본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%8B%A0%EC%86%8C%EC%9E%AC
최신순
조회순
LG이노텍과 미래 먹거리 위한 차세대 기술 키운다
우리 대학은 신사업 분야 기술 공동 개발과 우수인재 확보를 위해 LG이노텍(대표 문혁수)과 산학협력을 체결했다. 2일 대전 본원에서 열린 체결식에는 이광형 총장, 이상엽 연구부총장과 LG이노텍 문혁수 대표, 노승원 전무(CTO), 이동훈 상무(CHO) 등 주요 경영진이 참석했다. 이번 협약을 통해 KAIST와 LG이노텍는 향후 3년간 광학, 반도체, 모빌리티, 로봇 등 분야의 미래 기술을 공동 개발하게 된다. 주요 협력 과제로는 ▶자율주행, 로보틱스, 바이오 센싱용 차세대 이미징 소자 개발 ▶로봇 핸드 제어 기술 강화 ▶유리 기판 미세 결함 방지 ▶자율주행 센서 성능 향상 등이 포함된다. LG이노텍은 센싱, 기판, 제어 등 분야에서 독보적인 원천 기술력과 글로벌 1위의 광학, 기판 사업 경험을 보유하고 있고, KAIST는 센싱, 소재, AI 등 분야에서 세계적으로 인정받는 연구 성과와 전문성을 갖추고 있다. 양 기관의 협력을 통해 미래 기술 개발 속도를 높일 것으로 기대된다. 앞으로 양 기관은 추가 과제를 지속적으로 발굴할 예정이며, 메디컬 디바이스 분야로도 협력을 확대한다는 계획이다. 또한, LG이노텍은 산학 과제에 참가한 KAIST 우수 인재를 산학장학생으로 선발해 장학금을 지원하고, 채용 연계를 통해 우수 인재를 적극적으로 확보할 방침이다. 문혁수 LG이노텍 대표는 “이번 협력은 LG이노텍이 모바일에서 반도체, 모빌리티, 로봇 분야로 사업 포트폴리오를 확대해 나가는데 중요한 원동력이 될 것”이라며, “글로벌 최고 수준의 연구 기관인 KAIST와 함께 차별적 고객 가치를 제공할 수 있는 미래 기술을 선보이겠다”고 말했다. 이광형 총장은 “LG이노텍과의 협력은 광학, 반도체 분야 등 미래 핵심기술을 개발하는 중요한 발판이 될 것”이라며, “LG이노텍의 풍부한 글로벌 사업 경험과 KAIST의 세계적인 연구 역량이 결합하여, 미래 산업을 선도할 실질적이고 획기적 연구 성과를 만들 수 있을 것으로 기대한다” 고 말했다.
2025.04.03
조회수 686
신소재공학과 주소연 박사, 세계적 학술지 부편집장 임명
우리 대학 신소재공학과 주소연 박사(지도교수 홍승범)가 한국인 최초로 세계적으로 귄위있는 재료 과학 학술지인 어드밴스드 머티리얼즈(Advanced Materials)의 출판 개발팀(Publishing Development Team) 부편집장(Deputy Editor)으로 임명되었다. 이는 2025년 2월 박사과정 졸업과 동시에 세계적인 학술지의 부편집장으로 임명된 한국 최초 사례이자, KAIST가 배출한 연구자가 탁월한 학문적 영향력과 학술적 소통 역량을 세계적으로 인정받은 성과이다. 어드밴스드 머티리얼즈는 독일 출판사 와일리(Wiley-VCH)에서 발행하는 최상위 재료 과학 및 공학 저널로서 나노소재, 전자재료, 바이오소재 등 첨단 재료 연구를 다루며, 1989년 창간 이후 지속적으로 높은 영향력을 유지하고 있다. 학술지의 부편집장은 단순히 논문을 검토하는 역할을 넘어 전 세계 연구자들과 소통하며 학문적 흐름을 조정하는 핵심적인 역할을 하는 중요한 직책이다. 이러한 점에서 주소연 박사의 임명은 한국의 젊은 연구자에게 국제 학술 네트워크에서 중요한 임무를 부여했음을 보여주며, 동시에 한국 연구자의 글로벌 무대에서 높아진 위상을 증명하는 사례라고 볼 수 있다. 우수한 성적으로 KAIST 학사과정을 마친 후, 단 4년 만에 석·박사 통합과정을 마친 주 박사는 데이터 기반 재료 분석 기법을 연구하며, 원자간력 현미경(Atomic Force Microscope, AFM) 기술과 컴퓨터 비전 및 머신러닝을 활용한 재료 특성화 및 분석 기술을 개발하는 데 집중했다. 특히, 주 박사는 박사과정 중 미국 오크리지 국립연구소(Oak Ridge National Laboratory)에서 6개월간 AI 기반 현미경 분석 기술 연구에 참여했다. 또한, 어드밴스드 사이언스(Advanced Science), 에이피엘 머티리얼즈(APL Materials) 등 저명한 국제 학술지에 제1저자 논문 5편과 공동저자 논문 5편을 발표하며 학술적 성과를 쌓았다. 주소연 박사는“KAIST에서 경험한 다양한 연구를 통해 전 세계 학문 트렌드를 반영하며 연구자들과 적극 소통하여 보다 효과적으로 연구 결과를 공유할 수 있는 부편집장이 되어 학술지 발전에 기여하고 싶다”라는 포부를 밝혔다. 홍승범 지도교수는“주소연 박사가 매우 자랑스럽고 주 박사가 그동안 보여줬던 국제적 감각과 연구에 대한 열정은 이번 부편집장 역할을 통해 학계의 연구자들 뿐만 아니라 대중들과의 소통으로 이어져 과학기술 혁신을 크게 기여할 것이라 생각한다.”고 전했다.
