-
미생물로 계란을 만든다고?
우리 연구진이 미생물로 계란의 대체제를 개발하는 논문을 발표해서 화제다. 비동물성 원료를 활용한 계란 대체제 개발을 통해 온실가스 배출 및 폐기물 문제 등을 가져오는 공장식 축산의 문제를 해결하고 손쉽게 단백질 섭취가 가능한 지속가능한 식량 체계 구축에 기여할 수 있을 것으로 기대한다.
우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘미생물 유래 친환경 액상 계란 대체물 개발’논문을 발표했다고 4일 밝혔다.
연구진은 미생물 용해물의 가열을 통해 형성된 젤이 삶은 계란과 유사한 미시적 구조와 물리적인 특성을 가지는 것을 확인하였고, 미생물 유래의 식용 효소나 식물성 재료를 첨가하여 다양한 식감을 구현할 수 있음을 밝혔다. 더 나아가, 액체 상태인 용해물을 이용하여 머랭 쿠키를 굽는 등, 미생물 용해물이 난액을 기능적으로 대체할 수 있음을 규명하였다.
현재까지 비동물성 단백질을 기반으로 한 계란 대체제 개발이 진행돼왔으나, 계란의 온전한 영양을 제공하는 동시에 젤화, 거품 형성 등 난액(卵液)이 요리 재료로서 지니는 중요한 핵심 기능적 특성을 함께 구현하는 대체제는 개발되지 못했다. 이러한 배경에서, 연구진은 단위 건조 질량당 단백질 함량이 육류에 비견될 정도로 많은 미생물 바이오매스를 난액 대체제로 개발하고자 했다.
특히, 인류의 오랜 섭취 경험을 통해 효모, 고초균, 유산균 및 기타 프로바이오틱스 균주 등 다양한 미생물들의 안정성이 검증됐고, 미생물 바이오매스는 생산 시 발생하는 이산화탄소뿐만 아니라 물, 토지 등 요구되는 자원이 적으면서도 고품질의 영양성분을 가지고 있기에, 연구진은 미생물 바이오매스를 대체 난액으로 활용하는 기술을 개발할 수 있다면 지속 가능한 미래 식량자원의 확보에 기여할 수 있을 것으로 기대했다.
하지만 미생물 배양을 통해 회수한 반고체 상태의 미생물 바이오매스를 가열하면 난액과 달리 액상으로 변하는 것이 관찰됐다. 이에 연구진은 계란찜을 만들기 위해선 먼저 계란의 껍데기[난각(卵殼)]를 깨트리고 난액을 모아야 한다는 사실에 착안해 미생물의 세포 구조 중 난각에 상응하는 세포벽과 세포막을 파쇄해 미생물 용해물을 제조했고, 이를 가열할 경우 난액처럼 단백질이 응고돼 젤 형태로 변하는 것을 확인했다.
이상엽 특훈교수는 “영양 측면에서도 우수한 성분들을 갖추고 있어 평소 식량에도 사용될 수 있지만, 특히 미래 장거리 우주여행 식량, 전시 상황 등 긴급 상황 시의 대비를 위한 비상식량 등으로도 활용할 수 있으며, 무엇보다 지속 가능한 식량 체계 확보에 도움이 된다”고 말했다.
이번 논문은 네이처(Nature) 誌가 발행하는 'npj 식품 과학(npj Science of Food)'에 6월 19일자 온라인 게재됐다.
※ 논문명 : Microbial lysates repurposed as liquid egg substitutes
※ 저자 정보 : 최경록(한국과학기술원, 제1 저자), 안다희(한국과학기술원, 제2 저자), 정석영(한국과학기술원, 제3 저자), 이유현(한국과학기술원, 제4 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 5명
이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제책임자 KAIST 이상엽 특훈교수)와 농촌진흥청이 지원하는 농업미생물사업단(단장 장판식 교수)의 ‘미생물 대사시스템 제어를 통한 무기물로부터의 단백질 생산 기술 개발’ 과제 (과제책임자 KAIST 최경록 연구교수) 및 의 지원을 받아 수행됐다.
2024.07.04
조회수 2103
-
미래 식량인 미생물 식품 생산 전략 밝혀
가파른 인구 증가와 기후 변화로 인한 식량 생산성 저하로 인해 전 세계 식량 위기가 고조되고 있다. 더욱이 오늘날의 식량 생산 및 공급 시스템은 인류가 배출하는 총량의 30%에 달할 정도로 막대한 양의 이산화탄소를 배출하며 기후 변화를 가중시키고 있다. 이러한 난국을 타개할 열쇠로서 지속 가능하면서도 영양이 풍부한 미생물 식품이 주목받고 있다.
우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘지속 가능한 원료로부터의 미생물 식품 생산’연구의 방향을 제시하는 논문을 게재했다고 12일 밝혔다.
미생물 식품은 미생물을 이용해 생산되는 각종 식품과 식품 원료를 가리킨다. 미생물의 바이오매스에는 단위 건조 질량당 단백질 함량이 육류에 비견될 정도로 많은 양의 단백질을 함유하고 있으며, 각종 가축이나 어패류, 농작물과 비교해 단위 질량을 생산하는 데 가장 적은 양의 이산화탄소를 배출하고, 필요로 하는 물의 양과 토지 면적 또한 적기 때문에 친환경적이고 지속 가능한 고영양 식량자원이 될 수 있다.
