본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%8B%9C%EC%8A%A4%ED%85%9C%EB%8C%80%EC%82%AC%EA%B3%B5%ED%95%99
최신순
조회순
이상엽 교수, 미국 국립발명학술원 펠로우로 선정돼
〈 이상협 특훈교수 〉 우리대학 이상엽 특훈교수(생명화학공학과)가 미국 국립발명학술원(National Academy of Inventors, NAI)의 펠로우로 선정됐다. 수여식은 내년 4월 5일 워싱턴DC의 메이플라워 호텔에서 개최된다. 국내 학자 중에서 미국 국립발명학술원 펠로우에 선정된 것은 이 교수가 처음이다. 미국 국립발명학술원은 미국 특허청에 등록된 특허 발명자와 삶의 질 및 경제 발전, 사회 복지 발전에 영향을 끼치는 혁신적인 개발에 성공한 학계 과학자를 대상으로 매년 펠로우를 선정한다. 현재까지 세계적으로 권위 높은 229개 대학, 정부 및 비영리 연구소를 대표하는 757명의 펠로우가 선정됐다. 이 교수는 1994년 KAIST 부임 이래 미생물대사공학 연구를 수행하며 시스템대사공학이라는 새 분야를 개척했으며 상대적으로 기초과학분야에 비해 피인용 수가 적은 생명화학공학분야임에도 불구하고 3만 4000회 이상의 피인용 횟수를 자랑한다. 이 교수는 11년간 등록된 13만 건 이상의 논문 중 각 분야에서 가장 많이 인용된 상위 1퍼센트 논문 연구자에게 주어지는 2017년 ‘세계에서 가장 영향력 있는 연구자(Highly Cited Researcher, HCR)에 선정되기도 했다. 이 교수는 그간 미국 화학회의 마빈존슨 상, 미국생물공학회의 제임스베일리 상 등을 아시아인 최초로 수상했고 포스코청암상, 호암상, 대한민국최고과학기술인 상 등을 수상했다. 또한 2010년 미국 공학한림원외국회원에 이어 2017년 미국국립과학원 외국회원에 선임돼 세계 최고의 양대 학술원에 동시 외국회원으로 선임된 전 세계 13인 중 1인이다. 미국 국립발명학술원은 미국 및 세계 대학, 정부 및 비영리 연구소로 구성된 비영리 단체 조직으로, 미국 특허청으로부터 발행된 특허에 대해 특허 지적 재산권의 공개를 장려하고 학계 기술 및 발명의 가시성을 높이기 위해 설립됐다.
2017.12.13
조회수 12187
이상엽 교수, 중국과학원 특훈교수 국제펠로우 및 텐진산업생명공학연구소 명예교수 추대
생명화학공학과 이상엽 특훈교수(KAIST 연구원장·사진)가 중국과학원(Chinese Academy of Sciences)으로부터 ‘2017년 특훈교수(Distinguished Professor) 국제펠로우’와 중국과학원 산하 텐진산업생명공학연구소(Tianjin Institute of Industrial Biotechnology)에서 명예교수로 최근 각각 추대됐다. 중국과학원은 기초과학 및 자연과학 등의 연구를 하는 중국 최고의 학술기관으로 1949년 11월 설립됐다. 1997년 기초과학·자연과학과 하이테크 영역을 고루 갖춘 과학기술체제를 확립했는데 베이징 본원 외에 선양·상해·우한·광저우 등 12개의 주요 도시에 분소가 설치돼 있고 117개의 부속기관, 100개 이상의 국가 핵심 연구소를 운영 중이다. 이상엽 특훈교수는 미생물을 활용해 유용한 화학물질을 생산하는 ‘시스템대사공학’의 창시자로서 이 분야 세계 최초·최고의 원천기술을 다수 개발하는 한편 바이오 연료 및 친환경 화학물질의 생산공정 개발 등 산업생명공학분야 등에서 생명공학의 위상을 세계적으로 높이는데 기여한 공로를 인정받았다. 이상엽 특훈교수는 앞서 시스템대사공학 분야를 선도하는 글로벌 리더로서의 공을 인정받아 중국 우시(Wuxi)소재 강남대학교에서도 명예교수로 추대됐다. 이 교수의 주요 연구 성과로는 미생물 이용 휘발유 및 바이오 부탄올 생산 공정, 강철보다 강한 거미줄 생산, 나일론 및 플라스틱 원료를 생산하는 균주 개발 등이 있다. 이상엽 특훈교수는 2014년 국제학술지인 ‘네이처 바이오테크놀로지(Nature Biotechnology)’가 선정한 ‘세계 최고응용생명과학자 20인’에 포함된 바 있으며 또 생명공학자에게 주는 상인 제임스 베일리 상(2016년)과 마빈 존슨 상(2012년)을 아시아인 최초로 수상했다. 과학자로서는 최고의 영예인 미국공학한림원과 미국국립과학원 등 양대 학술단체의 외국회원으로 동시 선출된 전 세계 13인의 과학자 중 한명이기도 한 이상엽 특훈교수는 지난 7월 정부로부터 ‘2017년 대한민국 최고과학기술인상’을 수상했는데 그가 창시한 ‘시스템대사공학’ 분야는 세계경제포럼(WEF, 일명 다보스포럼)의 ‘2016년 세계 10대 유망 기술’에 선정되기도 했다.
