 구성된 인체에 활용하기 위해 플라즈마와 물의 반응에 대해 끊임없이 연구가 진행된다. 그중 수산기는 대표적인 활성 산소종으로, 물과 플라즈마의 반응에서 가장 중요한 역할을 하는 물질이다. 수산기는 산화력이 매우 커 여러 목적으로 활용이 시도되고 있으며, 박테리아 살균의 경우 기존의 살균법인 과산화수소나 오존을 사용할 때보다 수십에서 수백 배 효율이 높은 것으로 2018년 최원호 교수 연구팀에서 밝힌 바 있다. 수산기는 살균뿐 아니라, 수질 정화, 폐수 처리, 세척 등 환경 분야 및 멸균, 소독, 암세포 제거 등 의료 기술에서도 매우 높은 잠재력을 가지고 있다. 그러나 수산기는 대량으로 생성하기가 어렵고 생존 기간이 짧아 플라즈마 기술을 적극적으로 활용하는 데 한계가 있다. 연구팀은 문제 해결을 위해 플라즈마 내에서 기존에 알려진 수산기의 생성 방식 외에 산화질소의 광분해에 의한 생성원리를 규명했다. 더불어 광분해를 촉진시켜 수산기의 생성량을 높이면서 동시에 제어하는 방법을 개발했다. 광분해 방법이란 플라즈마로 생성된 산화질소가 존재하는 물과 플라즈마에 자외선을 추가로 노출해 산화질소가 수산기로 분해되는 과정을 말한다. 연구팀이 개발한 광분해방법은 수산기의 생성 위치를 국한하지 않고, 자외선 노출 위치에 따라 제어할 수 있어 생존 기간이 짧다는 단점을 극복할 수 있다. 최원호 교수는 “이번 연구를 통해 플라즈마 기술에 대한 과학적 이해를 넓히면서 효율적인 플라즈마 기술의 제어 방법을 제시함으로써 농업, 식품, 바이오 의학 등 다양한 분야에 플라즈마 기술이 적극적으로 접목될 수 있는 기반을 마련할 것이다”라고 말했다. 이번 연구는 국가핵융합연구소의 미래선도 플라즈마-농식품 융합기술 개발 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 플라즈마 처리수(PTW)에서 pH와 과산화수소, 아질산염 비율에 따른 수산기 반응 경로 그림2. 대기압 플라즈마 사진 및 수산기 생성경로
2019.08.16
조회수 14670
KAIST-대전문화재단, ‘C-Arts Lab’ 운영 업무협약 체결
우리대학과 대전문화재단(대표 박만우)은 지난 14일 창의융합연구소 ‘C-Arts Lab’ 운영 협력을 위한 업무협약을 체결했다. 이번 협약은 예술과 과학의 융복합을 기반으로, 대전만이 갖고 있는 도시문화의 고유성과 영향력을 지속·확대 할 수 있는 독창적인 콘텐츠를 개발을 위해 이뤄졌다. 이날 협약 체결을 계기로 양 기관은 내달부터 창의융합연구소 ‘C-Arts Lab’ 설치 및 운영과 우리대학의 문화기술대학원 산하4개 연구실과 협업을 통해 , 문화현상(Cultural Phenomena), 시각 콘텐츠 기술(Visual Content Technology), 소리와 음악 기술(Sound&MusicTechnology), 상호작용 기술(Interactive Technology) 등 문화예술과 과학기술 융복합형 콘텐츠 연구·개발사업을 진행할 방침이다.