2025.02.21
조회수 3210
뼈처럼 사용할수록 더 강해지는 신소재 개발
아파트 건물, 차량 등을 구성한 재료는 반복 하중을 받으면 시간이 지남에 따라 성능이 저하되어 고장과 파괴가 발생한다. 한미 공동연구진이 뼈에 하중이 가해지면 내부의 피로부터 미네랄이 합성되어 골밀도를 증가시키는 원리에서 영감을 얻은 생체모방기술을 이용하여 사용할수록 단단해지는 신소재를 개발하는데 성공했다. 우리 대학 신소재공학과 강성훈 교수 연구팀이 존스홉킨스 대학, 조지아 공과대학과 공동연구를 통해 뼈가 운동을 하면 더 강해지는 것과 같이 반복적으로 사용할수록 더욱 강해지는 신소재를 개발했다고 20일 밝혔다. 강성훈 교수 연구팀은 기존의 재료가 반복적으로 사용할수록 성능이 저하되는 문제를 해결하고자 뼈가 운동과 같이 응력이 가해졌을 때 세포의 작용에 의해 미네랄을 형성해서 더욱 강해지는 특성에서 영감을 받아, 세포의 작용에 의존하지 않고도 응력을 가하면 스스로 미네랄을 합성해 더욱 강해져 다양한 응용 분야에서 사용이 가능할 것으로 기대되는 신소재를 개발했다. 연구팀은 세포의 작용을 대체하기 위해서 힘을 많이 가할수록 더 많은 전하를 생성하는 다공성 압전(힘을 전기로 변환하는 작용) 바탕재를 만든 후 그 안에 피와 유사한 미네랄 성분을 갖는 전해질을 넣은 복합재료를 합성했다. 그리고 이 재료에 주기적인 힘을 가한 후 재료의 물성 변화를 측정한 결과, 응력의 빈도와 크기에 비례해서 재료의 강성이 향상되고 아울러 에너지 소산 능력도 향상되는 결과를 보였다. 이러한 특성을 갖는 이유는 미네랄이 반복적인 응력에 의해 다공성 재료 내부에 형성되고 커다란 힘이 가해졌을 때는 파괴되면서 에너지를 소산시키고 다시 반복적인 응력을 가하면 미네랄이 다시 형성되기 때문임을 마이크로 CT를 이용한 내부 구조 촬영을 통해 밝혀냈다. 이는 기존의 재료들이 반복적으로 사용할수록 강성과 충격 흡수 능력이 감소되는 것과 달리 사용할수록 강성과 충격 흡수 능력이 동시에 향상되는 특성을 보여 주었다. 또한 이 재료는 가해지는 응력의 크기와 빈도에 비례해서 특성이 향상되기에 구조물의 용도에 적합한 기계적 물성 분포를 갖도록 자가 조정이 가능하며 자가 치유 능력을 갖고 있다. 강성훈 교수는 “이번 연구를 통해서 개발된 신소재는 기존 재료에 비해 반복적으로 사용할수록 강성과 충격 흡수가 잘되는 특성을 가지게 되므로 인공 관절 뿐만 아니라, 항공기, 선박, 자동차, 구조물 등 다양한 분야에 원리가 응용될 수 있을 것으로 기대된다”라고 말했다. 강성훈 교수가 교신저자로 발표한 이번 연구는 국제 학술지 `사이언스 어드밴시즈(Science Advances)' 2월 11권 6호에 출판됐다. (논문명 : A material dynamically enhancing both load-bearing and energy-dissipation capability under cyclic loading) DOI:10.1126/sciadv.adt3979 한편 이번 연구는 한국연구재단 해외우수과학자유치사업 (Brain Pool Plus)의 지원을 받아 존스홉킨스대학 극한재료연구소와 조지아 공과대학과 공동연구로 수행됐다.
2025.02.20
조회수 1884
초경량·고강도 동시 갖춘 첨단 신소재 개발
최근 자동차, 항공, 모빌리티 등 첨단 산업에서는 경량화와 동시에 우수한 기계적 성능을 갖춘 소재에 대한 수요가 증가하고 있다. 국제 공동연구진이 나노 구조를 활용한 초경량 고강도 소재를 개발하여 향후 맞춤형 설계를 통해 다양한 산업에 응용 가능성을 제시했다. 우리 대학 기계공학과 유승화 교수 연구팀이 토론토 대학(Univ. of Toronto) 토빈 필레터 교수(Prof. Tobin Filleter) 연구팀과 협력해, 높은 강성과 강도를 유지하면서도 경량성을 극대화한 나노 격자 구조를 개발했다고 18일 밝혔다. 연구팀은 이번 연구에서 격자 구조의 보(beam) 형상을 최적화해 경량성을 유지하면서도 강성과 강도를 극대화하는 방안을 모색했다. 특히, 다목적 베이지안 최적화(Multi-objective Bayesian Optimization) 알고리즘*을 활용해 인장 및 전단 강성 향상과 무게 감소를 동시에 고려하는 최적 설계를 수행했다. 기존 방식보다 훨씬 적은 데이터(약 400개)만으로도 최적의 격자 구조를 예측하고 설계할 수 있음을 입증했다. *다목적 베이지안 최적화 알고리즘: 여러 목표를 동시에 고려해 최적의 해결책을 찾는 방법으로, 불확실도가 있는 상황에서도 효율적으로 데이터 수집과 결과 예측을 반복하며 최적화를 진행 연구팀은 더 나아가, 나노 스케일에서는 크기가 작아질수록 기계적 특성이 향상되는 효과를 극대화하기 위해 열분해 탄소(pyrolytic carbon) 소재*를 활용해 초경량·고강도·고강성 나노 격자 구조를 구현했다. *열분해 탄소 소재: 높은 온도에서 유기물을 분해해 얻는 탄소 물질로, 내열성과 강도가 뛰어나 다양한 산업에서 사용 예를 들어, 고온에서도 변형되지 않는 코팅재로 활용되어 반도체 장비나 인공 관절 코팅에 쓰임 이를 위해 이광자 중합(two-photon polymerization, 2PP) 기술*을 적용해 복잡한 나노 격자 구조를 정밀하게 제작했으며, 기계적 성능 평가 결과 해당 구조가 강철에 버금가는 강도와 스티로폼 수준의 경량성을 동시에 갖추고 있음을 확인했다. *이광자 중합 기술: 레이저 빔을 이용해 특정 파장의 두 개의 광자가 동시에 흡수될 때만 중합 반응이 일어나도록 하는 원리를 기반으로 하는 첨단 광학 제조 기술 또한, 멀티포커스 이광자 중합(multi-focus 2PP) 기술을 이용해 나노스케일의 정밀도를 유지하면서도 밀리미터 스케일의 구조물 제작이 가능함을 연구팀은 입증했다. 