2017.10.26
조회수 15079
이상엽 특훈교수, 병원균이 항생제에 내성을 갖는 원리 규명
〈 이 상 엽 교수 〉 우리 대학 생명화학공학과 이상엽 교수와 덴마크 공대(DTU) 노보 노르디스크 바이오지속가능센터(Novo Nordist Foundation Center for Biosustainability) 공동 연구팀이 박테리아 병원균이 항생제에 대한 내성을 획득하는 작동 원리를 밝혔다. 이번 연구결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7일자 온라인 판에 게재됐다. 항생제 남용 등으로 인해 항생제 내성균이 점점 더 늘어나고 있다. 이는 인류의 생존을 위협하는 문제로 그 심각성이 전 세계적으로 점점 커지고 있다. 인체 감염균이 항생제 내성을 갖는 방식에는 항생제를 분해하는 효소를 갖거나 다시 뱉어내는 등 다양한 방식이 있다. 그 중 대표적인 것은 항생제 내성 유전자를 획득해 항생제를 무용지물로 만드는 것이다. 내성 유전자는 보통 항생제를 생산하는 곰팡이나 악티노박테리아에서 발견된다. 이는 해당 항생제를 만드는 곰팡이와 박테리아가 자기 스스로를 항생제로부터 보호하기 위해 갖고 있는 것이다. 이 내성 유전자를 인체 감염균이 획득하면 항생제 내성을 갖게 된다. 이러한 사실은 게놈 정보 등을 통해 이미 알려져 있는 사실이다. 그러나 어떤 방식으로 항생제 내성 유전자들이 인체 감염균에 전달되는지는 밝혀지지 않았다. 이상엽 교수와 덴마크 공대 공동 연구팀은 항생제 내성 유전자가 직접적으로 인체 감염균에 전달되는 것이 아니라 연구팀이 캐리백(carry-back)이라고 이름 지은 복잡한 과정을 통해 이뤄지는 것을 규명했다. 우선 인체 감염균과 방선균이 박테리아간의 성교에 해당하는 접합(conjugation)에 의해 인체 감염균의 DNA 일부가 방선균으로 들어간다. 그 와중에 항생제 내성 유전자 양쪽 주위에도 감염균의 DNA가 들어가는경우가 생긴다. 이 상태에서 방선균이 죽어 세포가 깨지면 항생제 내성 유전자와 감염균의 DNA 조각이 포함된 DNA들도 함께 나오게 된다. 이렇게 배출된 항생제 내성 유전자에는 인체 감염균의 일부 DNA가 양쪽에 공존하고 있다. 이 때문에 인체 감염균은 자신의 게놈에 재삽입이 가능해지고 이를 통해 항생제 내성을 획득한다. 연구팀은 생물정보학적 분석과 실제 실험을 통해 이를 증명했다. 이 교수는 “이번 연구결과는 인체 감염 유해균들이 항생제 내성을 획득하는 방식 중 한 가지를 제시한 것이다”며 “병원 내, 외부의 감염과 예방 관리시스템, 항생제의 올바른 사용에 대해 다시 한 번 생각할 수 있는 기회를 제공할 것이다”고 말했다. 이번 연구는 노보 노르디스크 재단과 미래창조과학부 원천기술과(바이오리파이너리를 위한 시스템대사공학 연구사업)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 항생제 내성 유전자가 전달되는 캐리백 현상의 모식도