2019.05.16
조회수 8259
2019 리서치데이 개최(Research Day)
우리 대학이 4월 23일 오전 10시부터 대전 본원 학술문화관(E9) 5층에 있는 정근모 콘퍼런스홀에서 ‘2019 KAIST 리서치데이(Research Day)’를 개최한다. ‘리서치데이’ 행사는 주요 연구성과 소개를 통해 R&D 분야의 정보교류 기회를 제공하고, 상호 협력·소통하는 연구 문화조성으로 연구자들의 응집력을 높여 융합연구를 활성화한다는 취지로 KAIST가 지난 2016년부터 매년 개최하는 교내 연구자들의 축제다. 올해 행사에서는 연구부문 우수교원과 대표 연구성과 10선을 뽑아 포상한다. 이와 함께 최고 연구상인 ‘연구대상’ 수상자인 조병진 교수(전기및전자공학부)가 ‘반도체 소자와 에너지 소자 분야에서의 한계 돌파’를 주제로 강연에 나선다. 최근 반도체 소자는 7나노미터 이하의 극한까지 회로의 선 폭이 줄어들고 있는데 조 교수는 이에 따른 여러 가지 물리적·공정적 한계를 극복할 수 있는 새로운 반도체 기술을 소개한다. 또한, 에너지 소자 분야에서는 유연열전소자의 새로운 응용 분야를 소개할 예정이다 조병진 교수는 차세대 나노 전자소자 및 플렉시블(flexible, 유연한) 에너지 소자 분야에서 독창적 성과를 인정받은 연구자다. 반도체 소자 기술 분야에서 240편 이상의 저널 논문과 300편 이상의 학회 논문을 발표했으며 50건 이상의 특허를 취득했다. 또한, 지난 2015년 프랑스의 기술평가기관 넷엑스플로(Netexplo)에서 주관하는 IT 분야 신기술 어워드 에서 그랑프리를 수상한 바 있다. 이밖에 박용근 교수(물리학과)와 박인철 교수(전기및전자공학부)가 각각 ‘연구상’ 수상자로 선정됐으며, ‘이노베이션상’수상자로는 김문철 교수(전기및전자공학부)가 뽑혔다. 최성율 교수(전기및전자공학부)와 임성갑 교수(생명화학공학과), 박상희 교수(신소재공학과) 등 3명은 한 팀으로 융합 연구상을 받는다. 이들 수상자는 행사 기간 내 강연을 통해 연구에 대한 열정과 경험을 학부생 및 석·박사 과정 학생은 물론 동료 연구자들에게 전달할 예정이다. 한편, KAIST를 대표하는 R&D 연구성과 10선에는 ▲리드버그원자 양자컴퓨터(안재욱 교수·심흥선 교수(이상 물리학과) 공동수상) ▲상온의 탄소-수소 결합 촉매 반응(백무현 교수·화학과) ▲DNA 사이 막대 모양 이온의 역할 규명(김용운 교수·나노과학기술대학원) ▲자원 탐색 및 획득 조절 신경회로(김대수 교수·생명과학과) ▲뇌종양의 원인 규명과 새로운 치료법 (이정호 교수·의과학대학원) 등이 자연과학 및 생명과학 분야의 우수 연구성과로 선정됐다. 공학 분야에서는 ▲시공간 경계를 이용한 빛의 선형 주파수 변환 기술(민범기 교수·기계공학과) ▲투명 유연 포스 터치 센서(윤준보 교수·전기및전자공학부) ▲반도체 웨이퍼 내 결함 패턴 탐지(김희영 교수·산업및시스템공학과) ▲스핀 기반 로직 소자(박병국 교수·신소재공학과) ▲탄소 나노튜브 기반의 근접 암 치료 장비(조성오 교수·원자력및양자공학과) 등이 선정됐다. 행사장에서는 우수 연구성과 10선이 동영상을 통해 시연, 소개될 예정이며 시상식 후에는 오찬과 함께 연구자들 간의 교류 시간도 준비돼 있어 교수와 학생 등 KAIST 구성원은 물론 시민들도 누구든지 이 행사에 참여해 자유롭게 대화를 나눌 수 있다.