유승화 교수는 “이번 기술은 기존 설계 방식의 한계로 지적되던 응력 집중 문제를 3차원 나노 격자 구조를 통해 혁신적으로 해결함으로써, 초경량성과 고강도를 동시에 구현한 신소재 개발에 중요한 진전을 이루었다”라고 말했다. 이어 유 교수는 “데이터 기반 최적화 설계와 정밀 3D 프린팅 기술을 융합한 이 기술은 항공우주 및 자동차 산업의 경량화 수요에 부응할 뿐만 아니라, 맞춤형 설계를 통한 다양한 산업 응용 가능성을 열어갈 것으로 기대된다”라고 강조했다. 이번 연구는 피터 설레스 박사(Dr. Peter Serles)와 KAIST 여진욱 박사가 공동 제1 저자로 연구를 주도했으며, 유승화 교수와 토빈 필레터 교수가 교신 저자로 참여했다. 연구 결과는 세계적인 국제 학술지인 ‘어드밴스드 머터리얼즈(Advanced Materials)’에 2025년 1월 23일 게재됐다.(논문 제목: Ultrahigh Specific Strength by Bayesian Optimization of Lightweight Carbon Nanolattices) DOI: https://doi.org/10.1002/adma.202410651 이번 연구는 과학기술정보통신부에서 지원하는 다상소재 혁신생산공정 연구센터 과제(ERC사업)와 식품의약품안전처의 M3DT(의료기기 디지털 개발도구) 과제, KAIST 국제협력사업의 지원을 받아 수행됐다.
2025.02.18
조회수 1790
KAIST-Nature, ‘2025 네이처 컨퍼런스' 공동 개최
인공지능 차세대 반도체, 자율 실행 실험실 (Self-Driving Lab), 소재 개발 자율 로봇(Robotics for Autonomous Materials Development) 등 최신 연구 동향과 네이처 편집위원들을 만나 토론을 할 수 있는 국제행사가 KAIST에서 열린다. 우리 대학이 2025년 2월 5일부터 7일까지 3일간 대전 KAIST 본원 학술문화관에서 ‘2025 네이처 컨퍼런스’를 개최한다고 4일(월) 밝혔다. 국제학술지 네이처와 공동으로 개최하는 이번 행사에서는 5일 네이처 인텍스(Nature Index)와 정책포럼으로 시작하여 6~7일은 ‘인공지능을 위한 신소재, 신소재를 위한 인공지능(Materials for AI, AI for Materials)’을 주제로 인공지능과 신소재 분야의 최신 연구 동향을 공유한다. 네이처 인덱스는 올해 특집호에서 한국의 과학기술 분야 연구개발(R&D) 성과가 인력과 예산 투입 대비 놀라울 정도로 낮다는 분석 결과를 발표하였으며, 산학협력 부족, 출생률 저하에 따른 학생 수 감소, 극명한 성별 불균형, 국제협력 부족 등을 원인으로 지적한 바 있다. 이런 분석에 대해서 본 정책포럼에서는 이에 대응할 수 있는 미래의 발전방향을 심도있게 토의하고 위기를 기회로 바꿀 수 있는 방안들을 도출할 예정이다. 네이처 인덱스 정책포럼에는 캐시디 수기모토(Cassidy Sugimoto) 조지아텍 공공정책대학원장, 소타로 시바야바(Sotaro Shibayama) 도쿄대 교수와 함께 존 월시(John Walsh) KAIST 김보정 석좌 초빙교수가 참여한다. 올해 노벨화학상을 받은 단백질 구조를 규명하는 알파폴드(AlphaFold)도 AI를 통한 신소재 개발의 중요성을 보여주는 대표적인 사례로 ‘인공지능을 위한 신소재, 신소재를 위한 인공지능’네이처 컨퍼런스에서는 기조연설자 4명 등 17명의 강연자, 네이처 편집장 4명, 우리 대학 교수 등 총 25명의 전문가가 참여해 기조 강연과 발표, 토론을 진행한다. 기조 강연은 먼저 크리스틴 페르손(Kristin Persson)이 ‘소재 과학을 위한 데이터 기반의 패러다임 활용하기’를 주제로 이야기한다. 그녀는 AI 신소재 분야의 글로벌 석학으로 현재 미국 캘리포니아대 버클리 캠퍼스에 교수로 재직 중이다. 이 외에도 미쉘 시몬스(Michelle Simmons) 뉴사우스웨일즈대 교수, 우화창(Huaqiang Wu) 칭화대 교수, 앤디 쿠버(Andy Cooper) 영국 리버풀대 교수 등 쟁쟁한 석학들이 기조연설을 진행한다. 이어지는 발표 주제로는 ▴AI 하드웨어 ▴신소재 개발을 위한 AI 도구들 ▴자율 실행 실험실 (Self-Driving Lab) 소재 기술 ▴ 신소재 개발 자율 로봇 (robotics for Autonomous Materials Development) ▴인공지능을 위한 2차원 소재 ▴인공지능을 위한 퀀텀 소재 ▴인공지능을 위한 신경망 컴퓨팅 기술 등이다. 