본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%83%9D%EB%AC%BC%ED%95%99
최신순
조회순
조광현 교수, 간암 표적 치료제 내성 극복 위한 최적 약물조합 발견
〈 조 광 현 교수 〉 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 간암 약물 치료의 효과를 높이는 새로운 방법을 찾아냈다. 특히 이번 연구는 바이오분야의 4차 산업혁명을 견인하고 있는 IT와 BT의 융합연구인 시스템생물학(Systems Biology) 연구로 이뤄졌다. 서울대병원 내과 윤정환 교수팀과 공동연구를 통해 이루어낸 이번 연구 결과는 국제 간 전문지인 헤파톨로지(Hepatology)에 게재됐다. 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 바이오의료기술개발사업과 중견연구자지원사업의 지원을 받아 수행됐다. 간암은 전 세계적으로 남성에게는 다섯 번째, 여성에게는 일곱 번째로 발생률이 높은 암이며 암 사망원인의 두 번째를 차지한다. 특히 우리나라의 간암 사망률은 인구 10만 명 당 28.4명으로 경제협력개발기구(OECD) 국가 중 압도적인 1위이며 2위인 일본의 2배에 이르고 있다. 우리나라에서만 간암 환자가 매년 평균 1만 6000명이 새로 발생하고 있지만 5년 생존율이 12%에 미치지 못한다. 국가암정보센터에 따르면 지난해 암으로 사망한 사람 가운데 폐암이 1만 7399명으로 가장 많았고 간암은 1만 1311명으로 그 뒤를 이었다. 간암은 우리나라의 암 가운데 사회적 비용이 1위인 암이다. 그 이유는 다른 암에 비해 사망자가 많고 더 젊은 나이(40, 50대)에 사망하기 때문이다. 이에 부작용이 적고 생존율을 높여줄 수 있는 새로운 치료법 개발이 시급한 실정이다. 간암의 치료로는 수술 및 색전술, 약물 치료가 있지만 수술이 어려운 진행성 간암에서는 치료 방법이 극히 제한적이다. 진행성 간암의 표적 항암제로 소라페닙(Sorafenib)이 유일하게 승인돼 임상에서 쓰이고 있는데 국내에서만 매년 200억 원 이상 처방되고 있지만 일부 환자에서만 효능을 나타내며 또한 대부분의 경우 약제 내성이 발생한다. 소라페닙은 말기 간암 환자의 생존 기간을 약 3개월 정도 밖에 늘리지 못하지만 다국적 제약회사에 의해 개발된 많은 후발주자 약물들이 그 효과를 뛰어 넘는데 실패했다. 소라페닙은 다중타겟을 치료표적으로 하여 그 작용 기전이 모호하고 따라서 약제의 내성기전 또한 아직 잘 알려져 있지 않다. 조광현 교수가 이끈 융합 연구팀은 소라페닙 작용 및 내성 기전을 규명하기 위해 소라페닙을 간암 세포에 처리하였을 때 세포내 분자 발현이 변화하는 것을 분석했다. 이를 통해 암세포가 소라페닙에 대항하는 기전을 알아냈고 시스템생물학적 분석을 실시하여 암세포내 단백질 이황화 이성질화 효소(protein disulfide isomerase, PDI)가 암세포가 소라페닙에 대항하는데 핵심적 역할을 하는 것을 발견했으며 이 효소를 차단했을 때 소라페닙의 효능이 훨씬 증가함을 관찰했다. 공동연구를 수행한 서울대병원 내과 윤정환 교수 연구팀은 쥐를 이용한 동물실험에서 소라페닙과 단백질 이황화 이성질화 효소 차단제를 같이 처리하면 간암 증식 억제에 시너지가 있음을 관찰하였고 소라페닙에 저항성을 가진 간암 환자의 조직에서 이 효소가 증가되어 있음을 관찰하여, 향후 임상 적용을 위한 가능성을 확인하였다. 