2017.06.19
조회수 17933
박사과정 4명, 학술지에 초청 논문 게재
〈 이상엽 교수 연구팀 〉 우리 대학 생명화학공학과 네 명의 박사과정 학생들(지도 : 이상엽 특훈교수)이 시스템대사공학(Systems metabolic engineering) 전략을 주제로 초청 리뷰논문을 게재했다. 이상엽 교수의 지도 아래 최경록, 신재호, 조재성, 양동수 네 명의 학생이 주도한 이번 논문은 미생물 분야 학술지 ‘에코살 플러스(EcoSal Plus)’ 10일자 온라인 판에 게재됐다. 이번 논문은 학술 및 산업적으로 널리 연구되고 활용되는 대장균의 시스템대사공학 연구 전략을 총망라했다. 시스템대사공학은 이상엽 특훈교수가 창시한 과학기술 분야로 기존 대사공학에 시스템생물학, 합성생물학, 진화공학 등을 융합한 학문이다. 이번 리뷰 논문에서는 ▲시스템대사공학에서 활용하는 다양한 실험 기법 ▲시스템대사공학 연구 전략 ▲시스템대사공학 전략을 적용해 대량생산 및 산업화에 성공한 바이오리파이너리 사례를 다룬다. 대사공학은 미생물의 대사 흐름을 조절해 화합물을 생산할 수 있는 세포 공장 구축을 목표로 한다. 바이오매스 등 재생 가능한 탄소원을 먹이로 삼아 미생물을 배양해, 다양한 산업 및 의약 물질을 생산하는 바이오리파이너리 분야의 핵심 요소로 평가받는다. 특히 기존 대사공학에 시스템대사공학 전략을 적용하면 물질을 대량생산할 수 있는 고성능 균주를 효과적으로 구축할 수 있어 비용 절감을 기대할 수 있다. 또한 균주가 대규모 바이오리파이너리 공정에 적합하도록 지속적으로 최적화하는 과정도 포함돼 미래에는 석유화학 산업을 대체할 수 있을 것으로 기대된다. 에코살 플러스는 두 번에 걸쳐 출판된 ‘대장균과 살모넬라(Escherichia coli and Salmonella: Cellular and Molecular Biology)’ 책자를 전신으로 하는 온라인 리뷰 학술지이다. 생물학 연구에서 중요한 대장균 등의 미생물에 관련한 유전, 생화한, 대사 등 모든 분야를 다뤄 생물학 전반 연구의 주요 지침서로 알려져 있다. 이 교수는 “이번 초청 리뷰는 최경록, 신재호, 조재성, 양동수 네 명의 박사과정 학생들이 세계적 수준의 전략 제시 능력을 갖췄음을 증명한 것이다”며 “생명공학분의 바이블로 불리는 에코살 플러스에 논문을 게재한 학생들이 매우 자랑스럽다”고 말했다.