2019.04.17
조회수 13339
김일두, 서명은, 전석우 교수, 제9회 KINC 융합연구상 수상
〈(왼쪽부터) 전석우 교수, 서명은 교수, 김일두 교수, 정희태 소장, 최시영 교수 〉 우리 대학 나노융합연구소(연구소장 정희태)는 3월 25일 본교 KI 빌딩 패컬티 컨퍼런스룸에서 제 9회 ‘KINC 융합연구상’ 시상식을 개최했다. ‘KINC 융합연구상’은 참여 교수들의 융합 연구를 장려하고 연구 의욕을 고취하기 위해 제정되었다. 전년도 실적을 기준으로 나노융합연구 업적이 우수한 연구자를 포상해 융합연구 분위기를 더욱 북돋으려는 취지다. 9회째를 맞는 올해는 수상 부문을 ‘최다수 융합논문’ 부문과 ‘최우수 융합논문’ 부문으로 나눠 진행했다. 교내‧외 다양한 연구진과 공동 연구한 융합논문 실적수가 가장 많은 연구자를 선발하는 ‘최다수 융합논문’ 부문에는 신소재공학과 김일두 교수가 최우수상 수상자로 선정되었으며, 나노과학기술대학원 서명은 부교수, 신소재공학과 전석우 교수가 우수상을 수상했다. 최우수상 수상자에게는 일백오십만 원, 우수상 수상자에게는 각각 오십만 원의 상금이 수여된다. 연구 내용의 질적 수준과 연구팀의 융합성이 가장 우수한 공동 연구팀에게 주어지는 ‘최우수 융합논문’ 부문에서는 수상자를 선정하지 못했다. 행사를 주최한 나노융합 연구소 정희태 소장(생명화학공학과 교수)은 “융합은 미래 사회와 산업에 혁명을 일으킬 핵심 키워드로 이번 시상이 연구자들에게 융합 연구의 중요성을 보다 강조할 수 있는 계기가 되길 바란다”며, “앞으로도 융합연구가 발전할 수 있는 연구 환경을 조성하기 위해 나노융합연구소가 앞장서겠다.”고 밝혔다. 한편, 나노융합연구소(KAIST Institute for the NanoCentury, KINC)는 나노과학기술분야에서 학과 간의 경계를 허물어 진정한 학제 간 공동연구를 촉진하고 창조적인 융합연구를 추진하기 위해 지난 2006년 6월 KAIST 연구원 산하 조직으로 설립되었다. KAIST의 대표적인 융합연구소로 자리 잡은 나노융합연구소는 14개 학과 100여 명의 교수가 참여하고 있으며, 세계를 선도하는 나노융합연구 허브대학연구소를 목표로 활발한 연구 성과를 배출하고 있다.
2019.03.26
조회수 15954
김희탁 교수, 이론용량 92% 구현한 리튬-황 전지 개발
〈 추현원 석사과정, 김희탁 교수 〉 우리 대학 생명화학공학과/나노융합연구소 차세대배터리센터 김희탁 교수 연구팀이 이론용량의 92%를 구현하고 높은 용량 밀도 (4mAh/cm2)를 가지는 고성능, 고용량 리튬-황 전지를 개발했다. 추현원 석사과정과 노형준 박사과정이 1 저자로 참여한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 1월 14일 자 온라인판에 게재됐고 우수성을 인정받아 에디터스하이라이트에 선정됐다. (논문명 : Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions) ( https://www.nature.com/ncomms/editorshighlights ) 리튬-황 전지는 리튬-이온 전지보다 약 6~7배 높은 이론 에너지밀도를 갖고 원료 물질인 황의 가격이 저렴해 리튬-이온 전지를 대체할 차세대 리튬 이차전지로 주목받고 있다. 그러나 리튬-황 전지는 구동 중 방전 생성물인 황화 리튬이 전극 표면에 쌓이고 전극 표면에서 전자전달을 차단해 리튬-황 전지의 이론용량 구현이 불가능하다는 한계를 갖는다. 이러한 전극 부동화의 문제를 완화하기 위해 과량의 도전제를 전극에 도입해 왔으나 이는 리튬-황 전지의 에너지 밀도를 크게 낮추는 문제를 발생시키며, 이론용량 구현이 70%를 넘지 못하는 한계를 보였다. 