또한, 논문 초록 접수자 중 우리 대학과 네이처가 우수자를 선정해 발표 기회를 주는 숏 토크(Short talk) 시간을 갖는다. 컨퍼런스 마지막 순서로 시상식을 열어 세션 참가자 중 최우수자를 시상한다. 아울러, 네이처 편집자 4명이 참석해 우리 대학 교수진 등 주요 참석자들과 1대 1 면담을 진행하고, 이를 통해 최신 연구 방향을 논의하며 상호 네트워크 형성의 시간을 가질 예정이다. 구체적으로 크리스티나 카레(Kristina Kareh) 네이처 선임 편집장, 스테판 쉐블린(Stephen Shevlin) 네이처 머티리얼스 선임 편집장, 올가 부부노바(Olga Bubnova) 네이처 리뷰 전기 전자부문 수석 편집장, 실비아 콘티(Silvia Conti) 네이처 리뷰 전기 전자부문 부편집장 등이 참석한다. 네이처 인덱스 정책포럼을 기획한 과학기술정책대학원 우석균 교수와 이다솜 교수는 “이번 네이처 인덱스 정책 포럼을 통해 보다 근본적인 한국 R&D 시스템과 연구개발 환경의 장단점을 심도 있게 분석하고 건설적인 방안을 모색하는 데 크게 기여할 수 있기를 바란다”라고 말했다. 이어 신병하 신소재공학과 학과장은 “이번 행사를 통해 미래 신소재 연구방법론을 고민하는 연구자와 학생에게 새로운 동기부여의 장이 되길 바란다”라고 말했다. 전체 행사를 총괄하고 있는 홍승범 교무처장은 “우리 대학과 네이처의 협업을 통한 이번 컨퍼런스는 국내 연구진의 글로벌 네트워크 구축과 국제 연구 협력에 많은 도움이 될 것이며, 앞으로 한국의 과학기술 성과가 국제적으로 한층 더 드러날 수 있도록 깊이있는 토론을 진행할 것이다”이라고 전했다. 영어로 진행되는 이번 컨퍼런스는 재료과학·물리학·화학 분야의 연구와 산업 종사자는 누구나 참여할 수 있고, 참가 등록비는 일반인 800달러(조기등록 700달러), 학생 350달러(조기 등록 250달러)이다. 조기 등록 마감일은 2024년 11월 8일, 최종 등록 마감일은 2025년 1월 31일이다. 컨퍼런스 참가 등록은 네이처 컨퍼런스 홈페이지(https://conferences.nature.com) 에서 가능하며 기타 문의는 우리 대학 신소재공학과 행정팀(042-350-3304/ poongkum@kaist.ac.kr)으로 하면 된다.
2024.11.04
조회수 5319
김상욱 교수, 세계 최대 두 학회 의장으로 동시 선정
우리 대학 신소재공학과 김상욱 교수가 미국재료학회(Materials Research Society, 이하 MRS) 2025년 봄 학회 의장(Meeting Chair)직과 함께 유럽재료학회(European-Materials Research Society, 이하 E-MRS)의 2025년 가을 학회 의장으로 활동하게 되었음을 24일 밝혔다. 신소재 분야 세계 최대 규모의 이 두 학회는 인공지능, 반도체, 에너지, 지속성, 헬스케어 등 인류가 당면한 난제를 신소재 과학기술의 발전을 통해 해결하기 위한 다양한 아이디어들을 논의한다. MRS는 1973년 미국에서 설립되어 전 세계 13,000명 이상 신소재 연구 관계자들이 회원으로 참여하고 있으며, 학술기관이나 산업체의 글로벌 네트워크에 폭넓게 기여하고 있다. 한편, E-MRS는 1983년 미국 MRS 학회에 참석했던 유럽의 신소재 분야 과학자들에 의해 유럽과 더 나아가 인류 발전에 필요한 기초과학과 산업간 연결 및 커뮤니티를 강화하기 위해 설립됐다. 50개 이상 국적의 회원들을 보유한 E-MRS는 봄 학회는 프랑스 스트라스부르, 가을학회는 폴란드 바르샤바에서 개최되며 동·서유럽의 학술적 교류 및 융합을 촉진하는 취지를 가지고 있다. 2025년 E-MRS 가을학회의 경우, 특별히 분자조립 나노 패턴(Directed Self-Assembly, 이하 DSA) 관련 연구자들로 의장단이 조직됐다. 최근 세계적으로 극자외선(EUV) 반도체 리소그래피의 한계를 극복하기 위해 DSA의 중요성이 새롭게 인식되고 있기 때문이다. 김 교수는 2003년 태동기였던 DSA 분야의 고질적 난제였던 분자조립 나노 패터닝의 결함(defect) 문제를 세계 최초로 해결한 연구자다. 김 교수는 나노소재의 자기조립제어 분야에서 그간 290여 편의 SCI 학술지 논문 발표, 20여 건의 국제 특허 획득, 나노소재 실용화를 위한 창업 활동 등 국제적으로 인정받는 원천성이 높은 연구 업적을 인정받아 이 같은 역할을 제안받게 됐다. MRS와 E-MRS의 의장을 동시에 맡는 것은 전 세계적으로도 흔치 않다. 이에 대해 김상욱 교수는, “신소재 분야의 국제적인 교류를 바탕으로 DSA 기술 혁신과 더불어 신소재의 가능성과 실용화를 촉진하기 위해 두 학회를 성공적으로 주최하겠다”라는 소감을 밝혔다. 김상욱 교수는 KAIST에서 화학공학 학사, 석박사 학위를 취득했다. 미국 위스콘신대 박사후연구원을 거쳐 2004년부터 신소재공학과 교수로 재직 중이며 현재 KAIST 나노융합연구소 소장, 인권윤리센터 센터장을 겸임하고 있다.