우리 주변에서 가장 쉽게 접할 수 있는 미생물 식품으로는 발효식품을 꼽을 수 있다. 비록 발효식품 내 미생물 바이오매스가 차지하는 비중은 적지만 발효 과정 중 탄수화물과 같이 비교적 영양학적 가치가 낮은 화합물을 소비하며 미생물이 증식함에 따라 단백질이나 비타민 등과 같이 보다 높은 영양학적 가치를 지니는 영양소의 함량이 증진된다.
미생물 배양을 통해 얻은 바이오매스나 배양액으로부터 분리·정제한 각종 식품 화합물 또한 미생물 식품의 한 갈래다. 주변에서 찾아볼 수 있는 예로는 글루탐산나트륨을 비롯한 각종 아미노산과 식품용 단백질·효소, 풍미 화합물, 색소, 생리활성 물질 등이 있다.
마지막으로, 가장 궁극적이며 근본적인 형태의 미생물 식품은 미생물 배양을 통해 생산된 미생물 바이오매스나 추출물 및 이를 이용해 조리한 식품이라고 할 수 있다. 미생물의 바이오매스나 이로부터 추출한 미생물 단백질을 총칭하는 단세포단백질이 대표적인 예라 할 수 있다.
연구진은 이번 논문을 통해 미생물 식품을 보다 지속 가능한 방식으로 생산하는 데 사용할 수 있는 각종 비식용 원료와 이들의 활용 전략을 총망라했다. 더 나아가 해당 원료를 활용해 산업에서 실제로 생산되고 있는 각종 미생물 식품 및 이들의 특징과 함께 지속 가능한 미생물 식품의 생산 및 대중화에 대한 전망 등을 다뤘다.
이번 논문의 제1 저자인 최경록 연구교수는 “여러 지속 가능한 원료로부터 생산된 미생물 식품은 머지않아 우리 식탁에서 흔하게 접하게 될 것”이라고 말했다. 제2 저자인 정석영 박사과정생 역시 “미래의 미생물 식품은 환경에 대한 의무감으로만 소비되는 제한적인 식품이 아닌, 영양과 맛까지 갖춰 소비자들의 선택을 받는 완전식품이 될 것”이라고 말했다. 또한 이상엽 특훈교수는 “우리 자신은 물론 후손들을 위한 지속 가능한 사회를 만들어 나가기 위해 보다 다양한 미생물 식품이 개발되고 대중화될 수 있도록 산·학은 물론 민·관이 더욱 긴밀하게 협력해야 할 때”라고 밝혔다.
이번 논문은 네이처(Nature) 誌가 발행하는 ‘네이처 미생물학(Nature Microbiology)’에 4월 9일 자 온라인 게재됐다.
※ 논문명 : From sustainable feedstocks to microbial foods
※ 저자 정보 : 최경록(한국과학기술원, 제1 저자), 정석영(한국과학기술원, 제2 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 3명
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제책임자 KAIST 이상엽 특훈교수) 및 농촌진흥청이 지원하는 농업미생물사업단(단장 장판식 교수)의 ‘미생물 대사시스템 제어를 통한 무기물로부터의 단백질 생산 기술 개발’ 과제 (과제책임자 KAIST 최경록 연구교수)의 지원을 받아 수행됐다.
2024.04.12
조회수 3891
-
식품의약품안전처와 연구협력 MOU 체결
우리 대학은 16일 오후 식품의약품안전처(처장 오유경)와 식품·의약품·마약류 등 분야에서 연구를 포함한 포괄적인 협력을 강화하는 MOU를 체결했다.
이번 협약을 바탕으로 두 기관은 ▴식품·의약품·마약류 등 분야의 공동연구 발굴·추진 ▴국가연구개발사업 상호협력 및 공동연구 추진 ▴양 기관 교육프로그램 연계·공유 ▴국내외 최신 식·의약 연구 정보·동향 공유 등에 적극적으로 협력할 예정이다.
특히, 'KAIST-원진 세포치료센터(센터장, 김대수)'를 주축으로 뇌 오가노이드(인공장기) 기술을 개발해 약물중독 및 금단증상, 재활에 관해 연구하고 국제적인 표준을 마련할 계획이다.
날로 증가하는 신종 마약의 위협을 신속하게 진단하고 대응하기 위해 우리 대학의 인공지능 기술을 활용해 마약류가 뇌와 행동에 미치는 영향을 초고속으로 정밀 진단할 수 있는 시스템 개발도 진행한다.
이와 함께, mRNA 백신·치료제 기술·플랫폼 개발 등 식품 및 의료 관련 신물질과 제품 안전성에 대한 첨단 평가기술 개발 분야에서도 폭넓게 협력할 예정이다.
오유경 식약처장은 "이번 업무협약을 계기로 식약처와 KAIST가 함께 연구를 수행하게 되어 국민 안전이 한층 더 강화될 수 있을 것으로 기대한다"며 "식약처는 앞으로도 과학적 근거에 기반하여 식품, 의료제품의 안전을 더욱 철저히 관리하겠다"고 말했다.이광형 총장은 "이번 협약이 식약처와 KAIST의 유기적인 협력관계 구축으로 이어져 양 기관이 상호 발전하는 계기가 되길 바란다"며 "앞으로 KAIST의 첨단과학 연구 역량을 바탕으로 식약처와 공동연구를 수행하여 규제과학 전문성을 높이기 위해 지속해서 노력하겠다"고 밝혔다.
2023.10.17
조회수 2648
-
오스틴 기븐스 교수, 농림축산식품부 장관상 수상
우리 대학 어학센터 오스틴 기븐스(Austin Givens) 교수가 지난해 12월 21일 농림축산식품부(장관 정황근) 장관상을 수상했다.