조광현 교수는 “세포내 중요한 역할을 담당하는 분자들은 대부분 복잡한 조절관계 속에 놓여있기 때문에 기존의 직관적인 생물학 연구로 그 원리를 밝히는 것은 근본적인 한계가 있다. 이번 연구는 IT와 BT의 융합연구인 시스템생물학으로 그 한계를 극복할 수 있음을 보여주는 대표적인 사례로, 특히 암에 대한 표적 치료제 작용을 네트워크 차원에서 분석하여 내성을 극복할 수 있는 새로운 치료법을 개발할 수 있는 가능성을 제시하였다”고 말했다. □ 사진 설명 사진1. 간암세포를 이용한 세포실험을 이용해 시뮬레이션 결과를 확인 사진2. 구축된 ER stress 네트워크를 이용한 네트워크 분석 및 컴퓨터 시뮬레이션 결과 사진3. 간암 세포가 소라페닙에 반응할 때 전사체 변화를 분석하여 ER stress 반응이 주요하게 나타남을 발견하게 된 ER stress 네트워크 모델
2017.08.24
조회수 11761
김호민 교수, 뇌의 시냅스 구조 및 기능 조절 단백질 구조 규명
< 김 호 민 교수 〉 우리 대학 의과학대학원 김호민 교수와 DGIST 고재원 교수 공동 연구팀이 신경세포 연결을 조절하는 핵심단백질인 MDGA1의 3차원 구조를 최초로 규명해 시냅스 발달을 조절하는 원리를 제시했다. 이번 연구 내용은 신경생물학 분야 국제학술지 ‘뉴런(Neuron)’ 6월 21일자 Issue Highlight에 게재됐다. 뇌는 많은 신경세포로 이뤄져 있고 두 신경세포가 연접하면서 형성되는 시냅스라는 구조를 통해 신호를 전달하면서 그 기능을 수행한다. 대표적인 시냅스 접착 단백질로 알려진 뉴롤리진(Neuroligin)과 뉴렉신(Neurexin)은 상호작용을 통해 흥분성 시냅스(excitatory synapse)와 억제성 시냅스(inhibitory synapse)의 발달 및 기능을 유지한다. 연구팀은 뉴롤리진(Neuroligin)과 뉴렉신(Neurexin)의 결합을 조절하는 MDGA1의 3차원 구조와 억제성시냅스(inhibitory synapse)의 형성을 저해하는 원리를 최초로 규명했다. 김 교수는 “단백질 구조생물학과 신경생물학의 유기적인 협력 연구를 통해 시냅스 발달 조절에 핵심적인 MDGA1의 구조와 작용 메커니즘을 규명했다는데 의미가 있다”며 “시냅스 단백질들의 기능 이상으로 나타나는 다양한 뇌정신질환의 발병 메커니즘을 폭넓게 이해하는 밑거름이 될 것이다. 향후 뇌신경·뇌정신질환 치료제 개발에 활용될 수 있을 것으로 기대된다.”고 말했다. 이번 연구는 미래창조과학부 기초연구지원사업(개인연구)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 시냅스 조절하는 핵심단백질 구조 최초 규명 그림2. 시냅스 단백질 MDGA1에 의해 조절되는 억제성 시냅스 형성 분자 메커니즘
2017.07.11
조회수 11436
KAIST, 2017 하계 다보스 포럼에 참가해 융합연구 성과 적극 홍보