연구팀은 문제 해결을 위해 기존 리튬-황 전지의 전해질에 사용하던 리튬 염을 대체해 높은 전자기여도를 가지는 음이온 염을 이용했다. 이 전해질 염은 전지 내부의 황화리튬의 용해도를 높여 전극 표면에 3차원 구조의 황화리튬 성장을 유도하고 이는 전극의 부동화를 효율적으로 억제해 높은 용량을 구현할 수 있게 한다. 연구팀은 이 전해액 기술을 바탕으로 기존 리튬-이온 전지와 동등한 수준의 면적당 용량 밀도를 갖는(4mAh/cm2) 고용량 황 전극에 대해 이론용량 92%인 수준을 구현해 기존 리튬-황 전지 기술의 한계를 넘었다. 또한 리튬 음극 표면에 안정한 부동피막을 형성해 100 사이클 이상 구동 시에도 안정적인 수명을 구현했다. 특히 새로운 전해질 설계를 통한 황화리튬의 구조 제어 기술은 다양한 구조의 황 전극 및 구동 조건에서 적용 가능해 산업적으로도 큰 의미를 지닐 것으로 보인다. 김희탁 교수는 “리튬-황 전지의 한계를 돌파하기 위한 새로운 물리 화학적 원리를 제시했다”라며 “리튬-황 전지의 이론용량의 90% 이상을 100 사이클 이상 돌리면서도 용량 저하 없이 구현했다는 점에서 새로운 이정표가 될 것으로 기대한다”라고 말했다. 이번 연구는 나노융합연구소, 한국연구재단 및 LG화학의 지원을 받아 수행됐다. □ 그림 설명 그림1. 전해질에 따른 전극 위 리튬 설파이드 성장 구조 및 축적 메커니즘 그림2. 리튬황전지의 사이클 용량 및 수명 특성
2019.01.31
조회수 15000
중소기업 사업화 유망 기술이전 설명회 개최
우리대학이 오는 14일(수) 오후 대전 본원 학술문화관 2층 양승택오디토리움에서 ‘KAIST 중소기업 사업화 유망 기술이전 설명회’를 개최한다. 이번 설명회는 KAIST 교수진이 개발한 신기술 가운데 중소기업의 경쟁력을 강화하는데 유용한 유망기술을 엄선해서 소개하는 한편 기술이전을 받기 원하는 중소기업을 대상으로 기술 상담과 기술보증기금 기업지원 프로그램 안내 등 상호 협력방안을 논의하기 위해 마련됐다. KAIST 산학협력단 기술사업화센터는 이번 설명회를 위해 동문기업을 포함한 대전지역 중소기업들의 기술수요를 조사·분석한 결과 ‘적혈구의 광 특성을 이용한 당 측정기술’ 등 모두 6개의 기술을 중소기업 대상 유망 이전기술로 꼽았다. 우선 배석형 교수(산업디자인학과)가 개발한 ‘협동로봇 제어기술’은 자동로봇, 제조로봇, 서비스로봇 등에 적용할 수 있는 기술이다. 기존의 협동로봇은 조작기술의 한계로 직관적인 행동이 어렵다는 단점이 있는데, 배 교수는 이를 극복하기 위해 로봇 조작 컨트롤러 사이에 신축성 있는 소재를 연결해 안정적인 양손조작 및 정밀성·신속성을 높인 제어기술을 개발했다. 명현 교수(건설및환경공학과)가 개발한 ‘실내·외 위치인식 기술’은 물류 로봇, 스마트팩토리, 자율주행차 등에 적용이 가능한 기술이다. 로봇의 자율주행에 필요한 위치인식 및 맵 작성 기술로 저가의 장비를 활용해 고성능 내비게이션을 구현해내는 것이 이 기술이 지닌 특징이다. 최시영 교수(생명화학공학과)는 설명회 자리에서 ‘분산성이 뛰어난 피커링 에멀전 기술’을 소개한다. 에멀전이란 물속에 기름방울들이 안정적으로 섞여있는 상태를 말한다. 기존에는 에멀전을 만들기 위해 계면활성제 등을 첨가하는 방식을 사용한 반면 최 교수는 화학물질 첨가 없이 물리적인 힘만으로 물과 기름을 섞어 에멀전을 유지하는 기술을 개발했다. 최 교수의 기술은 화장품과 제약 ·의약, 반도체, 페인트 등 다양한 분야의 분산 공정에 적용할 수 있다는 게 장점이다. 양진홍 교수(IT 융합연구소)가 개발한 ‘지능형 IoT 플랫폼 기술’도 이날 선보일 예정이다. 