오스틴 기븐스 교수는 2017년부터 우리 대학 어학센터에 재직 중이며, '오스틴! 주는 대로 먹는다(Eating what is Given)'라는 유튜브 채널을 개설해 한국의 음식 문화는 물론 우리 대학을 전 세계에 널리 알리는데 기여하고 있다. 농림축산식품부 관계자는 "오스틴 교수가 유튜브 콘텐츠를 통해 한국 식품외식산업 발전에 이바지한 공로를 인정해 표창을 수상여게 됐다"라고 전했다.
오스틴 교수는 "처음에는 유튜브 채널을 운영하는 것을 적극적으로 알리지 않았는데, 주변에서 많이 응원해줘서 계속 할 수 있었다"라고 전했다. 이어, "한국 음식에 대한 내 열정을 담은 콘텐츠를 계기로 표창까지 받게 되어 매우 기쁘다"라고 소감을 전했다.
◎ 오스틴! 주는 대로 먹는다(Eating what is Given) 유튜브 채널 바로가기 => https://www.youtube.com/@EatingwhatisGiven
2023.02.09
조회수 3224
-
최원호 교수, 플라즈마에 의한 수산기(OH radical) 생성원리 규명
〈 박주영 박사, 최원호 교수, 박상후 박사 〉
우리 대학 원자력및양자공학과 최원호 교수 연구팀이 대기압 플라즈마에서 수산기(OH radical)가 생성되는 원리를 규명하는 데 성공했다.
박상후 박사, 박주영 박사과정 학생이 공동 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘케미컬 엔지니어링 저널(Chemical Engineering Journal)’ 7월 8일 자 온라인판에 게재됐다 (논문명: Origin of Hydroxyl Radicals in a Weakly Ionized Plasma-Facing Liquid).
플라즈마란 강한 전기적 힘으로 인해 기체 분자가 이온과 전자로 나누어지는 상태를 말한다. 특히 대기압 플라즈마는 대기 중에 여러 형태로 플라즈마 효과 및 2차 생성물을 방출하는 장점이 있어 살균, 정화, 탈취 등 에너지 및 환경 분야부터 생의학 분야까지 다양한 연구 및 산업 분야에 활용되고 있다.
다양한 분야에서 시도되는 플라즈마는 물과 밀접한 관련이 있다. 물을 플라즈마로 처리한 방전수를 만들어 농업용수 및 살균수로 사용하기도 하고, 생의학 분야에서도 70%가 수분으로 구성된 인체에 활용하기 위해 플라즈마와 물의 반응에 대해 끊임없이 연구가 진행된다.
그중 수산기는 대표적인 활성 산소종으로, 물과 플라즈마의 반응에서 가장 중요한 역할을 하는 물질이다.
수산기는 산화력이 매우 커 여러 목적으로 활용이 시도되고 있으며, 박테리아 살균의 경우 기존의 살균법인 과산화수소나 오존을 사용할 때보다 수십에서 수백 배 효율이 높은 것으로 2018년 최원호 교수 연구팀에서 밝힌 바 있다.
수산기는 살균뿐 아니라, 수질 정화, 폐수 처리, 세척 등 환경 분야 및 멸균, 소독, 암세포 제거 등 의료 기술에서도 매우 높은 잠재력을 가지고 있다.
그러나 수산기는 대량으로 생성하기가 어렵고 생존 기간이 짧아 플라즈마 기술을 적극적으로 활용하는 데 한계가 있다.
연구팀은 문제 해결을 위해 플라즈마 내에서 기존에 알려진 수산기의 생성 방식 외에 산화질소의 광분해에 의한 생성원리를 규명했다. 더불어 광분해를 촉진시켜 수산기의 생성량을 높이면서 동시에 제어하는 방법을 개발했다.
광분해 방법이란 플라즈마로 생성된 산화질소가 존재하는 물과 플라즈마에 자외선을 추가로 노출해 산화질소가 수산기로 분해되는 과정을 말한다. 연구팀이 개발한 광분해방법은 수산기의 생성 위치를 국한하지 않고, 자외선 노출 위치에 따라 제어할 수 있어 생존 기간이 짧다는 단점을 극복할 수 있다.
최원호 교수는 “이번 연구를 통해 플라즈마 기술에 대한 과학적 이해를 넓히면서 효율적인 플라즈마 기술의 제어 방법을 제시함으로써 농업, 식품, 바이오 의학 등 다양한 분야에 플라즈마 기술이 적극적으로 접목될 수 있는 기반을 마련할 것이다”라고 말했다.
이번 연구는 국가핵융합연구소의 미래선도 플라즈마-농식품 융합기술 개발 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 플라즈마 처리수(PTW)에서 pH와 과산화수소, 아질산염 비율에 따른 수산기 반응 경로
그림2. 대기압 플라즈마 사진 및 수산기 생성경로
2019.08.16
조회수 13271
-
최원호 교수, 플라즈마 내 전자의 가열 원리 규명
〈 최원호 교수, 박상후 연구교수〉
우리 대학 원자력및양자공학과 최원호 교수 연구팀이 약하게 이온화된 플라즈마(weakly ionized plasma)에서 전자가 가열되는 구조와 제어 원리를 규명하는데 성공했다.
플라즈마 내의 모든 반응이 전자로부터 시작된다는 점으로 볼 때 전자의 가열 원리를 규명함으로써 플라즈마를 더욱 자유롭고 다양하게 활용할 수 있을 것으로 예상된다.