우리대학이 국내대학 중 유일하게 오는 6월 27일부터 29일까지 중국 다롄시 국제컨퍼런스센터에서 열리는 2017 세계경제포럼(WEF) 하계대회(이하 하계 다보스 포럼)에 초청받아 신 총장 등 참가교수들이 세션 운영과 패널 참여를 통해 첨단 융합연구 사례를 적극 홍보하는 한편 창의적 인재양성과 세계적인 빅 이슈에 대해 다양한 해법 등을 제시할 예정이다. 정식명칭이 “새로운 챔피언들의 연차총회”라고 불리는 하계 다보스 포럼은 중국이 스위스 다보스 포럼과 같이 세계 경제와 글로벌 이슈를 주도하기 위해 2007년부터 세계경제포럼(WEF)과 매년 공동으로 개최해오는 국제회의다. 인공지능·빅데이터 등으로 대표되는 4차 산업혁명 물결이 전 세계를 휩쓸고 있는 가운데 열리는 올해 포럼에는 리커창 중국 국무원 총리를 포함, 화웨이의 궈핑 최고경영자, 로봇·자율주행차 등 다양한 분야에서 기술 혁신에 나서고 있는 바이두의 장야친 총재 등 90여 개국에서 2,000여명의 정치계·관계·재계·학계 인사가 참가한다. ‘제4차 산업혁명시대에 포용적 성장을 이루기(Achieving inclusive growth in the fourth industrial revolution)’라는 주제로 열리는 이번 포럼에서 과학기술 전문가 등 전 세계 90여 개국의 참가자들은 다양한 세션에 참여해 4차 산업혁명시대에 관한 글로벌 혁신이슈와 과학기술, 그리고 포용적 성장에 관해 심도 있는 발표와 토론을 벌일 예정이다. 우리대학은 전 세계 리더들을 대상으로 최신의 연구동향을 소개하고 함께 토론하는 자리인 ‘아이디어스랩(IdeasLab)’을 국내대학 중 유일하게 운영할 계획이다. 우리대학이 아이디어스랩을 운영하는 것은 올해가 6번째다. 올해 아이디어스랩은 ‘미래 소재 (Materials of the Future)’를 주제로 열리는데 우리대학에서 개발한 제4차 산업혁명을 이끌 소재들에 대한 발표와 함께 토론이 진행된다. 회의는 세션 위원장을 맡은 신성철 총장이 우리대학 현황과 아이디어스랩을 소개한 뒤 우리대학 교수진의 최첨단 융합연구 결과에 대한 발표가 이어진다. 신성철 총장은 이와 함께 글로벌대학리더스포럼(GULF)이 주관하는 다양한 세션에 토론리더로 참여해 우리대학 연구원이 수행 중인 제4차 산업혁명시대의 융합연구 사례들과 창의적 교육혁신 등을 주제로 발표와 토론을 진행한다. 신 총장은 국내 유일의 세계경제포럼 산하 전 세계 27개 선도대학 총장들의 모임인 GULF의 멤버다. 이 모임에는 우리대학외에 영국 옥스퍼드대와 캠브리지대를 비롯, 미국 MIT·하버드대·스탠포드대·콜롬비아대와 일본 동경대, 중국 북경대 총장들이 회원으로 참여하고 있다. 신 총장은 이밖에 4차 산업혁명시대의 포용적 성장을 위한 전략세션에도 참여하는 한편 세계경제포럼 이사진과의 회의 등에도 참석하는 등 다양한 활동을 하게 된다. 다보스 포럼과 하계 다보스 포럼에 15년 이상 초청을 받아 온 이상엽 연구원장(생명화학공학과·특훈교수)은 ‘삶의 미래: 의약(Future of Life: Medicine)’세션에서 발표자로 나서 시스템생물학에 의한 전통의약의 선진화와 마이크로바이움(장내 미생물) 등에 대한 연구내용과 미래전망 등에 관해 소개한다. 이 교수는 또 세계경제포럼 바이오텍 글로벌 퓨처카운슬 의장과 4차 산업혁명 카운슬 위원자격으로 다양한 바이오 세션들과 4차 산업혁명 만찬세션에도 참가해서 혁신 융합연구 사례와 4차 산업혁명 속 포용적 성장을 위한 전략 등을 주제로 토론을 진행한다. 신성철 총장은 “KAIST는 그동안 아이디어스랩 운영을 통해 거둔 세계적인 연구 성과를 다보스 포럼에 참석한 전 세계 지도자들에게 발표하고 공유함으로써 좋은 평가를 받아왔다”며 “이번 포럼은 4차 산업혁명 시대가 가져 올 기술변화와 인간중심의 발전방안 등에 대해 심층 논의하는 한편 그동안 KAIST가 추진해 온 혁신적 연구 및 융합연구 성과를 적극 소개하는 자리가 될 것”이라고 강조했다.