여러 개의 사물인터넷(IoT) 장치를 연계해 동시에 작동할 경우 뜻하지 않은 오류가 발생하는데 양 교수가 개발한 이 기술은 다양한 스마트 기기를 연동시켜 활용할 때 불편함을 최소화하고 또 효율적으로 관리할 수 있는 기술이다. 박용근 교수(물리학과)가 개발한 ‘적혈구의 광 특성을 이용한 당 측정기술’은 적혈구가 떨리며 산란된 빛의 세기 변화를 감지해 당화혈색소(헤모글로빈과 포도당이 결합한 형태)를 측정하는 기술이다. 기존방식에 비해 저비용·소형화된 측정 장비를 제작할 수 있고 당뇨병은 물론 심혈관 질환, 종양, 신장병 및 전염병을 포함한 다양한 체외 진단검사 분야에서 활용할 수 있을 것으로 기대가 크다. 이밖에 노용만 교수(전기및전자공학부)는 ‘얼굴인식을 통한 출입통제 기술’을 소개한다. 그동안 얼굴 인식기술은 다른 생체인식 기술에 비해 정확도가 낮아 활용성이 떨어지는 한계를 보였다. 반면 노 교수는 얼굴의 생김새는 물론 움직임까지 식별정보로 활용하는 ‘딥 네트워크 기반’ 얼굴 다이나믹 분석기술을 개발해 고성능 대면 얼굴인식 기술을 완성했다. 금융·컴퓨터·정보시스템 보안·통신기기 및 서비스 관리·출입관리 등 광범위한 분야에 적용할 수 있는 기술이다. 14일 열리는 설명회에는 연구자인 6명의 KAIST 교수들이 직접 참석해 기술의 개요와 특·장점, 적용분야 등에 관해 15분씩 소개하는 순서로 이뤄진다. KAIST는 또 이날 참석한 중소기업을 대상으로 상담과 함께 적정기술을 연결해주는‘U2B 기술이전 상담’도 함께 진행할 방침이다. 신성철 KAIST 총장은 “중소기업의 기술혁신을 선도해 강소기업으로 도약할 수 있도록 KAIST가 앞장 서 지원할 것”이라고 밝혔다. 신 총장은 이어 “KAIST는 적극적인 기술이전 마케팅을 통해 대학의 연구와 개발을 경제적 가치창출로 직결하는 기술사업화 혁신의 성공신화를 만들어 갈 것”이라고 덧붙였다. 이번 설명회는 웹페이지( https://goo.gl/rFndnj )에서 신청할 수 있으며 KAIST 기술이전에 관심이 있는 모든 중소기업은 무료로 참가가 가능하다. 문의 042-350-2174
2018.11.06
조회수 11358
최원호 교수, 플라즈마 내 전자의 가열 원리 규명
〈 최원호 교수, 박상후 연구교수〉 우리 대학 원자력및양자공학과 최원호 교수 연구팀이 약하게 이온화된 플라즈마(weakly ionized plasma)에서 전자가 가열되는 구조와 제어 원리를 규명하는데 성공했다. 플라즈마 내의 모든 반응이 전자로부터 시작된다는 점으로 볼 때 전자의 가열 원리를 규명함으로써 플라즈마를 더욱 자유롭고 다양하게 활용할 수 있을 것으로 예상된다. 이는 대기압 플라즈마 내에 존재하는 자유 전자에 대한 기초 연구 자료로 기존 플라즈마의 활용 및 응용 가능성을 높이는 등 플라즈마 물리학 및 응용기술 발전에 크게 기여할 것으로 기대된다. 박상후 연구교수가 1저자로 참여한 이번 연구는 국제 학술지 ‘사이언티픽 리포트(Scientific Reports)’5월 14일자와 7월 5일자 온라인 판에 연달아 게재됐다. (논문명 : Electron information in single- and dual-frequency capacitive discharges at atmospheric pressure, 단일 및 이중 주파수 대기압 플라즈마의 전자 정보 / Electron heating in rf capacitive discharges at atmospheric-to-subatmospheric pressures, 대기압과 대기압보다 낮은 압력에서 라디오 주파수 플라즈마 내의 전자 가열) 물질의 세 가지 상태인 고체, 액체, 기체와 더불어 ‘물질의 네 번째 상태’라 불리는 플라즈마는 표준 온도 및 압력(25 ℃, 1 기압)의 상태에서는 자연적으로 존재하지 않으나 인위적으로 기체에 에너지를 가하면 플라즈마 상태가 된다. 