2016.03.30
조회수 12114
바이오부탄올 핵심생산효소 구조 및 특성 규명
이 상 엽 특훈교수 우리 대학 생명화학공학과 이상엽 교수 연구팀이 경북대학교 김경진 교수 연구팀과의 공동연구를 통해 친환경 차세대 에너지인 바이오부탄올의 핵심 생산 효소인 싸이올레이즈(Thiolase)의 구조 및 특성을 규명했다. 연구 결과는 네이처 커뮤니케이션즈(Nature Communications) 9월 22일자 온라인 판에 게재됐다. 바이오부탄올은 바이오연료로 이미 사용되고 있는 바이오에탄올을 능가할 수 있는 친환경 차세대 수송용 바이오연료로 각광받고 있다. 바이오부탄올의 에너지 밀도는 리터당 29.2MJ(메가줄)로 바이오에탄올(19.6MJ)보다 48% 이상 높고 휘발유(32MJ)와 큰 차이가 없다. 또한 폐목재, 볏짚, 잉여 사탕수수, 해조류 등 비식용 바이오매스에서 추출하기 때문에 식량파동 등에서도 자유롭다. 바이오부탄올의 가장 큰 장점은 휘발유와 비교했을 때 공기연료비, 기화열, 옥탄가 등 연료 성능이 비슷해 현재 자동차 등에 사용되고 있는 가솔린 엔진을 그대로 사용할 수 있다는 점이다. 바이오부탄올은 클로스트리듐이라는 미생물로부터 생산이 가능하지만 클로스트리듐의 주요 효소의 구조 및 기작 등에 대한 연구는 체계적으로 이뤄지지 못했다. 이 교수 연구팀은 이 미생물의 성능 향상을 위해 바이오부탄올 생합성에 필요한 주요 효소 중 하나인 싸이올레이즈의 3차원 입체구조를 포항방사광가속기를 이용해 규명했다. 이를 통해 일반적인 미생물의 효소에서는 발견되지 않고 클로스트리듐 내의 싸이올레이즈에서만 관찰되는 산화-환원 스위치 구조를 발견했다. 또한 가상세포모델 등을 활용한 시스템대사공학 기법을 활용해 이 싸이올레이즈가 실제 미생물 내에서 산화-환원의 스위치로 작동한다는 것을 증명했다. 연구팀은 밝혀낸 싸이올레이즈 구조의 원천기술을 활용해 활성이 향상된 돌연변이 효소를 설계했다. 그리고 이를 이용해 바이오부탄올 생산 미생물의 대사회로를 조작해 바이오부탄올 생합성이 향상되는 결과를 얻었다. 이상엽 교수는 “바이오부탄올 생합성 대사회로에서 가장 중요한 효소의 구조와 작용 기작을 세계 최초로 밝혔다”며 “싸이올레이즈 관련 원천기술을 활용해 바이오부탄올을 더욱 경제적으로 생산할 수 있는 대사회로 구축에 응용하겠다”고 말했다. 김상우, 장유신, 하성철 박사가 공동 1저자로 참여한 이번 연구는 미래창조과학부와 한국연구재단의 기후변화대응기술개발사업 및 글로벌프런티어 차세대바이오매스사업단 지원을 받아 수행됐다. □ 그림 설명 그림 1. 바이오부탄올 생산 효소(thiolase)의 구조 및 산화-환원 스위치 작용기작 그림 2. 바이오부탄올 생산을 위한 포도당 대사회로에서 바이오부탄올 생산 효소(thiolase)의 산화-환원 스위치 작용기작
2015.09.22
조회수 14336
이상엽 특훈교수, 톈진대학교 베이양 명사강연
우리 학교 생명화학공학과 이상엽 특훈교수(KAIST 연구원장)는 12일 중국 톈진대학교에서 베이양 명사강연(BeiYang Lecture)을 한다. 톈진대학교 관계자는 “베이양 강연은 미국 에너지성 장관을 역임한 스티븐 추박사 등 노벨상 수상자들을 초청하는 명사강연”이라며 “이 교수는 시스템대사공학을 통한 지속가능한 바이오화학 산업분야 연구에서 세계적인 리더로서의 명성으로 강연자로 정했다”고 선정배경을 밝혔다. 이날 이 교수는 ‘미생물대사공학에 의한 화학물질의 생산’을 주제로 강연을 펼친 한 후 교수 및 학생들과 활발한 토론을 할 예정이다. 이 교수는 숙신산, 부탄올, 엔지니어링 플라스틱 원료 등을 세계 최고효율로 생산하는 미생물과 생물공정을 개발한 바 있다. 최근에는 가솔린과 같은 비천연 화학물질을 세계 최초로 생산할 수 있는 가능성을 입증하는 등 이 분야 연구를 세계적으로 선도하고 있다.