2017.06.21
조회수 9984
허원도 교수, 이달의 과학기술인상 4월 수상자 선정
〈 허 원 도 교수 〉 우리 대학 생명과학과 허원도 교수가 이달의 과학기술인상 4월 수상자로 선정됐다. 미래창조과학부와 연구재단은 허원도 교수가 빛으로 생체 내 세포 기능을 제어하는 광유전학 원천기술을 개발해 수술이나 약물투여 없이 레이저나 LED 빛을 쏘아 알츠하이머, 암 등 칼슘이온 관련 질환의 발병원인을 연구할 기술개발과 다양한 차세대 광유전학 기술들을 개발해 새로운 생물학 연구방법을 제시한 공로가 높이 인정돼 이달의 과학기술인상 수상자에 선정됐다고 설명했다. 빛으로 생체 조직의 세포들을 조절하는 광유전학은 신경세포를 단순하게 활성화 또는 비활성화시키는 기술들이 일반적이다. 허원도 교수는 칼슘이온채널 활성화 기술(OptoSTIM1)을 개발해 빛을 이용해 생체 내 칼슘이온을 활성화시킬 뿐만 아니라 빛으로 칼슘농도를 올려 생쥐의 기억력을 2배로 향상시키는 데 성공했다. 이 기술로 빛의 강도와 노출 시간에 따라 원하는 만큼 칼슘이온을 유입시키고 잔류 시간도 조절할 수 있어, 단일세포나 살아있는 동물조직에서 다양한 세포들의 기능을 원격조정할 수 있게 된다. 실험 결과 칼슘이온의 영향을 받는 세포들 중 정상세포, 암세포, 인간 배아 줄기세포 등에 빛을 쐈을 때 칼슘이온 유입이 활성화되는 것이 확인됐다. 빛으로 칼슘이온의 농도를 제어함으로써 세포 성장, 신경물질 전달, 근육 수축, 호르몬 조절 등 생명현상의 조절이 가능해진 것이다. 허원도 교수는 “그동안 채널로돕신을 이용하여 신경세포를 활성화하는 광유전학이 일반적이었는데, 칼슘이온채널 활성화를 통한 새로운 광유전학 기술 개발로 다양한 생물학 연구뿐만 아니라 신경생물학 연구에서 필수적인 연구기법으로 적용할 수 있을 것으로 기대된다.”고 말했다. 이달의 과학기술인상은 과학기술인의 사기 진작과 과학기술 마인드 확산을 위해 우수한 연구개발 성과로 과학기술 발전에 공헌한 연구개발자를 매월 1명씩 선정해 미래부 장관상과 상금 1천만원을 수여하고 있다.
2017.04.07
조회수 8604
활성산소에 대한 세포반응 원리 규명 - 암과 노화 극복의 실마리 제공
우리 학교 연구진이 활성산소* 농도에 따라 세포의 운명이 어떻게 달라지는지 그 원리를 규명해냈다. 활성산소는 세포의 성장을 돕는 한편 세포손상을 일으켜 노화 등을 촉진하는 것으로 알려져 있었다. 이처럼 세포를 죽게도 하고 살리기도 하는 활성산소의 상반된 역할을 설명할 수 있는 실마리가 찾아진 것이다. * 활성산소(ROS) : 인체 대사활동에 의해 발생되는 산소 부산물로 세포의 성장과 분화를 돕고 염증을 억제하는 유익한 기능을 하는 한편 세포손상을 유발하여 암, 당뇨 등 여러 질병을 일으키고, 노화를 촉진시키는 것으로 알려져 있다. 우리 대학 바이오및뇌공학과 조광현 석좌교수(교신저자)가 주도하고 이호성 박사과정 연구원(제1저자), 황채영 박사(공동 제1저자), 신성영 박사가 참여하였으며, 한국생명공학연구원 권기선 박사(교신저자)가 공동으로 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업(도약)과 바이오·의료기술개발사업의 지원으로 수행되었고 연구결과는 사이언스(Science) 자매지인 사이언스 시그널링(Science Signaling)지 6월 3일자에 게재되었다. * 논문명 : MLK3 is part of a feedback mechanism that regulates different cellular responses to reactive oxygen species 연구팀은 활성산소의 농도에 따라 세포의 증식 또는 세포의 사멸이라는 운명을 가르는 분자스위치가 MLK3* 중심의 피드백회로임을 알아냈다. * MLK3 : 루신-지퍼 구조의 인산화효소로 세포 사멸에 관여하는 단백질이다. 