이는 대기압 플라즈마 내에 존재하는 자유 전자에 대한 기초 연구 자료로 기존 플라즈마의 활용 및 응용 가능성을 높이는 등 플라즈마 물리학 및 응용기술 발전에 크게 기여할 것으로 기대된다.
박상후 연구교수가 1저자로 참여한 이번 연구는 국제 학술지 ‘사이언티픽 리포트(Scientific Reports)’5월 14일자와 7월 5일자 온라인 판에 연달아 게재됐다. (논문명 : Electron information in single- and dual-frequency capacitive discharges at atmospheric pressure, 단일 및 이중 주파수 대기압 플라즈마의 전자 정보 / Electron heating in rf capacitive discharges at atmospheric-to-subatmospheric pressures, 대기압과 대기압보다 낮은 압력에서 라디오 주파수 플라즈마 내의 전자 가열)
물질의 세 가지 상태인 고체, 액체, 기체와 더불어 ‘물질의 네 번째 상태’라 불리는 플라즈마는 표준 온도 및 압력(25 ℃, 1 기압)의 상태에서는 자연적으로 존재하지 않으나 인위적으로 기체에 에너지를 가하면 플라즈마 상태가 된다.
학계 및 산업계는 활용 목적과 조건에 맞춰 다양한 형태의 플라즈마 발생원을 개발해 사용하고 있다. 특히 대기압 플라즈마는 응용 가능 분야가 다양하고 활용도가 높아 학술적, 산업적 활용성 측면에서 많은 관심을 받고 있다.
일반적으로 플라즈마 내의 다양한 화학적, 물리적 반응은 전자로부터 시작되기 때문에 전자의 밀도와 온도의 시공간적 변화는 아주 중요한 정보이다. 플라즈마 및 가속기 물리학 분야에서 자유 전자의 가열 여부는 과학자들의 관심을 지속적으로 받은 연구 주제이다.
그러나 대기압 조건에서는 자유 전자와 중성기체의 충돌이 빈번하기 때문에 이온화된 플라즈마 내 자유 전자의 밀도와 온도를 측정하는 데에는 한계가 있어 자유 전자의 가열 구조 및 원리를 실험적으로 규명할 수 없었다.
또한 전자 가열의 제어 방법 및 주요 요인에 대한 정보가 부족해 플라즈마의 반응성과 활용성 개선이 제한적이었다.
연구팀은 문제 해결을 위해 전자-중성입자 제동복사(electron-neutral bremsstrahlung)란 기술을 이용해 플라즈마 내 자유 전자의 밀도, 온도를 정확히 진단하고 이를 2차원으로 영상화하는 기술을 개발했다.
연구팀은 개발한 진단 기술을 이용해 대기압 플라즈마에서 수 나노초(10억분의 1초) 단위로 자유 전자의 온도(에너지)를 측정해 전자가 에너지를 얻는 가열 과정의 시공간적 분포 및 근본 원리를 밝히는 데 성공했다.
0.25~1기압 압력구간에서의 전자 온도의 시공간적 분포의 변화를 실험적으로 최초로 확인해 대기압 및 대기압보다 낮은 압력에서 전자가 에너지를 얻는 가열의 기본 원리를 규명했다.
최 교수는 “이 연구 결과는 자유 전자와 중성입자의 충돌이 매우 빈번한 조건에서 발생하는 플라즈마에서의 전자 가열 원리를 학문적으로 이해하는 데 유용할 것이다”며 “이를 통해 경제적, 산업적 활용 가능한 대기압 플라즈마 발생원을 개발하고 다양하게 활용하는데 큰 역할을 하길 기대한다”고 말했다.
이번 연구는 국가핵융합연구소의 미래선도플라즈마-농식품융합기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 측정된 파장의 제동복사 및 전자 온도의 시공간적 변화
그림2. 단일 및 이중 주파수로 구동하는 플라즈마에서 측정된 제동복사 및 전자 온도의 시공간적 변화
2018.07.26
조회수 13239
-
오토아이디랩(Auto-ID Labs), 국제표준 사물인터넷 오픈소스 올리옷 개발
우리대학 오토아이디랩(Auto-ID Labs, 센터장 김대영 교수·전산학부)이 주도해 개발한 GS1 국제표준 사물인터넷(IoT) 오픈소스 플랫폼 올리옷(Oliot)이 국내 최대 규모의 협동조합인 완주로컬푸드에 적용돼 5일부터 본격적인 운용에 들어간다.
올리옷 개발에는 우리대학을 중심으로 총 11개 기관이 참여했다. 우리대학을 중심으로 하는 이 컨소시엄은 농식품의 생산, 가공, 유통물류, 소비에 이르는 전 과정의 데이터를 수집/공유할 수 있는 ‘GS1 국제표준 기반 올리옷(Oliot) 플랫폼’을 기반으로 농가소득 증대와 안전한 먹거리를 제공하는 국내 농축산 글로벌 생태계 구축에 앞장서고 있다.
올리옷 플랫폼은 우리대학 중심의 컨소시엄이 과기정통부와 정보통신기술진흥센터가 주관하는 ICT융합산업원천기술개발사업의 지원을 받아 2015년부터 3년간 ‘GS1(Global Standards One) 표준 기반의 균형생산·투명유통·안전소비를 위한 농·축산 클라우드 및 응용서비스 개발’이란 과제 명으로 연구를 수행한 결과, 개발에 성공한 국제표준 사물인터넷(IoT) 오픈소스 플랫폼이다.