2024.06.24
조회수 4324
이창섭 학부생, 신소재공학과에 1천80만 원 기부
우리 대학 신소재공학과에 재학 중인 이창섭 학부생이 지난달 30일 1천 80만 원의 발전기금을 소속 학과에 기부했다. "과대표와 학생회장을 역임하며 학과에 대한 애정으로 기부를 결심했다"는 이창섭 학생은 "재학생의 기부 소식이 교수님들이나 동문 선배님들께 알려져 더 많은 기부금 유치로 이어졌으면 좋겠다"라는 바람도 함께 전했다. 이창섭 학생의 기부금은 신소재공학과가 추진 중인 인공지능 기반의 소재연구소인 'MRL KAIST' 신축을 위해 사용될 예정이다. 유년기부터 부모님의 영향을 받아 10년 넘게 구호단체에 기부를 해왔다는 이창섭 학생은 우리 대학에 입학한 뒤 새내기 시절부터 학교를 위한 정기기부를 실천하고 있다. “제가 한 달에 내는 3만 원은 우리 대학 학생들의 평균적인 과외 시급인데, 한 달 중 한 시간 정도를 KAIST를 위해 투자하고 싶었다”라고 말했다. 또한, 개인적인 정기기부에서 그치지 않고 '학생들이 직접 기금을 모아 학생들의 삶에 가장 필요한 곳, 가장 개선이 시급한 곳에 쓸 수 있다면 학생들의 애교심과 주인의식이 높아질 것'이라는 제안을 학교 측에 전달해 동아리 설립까지 추진했다. KAIST와 Donation을 합친 '카이네이션'이란 이름의 기부 동아리를 만들고 크고 작은 이벤트를 열어 학교와 지역사회에 기부하는 문화를 전파하는 중이다. 이창섭 학생은 "신소재공학과는 학생을 세계 최고의 재료공학자로 길러주는 요람 같은 곳인 만큼 재학생들이 학과 발전을 위해 나중이 아닌 지금부터 조금씩 기부를 시작한다면, 학과와 나의 가치가 함께 올라가는 밑거름이 될 것"이라고 강조했다. 학부 4학년에 재학 중인 이창섭 학생은 "대학원에 진학해 인공지능으로 신소재를 발굴하고, 시뮬레이션으로 그 성능을 예측하며, 로봇이 24시간 실제 합성 실험을 하는 시스템을 구축하고 싶다"라는 포부를 밝히고 "인류가 필요로 하는 에너지 소재·친환경 고효율 촉매 등을 빠르게 만들어 내는 과학자가 되고 싶다"라고 덧붙였다. 이와 함께 "소재를 개발하는 회사를 창업하고 사업가로도 성공해 내가 좋아하고 사랑하는 학과와 학교에 1,000억 원을 기부하는 사람이 되고 싶다는 꿈도 있다"라고 밝혔다. 신병하 신소재공학과장은 "학부생이 거액을 학과에 기부해 줘서 깜짝 놀랐다"라며, "이창섭 학생의 실천이 가져다준 감동이 더 큰 기부의 물꼬를 트는 시작점이 되길 바라며, 모교를 아끼고 도와주는 분들에 보답하고자 학과 구성원 모두가 더욱 노력하겠다"라고 말했다. 한편, 우리 대학 신소재공학과는 '2024년 QS 세계대학평가 전공별 순위'에서 각각 세계 21위와 국내 1위를 차지했다.
2024.05.27
조회수 5172
체온으로 부드러워지는 전자잉크 최초 개발
차세대 웨어러블 및 임플란터블 기기, 의료기기, 로보틱스 등 다양한 분야에 활용될 체온에 따라 부드럽게 변할 수 있는 전자잉크를 최초로 개발하였다. 우리 대학은 전기및전자공학부 정재웅 교수 연구팀이 신소재공학과 스티브박 교수 연구팀과 공동연구를 통해 작은 노즐을 통한 직접 잉크 쓰기 방식으로 고해상도 프린팅이 가능하고 체온에 의해 부드러워져 인체 친화적 바이오 전자소자 구현을 가능하게 하는 액체금속 기반 전자잉크를 최초로 개발했다고 6일 밝혔다. 최근 웨어러블 및 임플란터블 생체 소자와 소프트 로보틱스 분야에서는 부드러운 사람 피부나 조직에 적용돼 건강 상태를 모니터링하고 질환을 치료하는 기술이 활발히 연구되고 있다. 기존 의료기기 예를 들어보면, 딱딱한 형태의 의료기기인 경우 부드러운 피부와의 강성도 차이로 인해 피부 부착 시 불편함을 야기하거나 조직 삽입 시 염증 반응을 유발할 수 있다. 반면, 피부처럼 부드러운 유연한 의료기기는 피부나 조직에 적용 시 우리 몸의 일부처럼 이질감 없이 사용될 수 있지만, 부드러운 특성으로 인해 정교한 핸들링을 어렵게 한다. 연구팀은 이러한 고정된 강성을 갖는 기존 바이오 전자기기의 한계를 극복하기 위해, 상온에서는 단단하여 손쉬운 핸들링으로 인체 적용을 용이하게 하고, 피부 부착 또는 조직 내 이식 후에는 체온에 의해 부드럽게 변하여 조직의 일부처럼 함께 움직일 수 있는 전자 회로 제작을 가능하게 하는, 고해상도 패터닝이 가능한 액체금속 갈륨 기반 전자잉크를 개발했다. 이 전자 잉크의 핵심 소재인 갈륨은 금속임에도 불구하고 미온(29.76 ℃)에서 녹는 점을 가져 쉽게 고체와 액체 간의 상태 변화가 가능하고 뛰어난 전기전도성과 무독성을 가진다. 연구팀은 또한 기존 갈륨의 높은 표면장력과 낮은 점도 문제를 해결함으로써, 고해상도 프린팅이 가능한 전자잉크를 구현했다. 개발된 잉크는 상용회로도선 정도의 딱딱한 상태와 피부조직처럼 부드러운 상태 간의 뛰어난 가변 강성률, 빠른 강성 변화, 높은 열전도율, 그리고 우수한 전기전도성을 가진다. 이 전자잉크는 3D 프린팅을 활용해 사용자 맞춤형 전자소자 제작도 가능하게 한다. 연구팀은 이 기술을 통해 초박막 광 혈류측정 전자 피부센서와 무선 광전자 임플란트 장치를 제작했다. 이 기기들은 상온(25℃)에서는 딱딱하여 다루기 쉬운 반면, 체온(~36.7℃)에 노출되면 부드럽게 변환돼 피부나 조직에 적용 시 기계적 스트레스를 주지 않고 조직 변형에 순응하며 안정적으로 동작하는 게 가능하다. 