적절한 스트레스가 주어지는 환경에서는 세포가 분열하도록 신호를 보내는 반면 과도한 스트레스 상황에서는 오히려 세포분열을 멈추고 세포가 죽도록 유도하는 결정적 단백질회로가 밝혀짐에 따라 향후 활성산소와 관련된 인체질환 연구의 실마리가 될 것으로 기대된다. 연구팀은 활성산소 농도가 낮을 때는 세포증식에 관여하는 ERK* 단백질이 활성화되는 반면 활성산소 농도가 높아지면 세포사멸에 관여하는 JNK** 단백질이 활성화 되는 것을 알아냈다. * ERK(Extracellular signal-regulated kinases) : 세포의 생존 및 증식에 관여하는 대표적인 신호전달 분자 ** JNK(c-Jun N-terminal kinases) : 세포의 스트레스 반응 및 사멸에 관여하는 대표적인 신호전달 분자 나아가 수학모델링과 컴퓨터시뮬레이션 분석, 그리고 분자세포생물학 실험을 융합한 시스템생물학 연구를 통해 MLK3 중심의 피드백회로가 활성산소에 대한 ERK와 JNK 경로 간의 신호흐름 균형을 조절하여 세포 반응을 결정하는 핵심적인 분자스위치임을 밝혀내었다. 조 교수는 “IT와 BT의 융합연구인 시스템생물학 연구를 통해 수수께끼로 남아있던 활성산소에 대한 상반된 세포반응의 원리를 규명한 것으로 향후 활성산소로 인한 노화나 암을 극복하기 위한 연구에 활용될 것으로 기대된다”고 밝혔다. 연구 개요도. (A, B) 낮은 농도의 활성산소에 대해서는 세포 증식에 관여하는 단백질인 ERK가 높은 활성도를 보이는 반면, 높은 농도의 활성산소에 대해서는 세포 사멸에 관여하는 단백질인 JNK가 높은 활성도를 보인다는 것을 실험을 통해 확인하였다. 이 실험 결과는 ERK와 JNK가 활성산소의 농도에 따른 상반된 세포 반응을 유발할 수 있음을 시사한다. (C) 대규모 컴퓨터 시뮬레이션 분석을 통해 MLK3을 매개하는 양성피드백 회로와 MKPs를 통한 ERK와 JNK 간 상호소통이 활성산소의 농도에 따른 ERK와 JNK의 상반된 활성화를 일으키는 핵심회로임을 밝혀내었다. (D) MLK3을 매개하는 양성피드백회로는 활성산소에 대한 ERK와 JNK 경로 간의 신호흐름 균형을 조절하여 세포 반응을 결정하는 분자스위치 역할을 한다.
2014.06.09
조회수 13780
‘폴 너스’ 영국 왕립학회장 특별강연
우리 대학은 11일 오후 1시 30분 본교 KI 빌딩에서 노벨상 수상자 겸 영국 왕립학회장인 폴 너스(Sir Paul Nurse)경을 초청해 ‘생물학에 대한 위대한 견해’를 주제로 특별강연을 개최한다. 폴 너스경은 ‘세포분열, 세포주기의 핵심 조절 인자 발견’으로 2001년 노벨 생리•의학상을 수상했다. 옥스퍼드대학교 미생물학과 교수, 영국 왕립암연구재단 사무국장, 뉴욕 록펠러대학교 총장을 역임하고 현재는 영국 왕립학회장으로 재직 중이다. 강연은 생물학의 3대 개념인 유전자설, 진화론과 자연도태의 원리, 그리고 세포 등이 모든 생명체 연구의 기반단위 역할을 수행하면서 생물학이 발전해 왔으나, 네 번째 관념인 ‘세포의 화학적 성분’의 등장으로 생물학과 과학의 관념이 크게 바뀌고 있다는 내용으로 진행된다. 끝.