2014.09.12
조회수 9304
이상엽 특훈교수, 중국 상해교통대 자문교수 선임
- 대사공학을 중심으로 한 생명공학분야 탁월한 업적 인정받아 - 우리 학교 생명화학공학과 이상엽 특훈교수가 중국 상해교통대 자문교수로 선임됐다. 이 교수는 생명공학분야 자문교수로 올해 8월부터 2018년 7월까지 5년간 활동하게 된다. 베이징대, 칭화대와 더불어 중국 3대 명문대 중 하나인 상해교통대는 노벨상 수상자 등 전 세계적으로 학문적 업적이 뛰어난 학자들을 위원회의 철저한 심사를 거쳐 자문교수로 임명한다. 자문교수들은 대학 연구 및 교육에 관한 제반 사항에 대한 자문을 하며, 특정 연구 분야 공동연구 등을 수행하게 된다. 이 교수는 대사공학을 중심으로 한 생명공학 분야에 탁월한 업적을 인정받아 자문교수로 선임됐다. 이 교수는 미생물 대사공학의 전문가로, 대사공학과 시스템생물학, 합성생물학 등을 접목해 ‘시스템대사공학’을 창시하고, 다양한 화학물질 생산 시스템 개발에 적용해 바이오연료, 친환경 화학물질 생산 공정들을 다수 개발했다. 최근 미국화학회 마빈존슨상, 미국산업미생물생명공학회의 찰스톰상, 암젠 생명화학공학상 등 해외에서 유명한 상을 다수 수상한 이 교수는 현재 한국과학기술한림원, 한국공학한림원, 미국공학한림원 외국회원, 세계경제포럼의 바이오텍 글로벌아젠다카운슬 의장으로 활동 중인 생명공학 분야 세계적인 리더다.
2013.08.14
조회수 11519
이상엽 특훈교수, 상해교통대학 마스터포럼 강연
우리 학교 생명화학공학과 이상엽(49, KAIST연구원장) 특훈교수가 지난 14일 세계적인 저명 학자들이 초청되는 중국 상해교통대학에서 ‘시스템대사공학에 의한 친환경 화학물질의 생산’을 주제로 제 23회 마스터 포럼 강연을 했다. 마스터 포럼은 노벨상 수상자나 탁월한 업적을 낸 학술원 펠로우 등 세계적으로 저명한 학자들을 초청해 강연을 듣는 상해교통대학의 중요행사다. 마스터포럼 행사는 지신 등(Zixin Deng) 생명과학대학장의 축사에 이어 이 교수의 강연이 진행됐다. 강연 후에는 마스터포럼 기념패 수여식과 상해교통대학 도서관에 보관하게 되는 마스터 손바닥 프린팅 행사를 가졌다. 상해교통대학 관계자는 “미생물 및 생명화학공학 분야에서 전 세계 가장 탁월한 업적을 이룬 연구자인 이 교수를 초청해 마스터포럼을 개최하게 됐다”고 밝혔다. 이 교수는 현재 미래창조과학부의 기후변화 대응 기술개발사업과 글로벌프론티어 바이오매스 사업단 사업, 글로벌프론티어 지능형합성생물학 사업단에 참여해 화석원료로부터 생산되는 화학물질들을 재생가능한 비식용 바이오매스로부터 생산하기 위한 원천 및 응용기술들을 개발 중이다. 한편, 이 교수는 지난 19일 베이징에서 아시아 최초로 수여받은 암젠 생명화학공학상 수상기념 강연을 하기도 했다.
2013.06.25
조회수 11633
이상엽 특훈교수, 美 의생명공학원 석학회원 선정
우리 학교 생명화학공학과 이상엽 특훈교수가 지난 2월 미국의생명공학원(American Institute for Medical and Biological Engineering, AIMBE) 2013년 펠로우(석학회원)로 선임됐다. 이 교수는 이해방 前 한국화학연구원 선임부장에 이어 우리나라에서는 두 번째로 선임됐다. 지난 23년간 총 1327명의 펠로우가 선임됐으며, 이중 109명만이 미국인이 아니다. 미국의생명공학원은 1991년 창립돼 의생명공학 관련 5만여명의 산학연 전문가들이 모인 비영리기관으로 인류 의생명공학분야에 기여를 위한 정책수립 및 자문을 수행한다. 이 교수는 미생물 대사공학의 전문가로 대사공학과 시스템생물학, 합성생물학 등을 접목해 시스템대사공학을 창시하고, 다양한 화학물질 생산 시스템 개발에 적용해 바이오연료, 친환경 화학물질 생산 공정들을 다수 개발했다. 이 교수는 한국과학기술한림원과 한국공학한림원, 미국공학한림원 회원으로 활동하고 있으며, 미국과학진흥협의회, 미국화학공학회, 미국산업미생물생명공학회, 미국미생물학술원의 펠로우로 선정된 바 있다. 현재 세계경제포럼의 생명공학 글로벌 아젠다 카운슬 의장으로 활동 중이며 생명공학분야에서 세계적인 주목을 받고 있다.