올리옷이 적용되는 완주로컬푸드 시스템에는 생산부터 가공, 유통물류, 판매까지 전 단계에 걸쳐 GS1 표준기술의 적용은 물론 기획생산, 농산물 가공센터, 직거래 매장관리, 학교급식, 인터넷쇼핑 뿐만 아니라 이력추적서비스 등 다양한 분야에 KAIST 컨소시엄 참여업체인 이지팜·메디앙시스템이 개발한 국제 호환성을 제고를 위한 표준 시스템이 적용됐다.
완주로컬푸드는 올리옷 등 이 시스템의 본격적인 통합운용을 계기로 GS1 국제표준에 맞춰 생산계획 단계부터 최종 판매까지 안전한 먹거리 보장을 위한 이력 데이터를 구축한 세계 최초의 로컬푸드로 이름을 올리게 됐다. 우리대학은 올리옷을 데이터가 핵심인 4차 산업혁명의 전 산업분야로 확산시키기 위해 오픈소스 프로젝트로 이를 공개 중인데, 올 4월 현재 100개 이상 국가에서 9,000여개 이상의 기업과 개발자들이 다운로드 받아 활용 중이다.
김대영 교수는 “완주로컬푸드를 시작으로 전국의 로컬푸드 조합에 GS1 국제표준시스템인 올리옷의 확산을 적극 추진하고 중국 CFDA(국가식품의약품감독관리총국) 주관의 GS1 농식품안전시스템과의 연결, 유럽연합(EU)의 IoF2020(Internet of Food & Farm)사업을 통한 네덜란드 와게닝겐 대학과의 축산물 이력추적시스템 공동개발, 그리고 홍콩 등과도 글로벌 농축산 식품산업 생태계 조성을 위해 적극 협력할 것”이라고 말했다.
김 교수는 이어“올리옷과 인공지능/블록체인 기술을 융합해 스마트시티, 헬스케어, 스마트팩토리 등 여러 분야로의 확산을 위해 관련기업들과 함께 서비스를 개발 중”이라면서“조만간 가시적인 성과를 내놓을 것”이라고 덧붙였다.
올리옷 개발을 주도한 우리대학 오토아이디랩(Auto-ID Labs)은 지난 1999년 세계 최초로 사물인터넷(Internet of Things)기술을 소개한 국제공동연구 컨소시엄으로 우리학교를 포함해 미국 MIT대, 영국 캠브리지대, 스위스 취리히공대(ETH Zurich), 중국 푸단대, 일본 게이오대 등 6개 대학이 참여하고 있다.
한편 우리대학은 올리옷의 완주로컬푸드 개통을 기념하기 위해 5일 오전 11시 완주로컬푸드 혁신점 현지에서 시연식을 갖는다.
2018.04.03
조회수 18338
-
최원호 교수, 전기바람 발생 원리 규명
우리 대학 물리학과 최원호 교수가 전북대 문세연 교수와의 공동 연구를 통해 전기 바람(Electric wind)이라 불리는 플라즈마 내 중성기체 흐름의 주요 원리를 규명했다.
이는 플라즈마 내 존재하는 전자나 이온과 중성입자 사이의 상호작용에 대한 기초 연구로 플라즈마를 이용하는 유체 제어기술 등 플라즈마 응용 기술의 발전에 기여할 것으로 기대된다.
박상후 박사가 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 25일자 온라인 판에 게재됐다.
두 개의 서로 다른 입자 무리로 구성된 유체역학 문제는 수세기 동안 뉴턴을 포함한 많은 과학자들의 관심을 지속적으로 받아 온 연구주제이다.
전자나 이온과 중성입자 간의 충돌로 인한 상호작용은 지구나 금성의 대기에서도 일어나는 여러 자연현상의 기초 작용으로 흔히 알려져 있다. 플라즈마에서의 전기바람은 이 상호작용을 통해 나온 결과의 대표적인 예다.
전기바람이란 전하를 띈 전자나 이온이 가속 후 중성기체 입자와 충돌해 발생하는 중성기체의 흐름을 말한다. 선풍기 날개와 같이 기계적인 움직임 없이 공기의 움직임을 일으킬 수 있는 방법으로 기존의 팬을 대체할 수 있는 차세대 기술로 주목받고 있다.
최근에는 이와 같은 플라즈마 기술을 적용해 트럭 및 선박에서 발생하는 공기저항을 감소시켜 연료효율의 증가와 미세먼지 발생 감소, 풍력발전기 날개 표면의 유체 분리(flow separation)의 완화, 도로 터널 내 공기저항 및 미세먼지 축적 감소, 초고층 건물의 풍진동 감소와 같은 응용기술 개발이 여러 나라에서 활발히 시도되고 있다.
대기압 플라즈마 내에 전기장이 강하게 존재하는 공간에서 전자나 이온이 불균일하게 분포되면 전기바람이 발생한다. 전기바람의 주요 발생 원인은 현재까지도 명확하게 밝혀지지 않아 유체 제어와 관련한 여러 응용분야에 적용하는데 어려움이 있었다.
연구팀은 대기압 플라즈마를 이용해 전기바람 발생의 전기 유체역학적 원리를 밝히는데 성공했다. 전기 유체역학적 힘에 의한 스트리머 전파와 공간전하 이동의 효과를 정성적으로 비교하는 데 성공했다.