2014.03.11
조회수 9361
이상엽 특훈교수, 중국 상해교통대 자문교수 선임
- 대사공학을 중심으로 한 생명공학분야 탁월한 업적 인정받아 - 우리 학교 생명화학공학과 이상엽 특훈교수가 중국 상해교통대 자문교수로 선임됐다. 이 교수는 생명공학분야 자문교수로 올해 8월부터 2018년 7월까지 5년간 활동하게 된다. 베이징대, 칭화대와 더불어 중국 3대 명문대 중 하나인 상해교통대는 노벨상 수상자 등 전 세계적으로 학문적 업적이 뛰어난 학자들을 위원회의 철저한 심사를 거쳐 자문교수로 임명한다. 자문교수들은 대학 연구 및 교육에 관한 제반 사항에 대한 자문을 하며, 특정 연구 분야 공동연구 등을 수행하게 된다. 이 교수는 대사공학을 중심으로 한 생명공학 분야에 탁월한 업적을 인정받아 자문교수로 선임됐다. 이 교수는 미생물 대사공학의 전문가로, 대사공학과 시스템생물학, 합성생물학 등을 접목해 ‘시스템대사공학’을 창시하고, 다양한 화학물질 생산 시스템 개발에 적용해 바이오연료, 친환경 화학물질 생산 공정들을 다수 개발했다. 최근 미국화학회 마빈존슨상, 미국산업미생물생명공학회의 찰스톰상, 암젠 생명화학공학상 등 해외에서 유명한 상을 다수 수상한 이 교수는 현재 한국과학기술한림원, 한국공학한림원, 미국공학한림원 외국회원, 세계경제포럼의 바이오텍 글로벌아젠다카운슬 의장으로 활동 중인 생명공학 분야 세계적인 리더다.
2013.08.14
조회수 9028
조광현 교수, “시스템생물학(Systems Biology)” 저서 출판
우리 학교 바이오및뇌공학과 조광현 석좌교수가 "시스템생물학(Systems Biology)" 저서를 출판했다. 전자공학을 전공하고 시스템과학과 제어공학을 연구하며 ‘생명’시스템의 본질에 호기심을 가지게 된 조광현 교수는 1990년대에 독자적으로 시스템생물학 연구를 시작했으며 IT와 BT 융합연구의 효시가 됐다. 이번 저서는 21세기 새로운 학문 패러다임으로 급부상하고 있는 시스템생물학의 기본 개념과 지식, 그리고 다양한 연구방법론들을 정립하고 집대성한 것으로 총 500페이지로 구성돼 있다. 조 교수는 시스템생물학 연구를 통해 여러 복잡한 생명현상 이면의 동작원리를 시스템 차원에서 규명하여 생명의 본질을 새로운 관점에서 해석해내고 이를 제어하는 기술을 개발하고 있다. □ 용어설명 - 시스템생물학 시스템생물학(Systems Biology)은 시스템과학(IT)을 생명과학(BT)에 응용해 생명체 구성 요소들 간 상호작용 네트워크의 동역학 특성을 분석함으로써 복잡한 생명현상 이면의 동작원리를 시스템차원에서 규명하고 제어하기 위한 학제간 신기술 융합학문이다. 21세기를 들어 암과 같은 복잡한 질병의 새로운 치료법을 발굴하고 환자맞춤형 치료를 구현하기 위한 혁신적인 패러다임으로 각광받고 있다.
2013.08.07
조회수 9701
손상된 DNA의 돌연변이 유발 메커니즘 규명
- DNA 손상을 용인하는 특수 복제효소 Rev1의 조절 메커니즘 밝혀 -- “암 치료 및 예방에 크게 기여할 것” - 우리 학교 화학과 최병석 교수는 생체정보를 저장하는 DNA가 손상돼 회복하고 복제하는 과정에서 돌연변이가 발생하는 메커니즘을 규명했다. 연구결과는 분자세포생물학분야 세계적 학술지 ‘분자세포생물학(Journal of Molecular Cell Biology)’ 6월호 표지논문으로 실렸다. 산업의 급격한 발전으로 현대인들의 유전자는 예전에 비해 훨씬 다양하게 위협받고 있다. 오존층의 파괴로 인해 자외선에 그대로 노출되는 것은 물론 담배연기를 비롯한 수많은 발암물질의 공격은 우리 몸속의 DNA를 손상시킨다. 하루에도 수 만 번 끊임없이 일어나는 DNA의 손상을 효과적으로 회복시켜주지 못하면 암 등 치명적인 질병이 발생한다. 