사용 후 인체에서 제거 시 다시 딱딱한 형태로 변형될 수 있어 재사용을 용이하게 한다. 위와 같은 특성은 다양한 웨어러블 및 임플란터블 장치에 폭넓게 활용될 수 있을 것으로 기대된다. 정재웅 교수는 "체온에 반응해 강성을 변환할 수 있고 고해상도 프린팅이 가능한 전자잉크는 기계적 특성 변환을 필요로 하는 다목적 전자기기, 센서, 로봇 기술뿐만 아니라 의료 기기 분야에서 고정된 형태를 갖는 기존 전자기기의 한계를 극복해 다양한 새로운 가능성을 열 수 있을 것ˮ이라고 말했다. 우리 대학 신소재공학부 권도아 학사과정과 전기및전자공학부 이시목 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)'에 2월 28일 字에 게재됐다. (논문명 : Body-temperature Softening Electronic Ink for Additive Manufacturing of Transformative Bioelectronics via Direct Writing) 한편 이번 연구는 과학기술정보통신부에서 추진하는 한국연구재단 전자약 기술개발사업, 기초연구실 지원사업, 중견연구자 지원사업, 한국전자통신연구원 개방형융합선행연구의 지원을 받아 수행됐다.
2024.03.06
조회수 6928
강한 빛에서 0.02초 내에 새로운 촉매를 합성하다
대면적의 빛을 활용하고 대기 중의 환경에서 0.02초 이내에 연료전지 등 차세대 에너지 저장 및 발전에 광범위하게 적용되는 고엔트로피 촉매 및 단일원자 촉매의 합성을 세계 최초로 구현했다. 우리 대학 전기및전자공학부 최성율 교수 연구팀과 신소재공학과 김일두 교수 연구팀이 공동연구를 통해 강한 빛을 다양한 탄소 기반 소재에 조사해, 0.02초 이내에 나노입자 촉매와 단일원자(single atom) 촉매를 진공 시설이 없는 대기 조건에서 합성하고 우수한 촉매 성능을 구현하는데 성공했다고 6일 밝혔다. 연구팀은 2022년 4월 제논 램프 빛을 조사해 금속산화물의 상(phase) 변화와 표면에 촉매 입자가 생성될 수 있음을 최초로 밝혔고 그 후속으로 소재의 광열효과를 유도하는 합성법에 대한 연구를 진행했다. 이에 초고온(1,800~3,000oC)과 빠른 승/하온 속도(105 oC/초)를 통해 기존의 합성법으로는 구현할 수 없는 촉매 입자를 합성하는 데 성공했다. 이번 기술은 대면적의 빛을 활용하고 대기 중의 환경에서 매우 빠른 시간(0.02초 이내)에 고엔트로피 촉매 및 단일원자 촉매의 합성을 세계 최초로 구현한 기술이다. 광열효과가 뛰어난 소재(탄소 나노섬유, 그래핀 산화물, 맥신(Mxene))에 다종 금속 염을 고르게 섞어주고 빛을 가하게 되면 초고온 및 매우 빠른 승/하온 속도를 기반으로 최대 9성분계의 합금 촉매를 합성할 수 있음을 밝혔다. 합금 촉매는 연료전지, 리튬-황전지, 공기 전지, 물 분해 수소 생산 등 저장 및 발전에 광범위하게 적용되며, 비싼 백금의 사용량을 획기적으로 줄이는데 유리하다. 연구팀은 광열효과를 통해 단일원자 촉매의 신규 합성법에도 성공했다. 그래핀 산화물에 멜라민 및 금속염을 동시에 혼합하여 빛을 조사하게 되면 단일원자 촉매가 결합된 질소 도핑 그래핀을 합성할 수 있음을 최초로 밝혔다. 백금, 코발트, 니켈 등의 다양한 단일원자 촉매가 고밀도로 결착되어 다양한 촉매 응용 분야에 활용할 수 있다. 최성율 교수와 김일두 교수는 "강한 빛을 소재에 짧게(0.02초 이내) 조사하는 간편한 합성기법을 통해 단일 원소 촉매부터 다성분계 금속 나노입자 촉매의 초고속, 대면적 합성을 가능하게 하는 새로운 촉매 합성 공정 플랫폼이 될 것으로 기대된다ˮ고 밝혔다. 특히, "매우 빠른 승/하온 속도를 기반으로 기존에 합성하기 어려웠던 고엔트로피 다성분계 촉매 입자를 대기 중 조건에서 균일하게 합성해 고성능 물 분해 촉매로 응용했다는 점에서 매우 의미있는 연구 결과이며, 응용 분야에 따라 촉매 원소의 크기와 조성을 자유롭게 조절해 제작할 수 있는 신개념 광 기반 복합 촉매 소재 합성 플랫폼을 구축했다ˮ고 밝혔다. 고엔트로피 촉매 제조 관련 연구는 공동 제1 저자인 차준회 박사(KAIST 전기및전자공학부, 現 SK하이닉스 미래기술연구원), 조수호 박사(KAIST 신소재, 現 나노펩 선임연구원), 김동하 박사(KAIST 신소재, 현 MIT 박사후 연구원, 한양대학교 ERICA 재료화학공학과 교수 임용)의 주도하에 진행됐으며, 최성율 교수(KAIST 전기및전자공학부), 김일두 교수(KAIST 신소재), 정지원 교수(KAIST 신소재, 現 울산대학교 신소재 교수)가 교신저자로 참여했다. 단일원자 촉매 제조 관련 연구는 공동 제1 저자인 김동하 박사와 차준회 박사의 주도하에 진행됐으며, 김일두 교수, 최성율 교수가 교신저자로 참여했다. 이번 연구 결과는 나노 분야의 권위적인 학술지인 `어드밴스드 매트리얼즈(Advanced Materials)' 11월호에 속표지 논문으로 선정되었으며, `에이씨에스 나노(ACS Nano)' 12월호에 속표지 논문으로 출간 예정이다. 한편 연구는 한국연구재단 중견연구자지원 사업, 과학기술정보통신부와 산업통상자원부 사업, 한국연구재단 미래소재디스커버리 사업의 지원, 과학기술정보통신부 반도체-이차전지 인터페이싱(InterFacing) 플랫폼 기술개발사업을 받아 수행됐다.