2013.03.11
조회수 12214
이상엽 특훈교수, 중국과학원 명예교수 추대
이상엽 특훈교수 - 미생물 대사공학 분야 업적 인정받아 - 우리 학교 생명화학공학과 이상엽(생명과학기술대학 학장) 특훈교수가 중국과학원 미생물연구소 명예교수로 최근 추대됐다. 이상엽 교수는 대사공학과 시스템생물학, 합성생물학 등을 접목해 시스템대사공학을 창시하고, 이를 다양한 화학물질 생산 시스템 개발에 적용해 바이오연료, 친환경 화학물질의 생산 공정을 개발한 공로를 인정받았다. 이 교수는 지난 2012년 미국화학회 마빈존슨상, 미국 산업미생물생명공학회 찰스톰상을 받았으며, 세계경제포럼 산하 생명공학 글로벌 아젠다 카운슬 초대 의장으로 선임되는 등 생명공학분야 세계적인 리더로서 인정받고 있다. 한편, 1958년 창립된 중국과학원 산하 미생물연구소는 1000여명의 교직원과 학생이 미생물관련 순수과학과 응용연구를 수행하는 이 분야 세계 최대 연구소다.
2013.01.03
조회수 12915
고효율 바이오부탄올 생산기술 개발
- 균주 생산수율 87%, 바이오에탄올 수준으로 끌어올려 -- 발효 공정 생산성 3배 이상 향상, 반면 분리・정제 비용은 70% 절감 - 친환경 차세대 에너지 ‘바이오부탄올’의 생산성을 기존 바이오에탄올 수준으로 크게 향상시킨 반면 비용은 대폭 줄어 든 기술이 KAIST와 국내기업 연구팀에 의해 개발됐다. 우리 학교 생명화학공학과 이상엽 특훈교수 연구팀이 GS칼텍스, 바이오퓨얼켐(주)와 공동으로 시스템대사공학 기법을 이용해 바이오부탄올의 생산성을 크게 향상시키면서도 경제성을 획기적으로 높인 공정을 개발하는데 성공했다. 바이오부탄올은 자동차 연료 첨가제로 이미 상용화된 바이오에탄올을 능가하는 친환경 차세대 에너지로 각광받고 있다. 바이오부탄올의 에너지밀도는 리터당 29.2MJ(메가줄)로 바이오에탄올(19.6MJ)보다 48%이상 높고 휘발유(32MJ)와 견줄만하다. 또 폐목재, 볏짚, 잉여 사탕수수, 해조류 등 비식용 바이오매스에서 추출이 가능하기 때문에 식량파동에서도 자유롭다. 특히, 휘발유와는 공기연료비를 비롯해 기화열, 옥탄가 등 여러 가지 연료 성능이 유사해서 현재 사용되고 있는 가솔린 엔진을 그대로 사용해도 되는 게 바이오부탄올의 큰 장점이다. 반면 바이오부탄올 생산을 위한 클로스트리듐 균주는 대장균이나 효모와는 달리 유전자 조작이 쉽지 않고, 또 복잡한 대사회로와 이에 대한 정보가 부족하기에 그동안 대사회로 재설계 자체가 어렵다는 점이 단점으로 꼽혀왔다. 이상엽 특훈교수는 자신이 창시한 시스템대사공학 기법을 도입해 산생성기와 용매생성기로 대변되던 대사회로모델 대신, 바이오부탄올 생산경로에 초점을 둔 대사회로 모델을 새롭게 고안해냈다. 연구팀은 새로운 대사회로 모델에서 바이오부탄올 생산경로를 직접경로(hot channel)와 간접경로(cold channel)로 정의했다. 이 대사회로 모델을 이용해 직접경로를 강화시키기 위한 대사공학을 수행해 이론수율 대비 49%의 생산수율을 나타내던 기존 균주를 87%까지 향상시킨 바이오부탄올 생산균주로 개량하는 데 성공했다. 