손상된 DNA가 회복반응에 의해 복구되지 않은 상태에서 자기복제가 일어나면 정상적인 복제를 담당하는 폴리머라제는 손상부위에 도달하면 DNA 합성을 정지하게 되고 세포의 죽음을 초래 한다. 인체는 이 같은 비상사태를 맞이해 복제담당 폴리머라제를 잠깐 쉬게 하고 손상된 DNA 부위를 그냥 지나치는 능력이 있는 특수한 복구담당 폴리머라제들을 동원해 손상부위를 통과하고 DNA 합성을 다시 시작한다. 이때 DNA는 많은 오류가 발생돼 심각한 돌연변이를 유발시킨다. 즉, 열악한 상황에 놓인 세포가 복제를 진행하지 못해 죽음을 맞기 보다는 생존을 위해 매우 부정확한 DNA 복제일지라도 선수를 교체하면서까지 복제를 진행하게 된다. 지금까지 학계에서는 Rev1 단백질이 이러한 과정을 조절할 것이라고 추정해 왔지만 그 구조와 기능은 명확하게 밝혀내지 못했다. 연구팀은 핵자기공명 분광법(NMR)과 X-ray를 이용해 DNA 복제과정에서 중추적인 역할을 하는 단백질(Polκ과 Rev1, Rev1과 Rev3/Rev7) 각각의 복합구조를 밝혀냈다. 이를 통해 ▲DNA가 손상 시 돌연변이가 유발되는 메커니즘 ▲DNA 복제효소간의 상호작용 ▲손상부위를 통과한 합성된 DNA가 더 연장되는 메커니즘을 분자수준에서 규명했다. 암의 직접적인 발병 원인이 DNA의 손상인 만큼 이에 대한 메커니즘을 밝혀내고 응용하면 개인별로 암의 원인을 제거할 수 있어 부작용 없는 맞춤형 항암제를 개발할 수 있을 것으로 전망된다. 최병석 교수는 이번 연구에 대해 “판코니 빈혈 환자들에게 암이 많이 발생되는 문제를 조사해보니 DNA복제 시 회복 기능이 고장 나 있더라”며 “손상된 DNA의 회복과 복제 과정에 대한 메커니즘 규명을 통해 암을 예방하고 치료하는데 크게 기여할 것”이라고 말했다. 이번 연구는 KAIST 화학과 최병석 교수와 류디난 박사의 주도로 수행됐고, KAIST 화학과 이지오 교수, 고준상 박사, 임경은 박사과정, 기초과학지원연구원 류경석 박사와 황정미 박사가 참여했다. 그림1. Polκ/Rev1/Rev7/Rev3 단백질 복합체 구조 그림2. Rev1, Polκ와 Rev7와 Rev3를 상호형질 주입된 세포의 공초점 현미경 영상 그림3. 논문표지
2013.06.03
조회수 12862
KAIST 인문사회과학연구소, 제3회 시민인문강좌 무료 개설
- 일반 시민 대상 25일부터 홈페이지에서 접수 - KAIST(총장 강성모)가 일반 시민을 대상으로 3회째 인문 및 교양 강좌 프로그램을 무료로 개설한다. KAIST 인문사회과학연구소가 주최하는 ‘시민인문강좌’는 4월 30일부터 6월 4일까지 매주 화요일 오후 3시부터 2시간 동안 KAIST 인문사회과학동 국제세미나실에서 총 6회에 걸쳐 개최된다. 인문학 분야에 관심이 많은 일반인이라면 누구나 시민강좌에 참석할 수 있다. 참가 신청은 4월 25일에서 28일까지 인문사회과학과 홈페이지(http://hss.kaist.ac.kr)에서 접수 가능하며 수강료는 전액 무료다. ‘과학문명사의 발자취’라는 주제로 진행되는 이번 시민강좌에서 수강생은 세계과학문명의 탄생에서부터 현대에 이르기까지 과학이 인류문명 발전에 기여한 부분에 대한 이해를 넓히고, 한국 과학문명 발달사를 고찰함으로써 우리나라 과학의 위상을 다시 생각해보는 기회를 가진다. 6개 강좌의 주제는 ▴서양 고대 과학문명의 시작 ▴갈릴레오·데카르트·뉴턴 등 대과학자가 일군 17세기 유럽의 과학혁명 ▴인체에 대한 탐구 영역을 근본적으로 바꾼 20세기 분자생물학의 혁명 ▴고대 동아시아 과학 문명과 한국 과학문명의 시작과 전개 ▴조선 후기 동서양 과학문명의 조우 ▴한국과학문명의 황금기: 세종시대의 과학적 성취와 실패 요인이다. 강사진은 과학문명사 분야의 국내 최고 권위자들로 구성되었다. 