2023.12.06
조회수 8839
그린수소 생산에 탁월한 전해질 신소재 개발
그린수소는 풍력, 태양광등 재생에너지를 이용하여 생산과정에서 이산화탄소 배출이 전혀 없는 궁극적인 청정 에너지원으로 각광을 받고 있다. 이러한 그린수소를 활용/생산하는 연료전지, 수전해 전지, 촉매 분야에 산소 이온성 고체전해질이 널리 사용되고 있다. 이러한 산소 이온 전도체들은 주로 700oC 이상의 고온에서 활용되는데 이 때문에 소자 내의 다른 요소들과의 바람직하지 않은 화학반응, 소재 응집, 열충격이 발생하거나 높은 유지비용이 요구되는 등의 문제가 발생하고 있다. 우리 대학 기계공학과 이강택 교수 연구팀이 미국 메릴랜드 대학 에릭 왁스만(Eric Wachsman) 교수 연구팀과 공동연구를 통해 기존 소재 대비 전도성이 140배 높은 산소 이온 전도성 고체전해질 개발에 성공했다고 22일 밝혔다. 개발된 신소재는 비스무트 산화물 기반으로 400oC에서 기존 지르코니아 소재의 700oC에 해당하는 높은 전도성을 보이며 중저온(600oC) 영역대에서 140배 이상 높은 이온전도도 나타냈다. 비스무트 산화물 산소 이온 전도체 소재는 중저온 영역대에서 상전이로 인해 이온전도도가 급격하게 감소한다는 문제가 있었으나, 이번 연구에서 개발된 산소 이온 전도체 신소재는 도핑을 통해 중저온 영역대에서도 1,000시간 이상 높은 이온전도도를 유지해 상용화 가능성을 크게 높였다. 또한, 공동연구팀은 원자단위 시뮬레이션 계산화학을 통해 도핑된 원소가 산소 이온 전도체 신소재의 성능 및 안정성을 향상하는 메커니즘을 규명했다. 개발된 신소재는 고체산화물 연료전지(SOFC)에 적용돼 학계에 보고된 소자 중 가장 높은 수준의 전력 생산(2.0 W/cm2, 600oC) 능력을 보였다. 그뿐만 아니라, 고체산화물 전해전지(SOEC)에도 적용돼 기존 대비 2배 높은 단위면적당 15.8 mL/min의 탁월한 그린 수소 생산 능력을 보이며, 해당 신소재의 실제 소자에의 적용 가능성을 증명했다. 이강택 교수는 “이번 연구에서 개발된 산소 이온 전도체 신소재는 중저온 영역대에서도 안정적으로 높은 전도도를 유지할 수 있어 세라믹 소자의 높은 작동온도를 획기적으로 낮추는 데 활용될 것으로 기대되며, 탄소중립 실현을 위한 에너지/환경 소자 상용화에 본 기술을 적용할 수 있을 것”이라며 연구의 의미를 강조했다. 기계공학과 유형민 박사과정, 정인철 박사, 장승수 박사과정이 공동 제1 저자로 참여했으며 한국에너지기술연구원 이찬우 박사 연구팀이 공동으로 참여한 이번 연구는 전 세계적으로 권위있는 국제 학술지인 ‘어드벤스드 머티리얼스(Advanced Materials)’ (IF : 29.4) 10월 17일 字 온라인판에 게재됐다. (논문명 : Lowering the Temperature of Solid Oxide Electrochemical Cells Using Triple-doped Bismuth Oxides). 한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업과 나노 및 소재 기술개발사업의 지원으로 수행됐다.