학계 및 산업계는 활용 목적과 조건에 맞춰 다양한 형태의 플라즈마 발생원을 개발해 사용하고 있다. 특히 대기압 플라즈마는 응용 가능 분야가 다양하고 활용도가 높아 학술적, 산업적 활용성 측면에서 많은 관심을 받고 있다. 일반적으로 플라즈마 내의 다양한 화학적, 물리적 반응은 전자로부터 시작되기 때문에 전자의 밀도와 온도의 시공간적 변화는 아주 중요한 정보이다. 플라즈마 및 가속기 물리학 분야에서 자유 전자의 가열 여부는 과학자들의 관심을 지속적으로 받은 연구 주제이다. 그러나 대기압 조건에서는 자유 전자와 중성기체의 충돌이 빈번하기 때문에 이온화된 플라즈마 내 자유 전자의 밀도와 온도를 측정하는 데에는 한계가 있어 자유 전자의 가열 구조 및 원리를 실험적으로 규명할 수 없었다. 또한 전자 가열의 제어 방법 및 주요 요인에 대한 정보가 부족해 플라즈마의 반응성과 활용성 개선이 제한적이었다. 연구팀은 문제 해결을 위해 전자-중성입자 제동복사(electron-neutral bremsstrahlung)란 기술을 이용해 플라즈마 내 자유 전자의 밀도, 온도를 정확히 진단하고 이를 2차원으로 영상화하는 기술을 개발했다. 연구팀은 개발한 진단 기술을 이용해 대기압 플라즈마에서 수 나노초(10억분의 1초) 단위로 자유 전자의 온도(에너지)를 측정해 전자가 에너지를 얻는 가열 과정의 시공간적 분포 및 근본 원리를 밝히는 데 성공했다. 0.25~1기압 압력구간에서의 전자 온도의 시공간적 분포의 변화를 실험적으로 최초로 확인해 대기압 및 대기압보다 낮은 압력에서 전자가 에너지를 얻는 가열의 기본 원리를 규명했다. 최 교수는 “이 연구 결과는 자유 전자와 중성입자의 충돌이 매우 빈번한 조건에서 발생하는 플라즈마에서의 전자 가열 원리를 학문적으로 이해하는 데 유용할 것이다”며 “이를 통해 경제적, 산업적 활용 가능한 대기압 플라즈마 발생원을 개발하고 다양하게 활용하는데 큰 역할을 하길 기대한다”고 말했다. 이번 연구는 국가핵융합연구소의 미래선도플라즈마-농식품융합기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 측정된 파장의 제동복사 및 전자 온도의 시공간적 변화 그림2. 단일 및 이중 주파수로 구동하는 플라즈마에서 측정된 제동복사 및 전자 온도의 시공간적 변화
2018.07.26
조회수 14306
AST 홀딩스, 발전기금 1억 원 약정
〈 신 성 철 총장, 서 해 규 대표이사 〉 우리 대학이 27일 오후 3시 본관 총장실에서 AST홀딩스 서해규 대표이사를 비롯해 신성철 총장, 김영걸 발전재단 상임이사, 우운택 증강현실연구센터장 등이 참여한 가운데 발전기금 약정식을 진행했다. AST 홀딩스는 4차 산업혁명을 이끌어갈 증강현실 전문가 양성을 위해 우리 대학에 발전기금 1억 원을 약정했다. AST홀딩스의 발전기금은 미래 도시에 필요한 지능형 증강현실기술 전문가 양성을 위해 사용될 예정이며 별도 연구프로젝트 지원을 통해 스마트 도시 생활에 필요한 증강현실 기술개발 프로젝트를 공동으로 진행할 계획이다. 1997년 설립된 ㈜AST홀딩스는 가상증강현실 콘텐츠 전문 개발 회사로 삼성전자, 기아자동차 등의 기업과 함께 다양한 디지털 콘텐츠를 제작하고 가상증강현실 기술을 활용한 솔루션 개발 사업을 수행하고 있다. IT융합연구소 산하 증강현실연구센터는 가상증강현실 분야의 중장기 연구 개발을 통해 우수 연구 인력을 양성하고 핵심요소 기술을 축적해 관련 연구의 확산과 활용에 기여하고 있다. 특히 증강현실연구센터의 멤버십 산학연 파트너십 제도는 산학공동연구의 새로운 기준을 제시한다. 