연구팀은 스트리머 전파는 전기바람 발생에 큰 영향을 주지 못하고 오히려 스트리머 전파 이후 발생하는 공간전하의 이동이 주요 원인임을 밝혔다. 특정 플라즈마에서는 음이온이 아닌 전자가 전기바람 발생의 핵심 요소임을 확인했다.
또한 헬륨 플라즈마에서 최고 초속 4m 속력의 전기바람이 발생했는데 이는 일반적인 태풍 속력의 4분의 1 정도이다. 이러한 결과를 통해 전기바람의 속력을 효율적으로 제어할 수 있는 기초 원리를 제공할 수 있을 것으로 보인다.
이번 연구는 하전입자와의 상호작용으로 인해 중성기체 흐름이 발생하는 원리를 실험을 통해 설명했고 정확한 분석법과 설득력을 갖췄다는 평을 받는다.
최 교수는 “이번 결과는 대기압 플라즈마와 같이 약하게 이온화된 플라즈마에서 나타나는 전자나 이온과 중성입자 사이의 상호작용을 학문적으로 이해하는데 유용한 기반이 될 것이다”며 “ 이를 통해 경제적이고 산업적 활용이 가능한 플라즈마 유체제어 분야를 확대하고 다양한 활용을 가속화하는데 큰 역할을 할 것으로 기대된다”고 말했다.
이번 연구는 국가핵융합연구소의 미래선도플라즈마-농식품융합기술개발사업과 산업통상자원부의 사업화연계기술개발사업(R&BD)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 약전리 대기압 제트 플라즈마 사진
그림2. 대기압 헬륨 제트 플라즈마의 고전압 펄스 폭 및 높이에 따른 전기바람 속력의 변화
2018.02.19
조회수 16739
-
최원호 교수, 플라즈마로 바이오필름 제거 기술 개발
〈 박 주 영 박사과정, 최 원 호 교수, 박 상 후 박사 〉
우리 대학 물리학과 최원호 교수, 서울대 조철훈 교수 공동 연구팀이 대기압 저온 플라즈마를 통해 페트병 등 식품 보관 용기 표면에 존재하는 대장균, 박테리아 등 일명 바이오필름을 손쉽게 제거할 수 있는 기술을 개발했다.
이는 플라즈마를 물에 처리해 활성화시켜 발생하는 화학반응을 이용해 바이오필름을 제거하는 방식으로 기존 기술보다 안전하고 손쉬워 다양한 용도로 사용 가능할 것으로 기대된다.
박상후 박사, 박주영 박사과정이 공동 1저자로 참여한 이번 연구는 재료분야 국제 학술지 ‘미국화학회 어플라이드 머티리얼즈&인터페이시스(ACS Applied Materials & Interfaces)’ 2017년도 12월 20일자에 게재됐다.
대기압 플라즈마는 대기 중에서 여러 형태로 플라즈마 및 2차 생성물을 방출할 수 있는 장점을 갖는다. 번개도 플라즈마의 일종인데 번개를 통해 공기 중 질소가 질소화합물이 돼 땅 속에 스며들어 토양을 비옥하게 만드는 것이 대표적인 사례이다.
이런 장점을 활용해 플라즈마는 에너지 및 환경 분야부터 생의학 분야까지 다양한 연구와 산업분야에 응용되고 있으며 플라즈마의 반응성 및 활용성을 높이기 위한 연구들이 전 세계적으로 활발히 진행 중이다.
최근에는 의료기술, 식품, 농업 등 다양한 분야에 살균을 목적으로 한 활성화, 기능화 등 측면에서 대기압 플라즈마를 적용하고 있다.
그러나 대기압 플라즈마로부터 발생하는 활성종의 종류, 밀도, 역할 등은 현재까지도 명확하게 밝혀지지 않아 기술을 적용하는 데 큰 어려움이 있었다.
연구팀은 플라즈마를 물에 처리시켜 활성수로 만들어 대장균, 살모넬라, 리스테리아 등 유해한 미생물이 겹겹이 쌓여 막을 이룬 형태를 뜻하는 바이오필름을 제거하는 방법을 개발했다.
플라즈마를 처리할 때 발생하는 활성종은 수산기(하이드록시기, OH*), 오존, 과산화수소, 아질산이온, 활성산소 등이다. 연구팀은 그 중 수산기가 다른 활성종에 비해 100 배에서 1만 배 낮은 농도임에도 불구하고 산화력이 높아 바이오필름 제거에 큰 역할을 하는 것을 확인했다.
연구팀은 그 외에 발생된 오존, 과산화수소, 아질산 이온 등에 대해서도 바이오필름을 제거할 수 있는 기능이 있음을 정량적으로 증명했고 이를 통해 살균제로서 대기압 플라즈마의 역할을 규명했다.
연구팀은 향후 후속 연구를 통해 플라즈마로 수산기를 효율적으로 생산할 수 있는 기술을 개발할 예정이다.
최 교수는 2013년 플라즈마 발생이 가능한 포장재를 특허로 등록했고 지도학생 창업기업인 플라즈맵에 기술이전을 완료했다. 이번 연구를 통해 플라즈마 살균 기술의 상용화에 힘쓰는 중이다.
최 교수는 “이번 연구결과는 플라즈마 제어 기술과 플라즈마-미생물 간 물리화학적 상호작용을 이해하는데 유용한 기반이 될 것이다”며 “의학, 농업, 식품 분야에서의 플라즈마 기술의 활용이 가속화되는 계기가 될 것으로 기대한다”고 말했다.