연구팀은 이와 함께 GS칼텍스와 발효・분리공정 개발을 위한 연구를 수행해 흡착물질을 사용한 실시간 바이오부탄올 회수 및 제거 시스템을 개발하는 데 성공했다. GS칼텍스와 공동연구 끝에 개발한 발효·분리공정 기술은 포도당 1.8kg을 이용해 585g의 부탄올을 생산했고, 한 시간에 리터당 1.3g 이상 생산했다. 이는 현존하는 세계 최고 수준의 농도, 수율, 생산성으로 발효 공정의 생산성을 3배 이상 향상시키면서 분리·정제 비용은 기존 대비 70%까지 절감했다. 이상엽 특훈교수는 “미국, 유럽 등 선진국에서 바이오연료로 상용화된 바이오에탄올 생산기술은 이론수율 대비 90%인데, 이번에 개발된 기술은 바이오에탄올의 수율에 육박한다”며 “수율측면에서는 차세대 연료인 바이오부탄올 생산 기술이 바이오에탄올 생산기술에 근접했음을 의미한다”고 이번 연구의 의미를 밝혔다. 이 교수는 또 “클로스트리듐 아세토부틸리쿰을 세계 최초로 시스템대사공학 기법으로 개량하고 새로운 발효·분리공정을 접목시켜 생산성을 획기적으로 향상시킨 사례”라며 “재생 가능한 자원으로부터 바이오부탄올 생산 공정의 산업화를 앞당기는 계기가 될 것”이라고 강조했다. 한편, 이번 연구 결과는 미생물분야 세계적 학술지인 ‘엠바이오(mBio)‘지 9·10월호 대표논문으로 선정돼 10월 23일자에 게재됐다. 그림설명. 바이오부탄올 생산 미생물인 클로스트리듐 균주의 전자현미경 사진에 핫채널과 콜드채널을 각각 빨간색과 녹색으로 표현. 화합물 구조는 부탄올.
2012.11.06
조회수 15505
이상엽 특훈교수, 미국 화학공학회 펠로우 선임
- 화학공학분야 최대 규모 국제학회에 국내 과학자 최초 선임 - 우리 학교 생명화학공학과 이상엽(48, 생명과학기술대학 학장) 특훈교수가 우리나라에서는 처음으로 미국 화학공학회(American Institute of Chemical Engineers) 펠로우(석학회원)로 이달 초 선임됐다. 1908년에 창립돼 100년이 넘는 전통을 자랑하는 미국 화학공학회는 전 세계 90여 개국 43,000여명의 회원을 두고 있는 화학공학 분야 최대 규모 국제 학회다. 이 학회는 화학공학 분야에서 획기적인 기여를 한 멤버들 중 추천과 심사를 거쳐 펠로우로 선임하는데, 우리나라에서는 이 교수가 처음으로 선정됐다. 이상엽 교수는 대사공학의 전문가로, 화학공학의 시스템 디자인 기법과 최적화 전략을 생물시스템에 적용해 바이오기반 화학 산업을 위한 원천기술을 다수 개발한 공로를 인정받았다. 이 교수는 시스템대사공학 분야를 창시해 미생물의 대사회로를 시스템 수준에서 조작해 의학적 응용뿐 아니라, 다양한 원유 유래 화학물질을 바이오기반으로 친 환경적으로 만드는 연구 등에서 세계적인 업적을 내고 있다. 현재 교육과학기술부 기후변화대응 바이오리파이너리를 위한 시스템대사공학 원천기술 개발 사업과 글로벌프론티어 바이오매스 사업단, 그리고 지능형합성생물학 사업단 과제를 통해 바이오 화학 산업에 필수적인 대사공학 원천기술들을 개발 중이다. 올해 미국화학회 마빈존슨상, 미국산업미생물생명공학회의 찰스톰상을 받았고, 세계경제포럼의 바이오텍 글로벌아젠다카운슬 초대 의장으로 선임되는 등 생명공학분야 세계적인 리더로서 인정받고 있다.
2012.09.19
조회수 11138
<<
첫번째페이지
<
이전 페이지
1
2
3
>
다음 페이지
>>
마지막 페이지 3