기업은 실무자를 파견해 최신 연구 기술 역량을 확보하고 연구센터는 산업계의 수요를 바탕으로 한 연구 기술 적용 역량을 강화한다. 파트너십 기금을 통해 증강현실연구센터는 신진 연구자들에게 안정적인 연구 환경을 제공하고 해외 우수 연구 인력의 국내 유입을 추진해 전 세계 가상증강 현실 분야를 선도할 열린 산학연 플랫폼의 새 모델이 될 것으로 기대된다. 서해규 AST홀딩스 대표이사는 “KAIST 증강현실연구센터의 파트너십 제도와 산학협력 연구를 통해 4차 산업의 핵심 기술인 가상, 증강현실 기반 미래 도시 플랫폼 연구를 선도해 나가고자 한다”며 “기업의 수요에 맞는 맞춤형 연구를 통해 중소기업의 핵심 연구, 개발 인력 및 기초 기술 확보를 통해 기업과 KAIST의 상생 모델이 만들어질 수 있게 되기를 기대한다”고 밝혔다. 신성철 총장은 “4차 산업 혁명을 선도하고 있는 KAIST에 의미 있는 기부금으로 활용하겠다”며 “국내외 우수 연구 인력을 공동 활용해 모범적인 산학연 협력 모델을 만들어 나갈 수 있도록 적극 지원하겠다”고 말했다.
2018.06.28
조회수 9654
인류세 연구센터 유치기관 선정
우리 대학이 과학기술정책대학원을 중심으로 다양한 학과, 연구소 교수들이 공동으로 참여하는 ‘인류세 연구센터’ 유치기관으로 선정됐다. 인류세 연구센터는 한국연구재단이 시행하는 융합연구 선도연구센터(Convergence Research Center) 지원 사업에 선정돼 7년에 걸쳐 사업을 진행할 예정이다. 과학기술정책대학원을 비롯해 문화기술대학원, 인문사회과학부, 산업디자인학과, 전기및전자공학부, 재난학연구소, 인공위성연구센터 소속의 교수와 연구원으로 구성되고 7년 간 약 100억 원의 지원을 받으며 인류세 시대의 변화를 예측하고 대응 및 공론화하는 융합연구를 시행한다. 인류세란 인간의 과학적, 산업적, 경제적 활동이 지구에 지울 수 없는 흔적을 남기고 있는 현상을 반영하기 위해 제안된 새 지질시대를 뜻한다. 플라스틱, 이산화탄소, 방사능 물질, 콘크리트 등 인간이 만들어낸 물질로 인해 지구가 손상된 산업혁명 이후의 시기를 말한다. 기후변화와 자연재난, 환경 파괴와 대규모 멸종, 산업 고도화와 불평등 심화 등이 인류세의 대표적 징후이다. 국제 지질학계에서 처음 제시된 개념이지만 공학, 인문사회과학, 예술, 정책학 등 다양한 분야에서 활발한 논의가 이뤄지고 있다. 인류세 연구센터는 인류세 시대의 지구적 변화를 감지하고 대응하기 위한 다학제적 융합 연구를 수행한다. 인류세 연구 전문가를 키워내기 위한 대학원 협동 과정도 신설할 예정이다. 구체적으로 ▲인공위성을 활용한 한반도의 지표, 해양 및 대기 변화 기록 연구 ▲인공지능(AI)을 활용한 모델링으로 재난 예측 및 위험 거버넌스 체계 구축 ▲손상된 지구에서 살아남기 위한 지속가능 주거, 교통 및 생활양식 전환에 관한 연구 ▲인간과 지구의 새 미래를 상상하기 위한 공학적, 예술적 연구 등을 수행한다. 인류세 담론의 공론화와 연구 성과 확산을 위한 다양한 소통 활동도 전개한다. 한국지질자원연구원과의 공동연구를 수행하고 센터 수립 3년차와 7년차에는 서울시립과학관과 연계해 인류세 특별전시를 개최해 연구 성과를 시민과 공유한다. 정기 간행물 발간으로 정책 입안자의 이해를 돕고 해외 연구자와의 네트워크를 구축하고 현장에 적용 가능한 융합교육 프로그램을 개발해 교육 시장 활성화에도 기여할 예정이다. 연구책임자인 과학기술정책대학원 박범순 교수는 “인류세 연구센터가 인간과 지구를 키워드로 삼아 과학, 공학, 인문학, 사회과학, 예술의 패러다임 변화를 촉발할 것이다”며 “더 나은 인류의 삶과 더 나은 지구를 함께 추구하기 위해 필요한 새로운 기술과 사회정책을 만들어나가는데 기여하겠다”고 말했다.