이번 연구는 국가핵융합연구소의 미래선도 플라즈마-농식품 융합기술 개발 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1.플라즈마 발생이 가능한 포장재
그림2.대기압 플라즈마를 이용한 바이오필름 저감 실험 개략도
그림3.대기압 플라즈마 적용 개념도 및 핵심요소 평가 결과
그림4.스타트업 기업인 플라즈맵(Plasmapp)에서 시판중인 STERPACK 제품
2018.01.23
조회수 16807
-
(재)유전자동의보감사업단, 제2회 바이오시너지 기업파트너스 심포지엄 개최
인공지능 시스템을 이용한 천연물 소재 개발기술 발표와 사업단 및 관련기업 간 상호협력 방안 논의를 위한 ‘바이오시너지 기업파트너스 심포지엄’이 17일 열린다.
우리대학과 미래창조과학부 산하 (재)유전자동의보감사업단(단장 이도헌 교수·바이오및뇌공학과)은 한국건강기능식품협회 후원으로 17일 오후 2시30분부터 이화여자대학교 LG컨벤션센터에서 ‘바이오시너지 기업파트너스 심포지엄’을 개최한다.
올 심포지엄은 작년 5월에 열린 ‘바이오시너지 워크숍’행사에 이어 (재)유전자동의보감사업단이 두 번째로 주관, 개최하는 행사다. 이 심포지엄에는 미래부와 식약처·사업단 연구책임자들은 물론 바이오헬스케어 분야의 국내·외 학자와 관련 기업인·전문가들이 대거 참가해서 향후 기술개발 방향과 시장수요 예측·시장중심의 맞춤형 기술이전과 사업화 유망기술 발굴 등에 관해 심도 있게 논의한다.
이번 심포지엄에서는 특히 사업단과 공동연구를 수행 중인 네덜란드의 대표적인 식품연구소인 니조(NIZO)의 엘스 반 호펜(Els Van Hoffen) 실장(Senior Project Manager), 네덜란드 국립응용과학연구소 TNO의 수잔 워페리스(Suzan Wopereis) 책임연구원(Senior Scientist)이 참석해 각각 니조(NIZO)와 TNO의 최신 연구내용과 지난 5년 동안의 기술개발 내용 등에 관해 중점 소개한다.
OECD 발표자료에 따르면 2014년 글로벌 식품산업의 규모는 약 5.5조 달러(약 6,152조원)이며 매년 4.4% 성장하고 있는데 이는 세계 식품시장의 트렌드가 음식을 소비하는 차원에서 유기농 등 안전식품, 기능성 건강식품 위주로 변화하고 있기 때문이다. 농·식품 R&D로 경제성장을 견인한 대표적인 네덜란드는 니조(NIZO)와 TNO 등 시장 친화적인 식품관련 연구소를 중심으로 연구가 이뤄지고 있는데 1948년 낙농업체들이 공동 설립한 니조(NIZO)와 약 30년 전 네덜란드 정부가 세운 TNO는 전체 운영비의 70% 이상을 민간업체들과의 협력이나 개인투자자들과 프로젝트를 진행해서 벌어들이고 있다.
두 전문가의 발표가 끝난 후에는 권오란 이화여대 교수가 사업단이 개발한 기술과 천연물 분야 관련기업 등 산업계와의 상호 연계방안을 모색하는 등 기업인들과 연구 책임자들 간의 관심방안에 대한 토론을 주관, 진행한다. 이밖에 강연 홀 복도에는 발표와 토론이 끝난 후 참석자들이 사업단이 보유중인 기술을 한 눈에 볼 수 있도록 전시관을 꾸며놨으며 기업인들 간에 자연스럽게 상담을 할 수 있는 자리도 함께 마련했다.
이도헌 사업단장은 “2013년 11월 출범이후 사업단은 5개 연구 분야인 모델·소재·표적 마커·인체 연구에 역량을 집중한 결과, 성분기반의 바이오 헬스케어와 관련한 방대한 규모의 DB를 구축하고 이를 기반으로 천연물 성분의 인체작용을 분석할 수 있는 세계 최대 규모의 가상인체(인공지능) 시스템을 구축했다” 며 “이번 심포지엄에서 사업단과 관련기업들 간에 공동연구 및 연구 성과에 대한 공동 활용방안에 대한 심층적인 논의가 이뤄졌으면 한다”고 말했다. 참가 문의 042-350-8651.
2017.07.14
조회수 13008
-
김대영 교수, EU와 글로벌 IoT 농식품 생태계 구축을 위한 공동 연구
우리 대학 전산학부 김대영 교수 연구팀과 유럽연합(EU)이 사물인터넷(IoT) 개방형 표준 및 아키텍쳐를 통한 글로벌 농식품 비즈니스 통합 에코시스템 개발 공동연구(The Internet of Food & Farm 2020, IoF2020)를 시작한다.
EU IoF2020 프로젝트는 스마트 팜과 농식품 서비스 분야에 첨단 ICT 융합기술을 활용하여 효율적이면서도 안전하고 건강한 먹거리를 보장하는 글로벌 생태계 조성을 목표로 한다.
유럽 연합이 4년간 3,000만 유로를 지원하는 등 총 3,500만 유로가 투자되는 이번 공동연구는 대학, 연구소, 기업 등 16개국 71개 기관이 참여하는 대형 프로젝트다. 한국에서는 유일하게 KAIST가 참여한다.