2023.11.22
조회수 6981
인간의 뇌를 모방한 3차원 집적 뉴로모픽 반도체 개발
우리 대학 전기및전자공학부 최양규 교수, 명현 교수, 그리고 신소재공학과 이건재 교수 공동연구팀이 ‘인간의 뇌를 모방한 3차원 집적 뉴로모픽 반도체’를 개발하는 데에 성공했다. ‘인간의 뇌를 모방해 동일평면 상에 수평 집적한 뉴로모픽 반도체’를 개발(2021년 Science Advances 게재)하는 데에 성공했던 연구팀은, 뉴런 소자와 시냅스 소자를 상하부에 3차원 방식으로 수직 집적해, 보다 높은 집적도와 전력 효율을 가지는 뉴로모픽 반도체를 구현할 수 있음을 처음으로 보였다. 전기및전자공학부 졸업생 한준규 박사, 전기및전자공학부 이정우 박사과정과 김예은 박사과정, 그리고 신소재공학과 김영빈 박사과정이 공동 제1저자로 참여한 이번 연구는 저명 국제 학술지 ‘Advanced Science’ 2023년 9월 온라인판에 출판됐다. (논문명 : 3D Neuromorphic Hardware with Single Thin-Film Transistor Synapses Over Single Thin-Body Transistor Neurons by Monolithic Vertical Integration). ‘Advanced Science’는 재료과학, 물리학, 화학, 생명과학, 엔지니어링 분야의 기초 및 응용 연구를 다루는 학제 간 오픈 액세스 저널이다. (impact factor : 17.521) 뉴로모픽(neuromorphic) 하드웨어는, 인간의 뇌가 매우 복잡한 기능을 수행하지만 소비하는 에너지는 20와트(W) 밖에 되지 않는다는 것에 착안해, 인간의 뇌를 모방해 인공지능 기능을 하드웨어로 구현하는 방식이다. 뉴로모픽 하드웨어는 기존의 폰 노이만(von Neumann) 방식과 다르게 인공지능 기능을 초저전력으로 수행할 수 있어 많은 주목을 받고 있다. 뉴로모픽 하드웨어를 구현하기 위해서는 생물학적 뇌와 동일하게 일정 신호가 통합되었을 때 스파이크를 발생하는 뉴런과 두 뉴런 사이의 연결성을 기억하는 시냅스가 필요하다. 연구팀은 단일 박막 트랜지스터(thin-film transistor) 기반 시냅스 소자를 단일 트랜지스터 기반 뉴런 소자 위에 3차원 방식으로 수직 집적해, 높은 집적도와 전력 효율을 가지는 3차원 집적 뉴로모픽 반도체를 개발했다. 아래층 뉴런 소자의 손상 없이 위층 시냅스 소자를 제작하기 위해, 엑시머 레이저 어닐링(excimer laser annealing) 기법을 활용했다. 또한, 아래층 뉴런 소자의 손상 없이 위층 시냅스 소자의 내구성을 향상시키기 위해, 소자 내부의 줄열(Joule heat)을 이용한 자체 어닐링 기법도 제안했다. 이러한 뛰어난 내구성을 바탕으로, 이벤트 카메라(event camera)를 기반으로 제작된 손동작 기반의 수화 (手話) 패턴을 높은 성공률로 인식할 수 있음을 보였다.
2023.09.21
조회수 7275
150% 쭉쭉 늘어나는 전자 섬유 개발
전자 섬유는 최근 각광받고 있는 사용자 친화 웨어러블 소자, 헬스케어 소자, 최소 침습형 임플란터블 전자소자에 핵심 요소로 여겨져 활발하게 연구가 진행되고 있다. 하지만 고체 금속 전도체 필러(Conductive filler)를 사용한 전자 섬유를 늘려서 사용하려 할 경우, 전기전도성이 급격하게 감소해 전기적 성질이 망가진다는 단점이 있다. 우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅, 바이오및뇌공학과 박성준 교수 공동 연구팀이 높은 전도도와 내구성을 가지는 액체금속 복합체를 이용해 신축성이 우수한 전자 섬유를 개발했다고 25일 밝혔다. 전자 섬유의 늘어나지 않는 단점을 해결하기 위해 연구팀은 고체처럼 형상이 고정된 것이 아닌 기계적 변형에 맞춰 형태가 변형될 수 있는 액체금속 입자 기반의 전도체 필러를 제시했다. 액체금속 마이크로 입자는 인장이 가해질 경우에 그 형태가 타원형으로 늘어나면서 전기 저항 변화를 최소화할 수 있다. 하지만 그 크기가 수 마이크로미터이기 때문에, 기존에 이용된 딥-코팅(dip-coating)과 같은 단순한 방법으로 실에 코팅하는 것이 불가능하다. 연구진은 액체금속 입자가 높은 밀도로 실 위에 전달될 수 있고, 블레이드와 기판 사이에서 현탁액의 조성을 실시간으로 바꾸면서 화학적 변성을 통해 액체금속 입자를 실과 접착시킬 수 있는 새로운 방법인 현탁액 전단(suspension shearing) 방법을 통해 이를 해결했다. 추가로 기계적 안정성이 우수한 탄소나노튜브(CNT)가 포함된 액체금속 입자를 한층 더 코팅하는 방식으로, 액체금속 복합체의 기계적 안정성도 확보할 수 있었다. 제작된 신축성 전자 섬유는 추가적인 공정이 필요 없이 우수한 초기전도성을 보였고(2.2x10^6 S/m), 기존의 고체 금속 전도체 기반 섬유들과는 다르게 150% 늘려도 전기저항 변화가 거의 없다. 기계적 안정성도 우수해 반복되는 변형 실험에도 전기적 성질을 유지할 수 있었고, 다양한 전자 부품들과 쉽게 통합될 수 있다. 연구팀은 이를 이용해 실제 상용화된 옷에 다양한 전자회로를 구현했다. 나아가서 연구팀은 액체금속 복합체를 코팅하는 방법이 다양한 실에 호환 가능하고, 재료의 생친화성이 우수하기 때문에, 이를 이용해 신경과학 연구에 사용할 수 있는 섬유형 바이오 전자 섬유를 구현했다. 연구팀은 제안된 코팅 방법을 이용해 기계적 변형에 영향을 받지 않는 뇌 활동 전극, 신경 자극 전극, 다기능성 옵토지네틱 프로브를 제작해 넓은 범용성과 높은 공정 신뢰성을 갖는다는 것을 보였다. 우리 대학 이건희 박사, 이도훈 박사과정, 전우진 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이쳐 커뮤니케이션즈(Nature Communications)' 온라인 판에 7월 13일자 출판됐다. (논문명: Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics) 스티브박 교수는 "옷에 다양한 전자 공학적인 기능을 웨어러블 형태로 구현하는 가능성을 보여준 연구로 최근에 각광받고 있는 환자 편의성을 높인 웨어러블 헬스케어 소자나 최소침습형 임플란터블 전자소자 개발의 새로운 방향성을 제시한 의미있는 결과ˮ 라고 말했다. 한편 이번 연구는 한국연구재단, KAIST의 지원을 받아 수행됐다. 이건희 박사는 포스코청압재단의 지원을 받고 있다.
2023.07.25
조회수 8090
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
>
다음 페이지
>>
마지막 페이지 6