2018.06.04
조회수 10623
김희탁 교수, 도넛모양 황화리튬 이용 리튬황이온전지 개발
〈 팽민 예 연구교수, 김희탁 교수 〉 우리대학 생명화학공학과 김희탁 교수(나노융합연구소 차세대배터리센터) 연구팀이 기존 리튬이온전지보다 높은 에너지 밀도를 가지면서 저렴하고 600사이클 이상의 수명을 갖는 도넛 모양 활물질 구조의 리튬황이온전지를 개발하는데 성공했다. 전기자동차의 배터리로 사용되는 리튬이온전지는 낮은 에너지 밀도 때문에 1회 충전시 가능 주행 거리가 짧아 높은 에너지 밀도를 구현할 수 있는 리튬황전지의 개발이 10여 년 간 경쟁적으로 이뤄져 왔지만 리튬황전지는 음극인 리튬금속전극의 취약한 가역성으로 인해 전지의 사이클 수명을 확보하는데 어려움이 많았다. 이러한 문제 해결을 위해 연구팀은 리튬금속음극 대신 리튬이온전지에 사용되는 사이클 수명이 우수한 흑연음극 이용과 함께 용량이 높은 황화리튬(Li2S) 양극을 결합해 에너지 밀도와 수명 향상에 힘썼다. 그러나 황화리튬이 고가이고, 흑연음극과 황화리튬 양극의 사이클 수명을 동시에 만족하는 전극 및 전해액 설계기술이 없어 기술적인 한계가 있었다. 이에 연구팀은 저가의 황산리튬(Li2SO4)을 원재료로 도넛 모양의 황화리튬 양극 활물질을 제조했다. 그러면서 고농도 염 전해액을 이용해 흑연음극과 황화리튬 양극을 이용한 리튬황이온 전지를 구현했다. 내부가 비어있는 도넛 모양의 황화리튬은 리튬이온의 전달력을 향상시켜 높은 충, 방전 가역성을 보였고, 고농도 염 전해액은 흑연전극 표면에 안정적인 막을 형성해 우수한 내구성을 보였다. 연구팀은 이 기술을 통해 기존 리튬이온전지보다 30% 높은 에너지 밀도를 구현함과 동시에 600사이클 이상의 수명을 확보하는 데 성공했다. 연구팀의 도넛모양 황화리튬 전극은 저가의 원재료를 이용하면서 단일 열처리 공정으로 제조할 수 있고, 기존 리튬이온전지에 적용할 수 있어 산업적으로 활용할 수 있을 것으로 보인다. 김희탁 교수는 “저가 황 화합물을 리튬이온전지에 적용해 에너지 밀도와 수명을 동시에 향상시킬 수 있음을 증명했다”고 말했다. 이번 연구는 KAIST 나노융합연구소와 한국과학기술연구원 및 한국연구재단 기초연구지원사업의 지원으로 수행됐다. 팽민 예(Fangmin Ye) 연구교수가 1저자로 참여한 이번 연구 결과는 재료과학분야 국제학술지 ‘어드밴스드 사이언스(Advanced Science)’ 지난 7일자 온라인 판 논문에 게재됐다. □ 그림 설명 그림1. 도넛 모양 황화리튬 활물질 구조 및 제조 원리
2018.05.24
조회수 14569
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
>
다음 페이지
>>
마지막 페이지 7