연구팀은 자체 개발한 국제 표준 사물인터넷 오픈소스 플랫폼인 올리옷(Oliot)을 활용한 스마트 팜과 푸드 서비스 생태계 테스트베드를 국내 농식품 비즈니스 전반에 구축하고 유럽의 테스트베드와 연동한다. 이들 생태계로부터 수집한 글로벌 빅데이터 분석을 위한 딥러닝 등 최신 인공지능 기술을 개발하여 궁극적으로 사물인터넷 플랫폼과 인공지능 기술이 통합된 시스템을 정부, 기관, 기업, 농민들이 활용할 수 있도록 공개할 예정이다.
IoF2020 프로젝트를 통해 개발되는 기술은 스마트팜 및 농식품 서비스 시장에 직접 투입하여 국내 농식품 산업에 활용될 수 있으며, 갈수록 높아지는 농식품 안전에 대한 요구를 만족시킬 수 있을 것으로 전망된다.
또한 핵심 기술인 올리옷(Oliot) 플랫폼은 농식품 분야 뿐 만 아니라, 스마트 시티, 스마트 팩토리, 헬스케어, 커넥티드 자동차등 다양한 산업에 활용될 것으로 기대된다.
IoF2020 프로젝트 코디네이터인 조지 비어스(George Beers)는 "IoF2020이 농장에서 소비자 식탁으로까지의 유통방식에 패러다임 변화를 가져올 것이며, 푸드 서비스 분야에서의 경쟁력과 우수성을 강화하는 데 기여할 것이라고 믿는다”라고 말했다.
KAIST 김대영 교수(전산학부, 오토아이디랩스(Auto-ID Labs) KAIST 센터장)는 “이미 국내에서 사물인터넷 국제표준 기술 적용을 시작했으며, 이번 프로젝트를 통해 유럽뿐 아니라 중국, 일본, 대만 등 아시아 국가와 남미 국가와도 글로벌 농식품 비즈니스 생태계 통합을 위한 노력이 진행 중이다”라고 밝혔다.
KAIST는 지난 2005년부터 전 세계 6개 대학(MIT(미국), 케임브리지대(영국), 취리히공대(스위스), 푸단대(중국), 게이오대(일본))과 함께 세계 최초로 사물인터넷의 개념을 소개한 ‛오토아이디랩스(Auto-ID Labs)' 국제공동연구소를 운영하며 사물인터넷 생태계 구축을 위한 선행 표준기술을 연구하고 있다.
2017.01.17
조회수 16013
-
천연물 원천기술 개발 본격화 … "유전자 동의보감 사업단’ 개소식
- 전통 천연물을 활용한 의약 • 식품 원천기술 개발 본격화
- 사업기간 10년 총사업비 1,500억 이상 투입해 원천기술 개발
- 26일 오후 3시 정문술 빌딩 1층 드림홀에서 개소식 열어
전통 천연물을 활용해 의약 ‧ 식품 원천기술을 개발하는 연구가 본격화 된다.
우리 대학 바이오및뇌공학과 이도헌 교수가 단장으로 있는 유전자동의보감사업단이 11월 26일 오후 3시 대전 본원 정문술 빌딩 1층 드림홀에서 개소식을 개최했다.
이날 개소식에는 미래창조과학부 임요업 미래기술과장을 비롯해 한국연구재단, KAIST, 한국과학기술연구원, 서울대, 연세대 등 산학연 과학기술 전문가 200여명이 참석했다.
동 사업단은 경험적으로 효능이 입증된 전통천연물을 첨단 바이오기술로 재해석하고 그 활용방법을 연구해 삶의 질을 높이는 한편, 전통천연물을 이용한 융․복합 원천기술을 개발하기 위해 설립됐다.
사업단은 향후 10년 동안 1500억원 이상의 연구비를 투입해 효능 해석기술․ 분석기술 ․검증기술 ․바이오 마커 기술 ․인체효능 검증기술 등 5대 기술을 단계별로 개발해 천연물 원천기술을 확보 할 예정이다.
특히, 가상인체 컴퓨터모델과 오믹스를 활용해 전통 천연물의 복합성분이 인체에 어떻게 작용하는 가를 분석하는 원천기술과 헬스케어 신소재 발굴에 집중할 계획이다.
이번 연구사업은 전통천연물 소재의 효능을 첨단과학으로 규명하는 원천기술을 개발해 바이오산업의 기술경쟁력 확보는 물론 세계 천연물 소재 시장을 선도할 새로운 아이템을 만들어 낼 것으로 기대된다.
이도헌 KAIST 바이오및뇌공학과 교수 겸 유전자동의보감사업단장은 “컴퓨터 가상인체를 이용한 IT-BT기술융합으로 원천기술을 개발해 천연물 의약품․기능성 식품 관련 산업체와 협력 체제를 적극 추진할 예정”이라며 “이를 통해 신산업 창출은 물론 맞춤형 의료 실시가 가능해질 것으로 전망 된다”라고 말했다.
동 사업에는 KAIST, 한국과학기술연구원, 서울대, 연세대 등 총 12개 기관 최고 전문가 200여명이 연구개발에 참여하고 있으며, 향후 해외연구기관, 관련 기업 등으로 연구 참여범위를 넓혀 나갈 계획이다.
※ 용어설명
주) 오믹스(Omics)란 특정 세포 속에 들어 있는 생리현상과 관련된 대사에 대한 대량의 정보(전사체, 단백질체, 형질체 등)를 통합적으로 분석하여 생명현상을 밝히는 학문임.
2013.11.26
조회수 17039