한국에서 과학사 연구를 개척한 “과학사의 전도사”로 불리는 송상용(한국과학기술한림원) 교수, 한국과학사 연구의 패러다임을 바꾼 박성래(전 외대 부총장) 교수, 조선 후기 동서 교류사의 권위자인 임종태(서울대 과학사 및 과학철학 협동과정) 교수와 함께 서양과학사 연구에서 혁혁한 성과를 내고 있는 박민아(카이스트 과학정책대학원) 연구 교수, “한국의 과학과 문명”(총 37권 시리즈) 연구책임을 맡고 있는 한국과학문명사연구소장 신동원(카이스트 인문사회과학과) 교수가 강좌에 참여한다. 이번 강좌를 총괄하는 신동원 KAIST 인문사회과학과 교수는 “현대 사회는 과학문명에 기반을 두고 있으며 전근대 시대에도 과학은 한 문명의 물질적, 정신적인 토대가 되었다. 이번 인문학 강좌에 많은 시민이 참여해 서양, 동양, 한국 과학문명을 전반적으로 이해하는 소중한 기회가 됐으면 좋겠다”라고 말했다. 강좌에 대한 상세내용은 홈페이지(http://hss.kaist.ac.kr/)에서 확인하면 된다. 붙임: 2013년 시민인문강좌 안내 2013년 KAIST 제3회 시민인문강좌 <과학문명사의 발자취> ⚫기간: 2013년 4월 30일~6월 4일(총6회) ⚫시간: 화요일 오후 3시~5시 ⚫장소: 카이스트 인문사회과학동 국제세미나실(N4, 1431호) ⚫강의 시간표 일시 연사 분야 제목 4.30 신동원 과학사 (KAIST/인문사회과학과 부교수) 1강. 과학문명을어떻게 볼 것인가? -한국고대과학문명의 탐색 5.7 송상용 과학사․과학철학 (한국과학기술한림원) 2강. 고대과학문명 5.14 박민아 서양과학사 (KAIST/과학기술정책대학원 연구교수) 3강. 뉴턴의 과학, 뉴턴의 신 5.21 박민아 서양과학사 (KAIST/과학기술정책대학원 연구교수) 4강. DNA 이중나선 발견의 뒷이야기 5.28 임종태 한국과학사 (서울대학교/과학사·과학철학 협동과정 부교수) 5강. 서양과학과의 첫 만남, 그 첫 인상 –300년 전 한국 과학의 단면들 6.4 박성래 한국과학사 (한국과학기술한림원) 6강. 세종의 과학적 성취-조선 근대화의 좌절 문의: 카이스트 인문사회과학연구소 T. 350-4687, E-mail. baobab@kaist.ac.kr
2013.04.23
조회수 12831
시스템생물학 연구로 표적항암제 내성 원리 규명
- 분자세포생물학지 발표, “표적항암제 내성 극복 및 암 생존률 향상 위한 단초 마련”- 최근 항암치료법으로 주목 받고 있는 표적항암제(멕 억제제, MEK inhibitor)의 근본적인 내성 원리가 국내 연구진에 의해 밝혀져, 향후 항암제 내성을 극복하고 암 생존률을 높일 수 있는 토대를 마련하였다. 특히 이번 연구는 IT와 BT의 융합연구인 시스템생물학 연구로 이루어졌다는 점에서 큰 의미가 있다. 우리 학교 조광현 교수가 주도하고 원재경 박사과정생, 신성영 박사, 이종훈 박사과정생, 허원도 교수 및 양희원 박사가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약/도전연구)과 기초연구실사업 및 WCU(세계수준의 연구중심대학) 육성사업의 지원으로 수행되었다. 연구결과는 분자세포생물학 분야의 권위 있는 학술지인 ‘분자세포생물학지(Journal of Molecular Cell Biology, IF=13.4)’의 표지논문으로 선정되어 6월 1일자에 게재되었다. (논문명: The cross regulation between ERK and PI3K signaling pathways determines the tumoricidal efficacy of MEK inhibitor) 표적항암제는 종양세포 속에 있는 특정 신호전달경로의 분자를 목표(target)로 하는데, 최근 폐암, 유방암 등 일부 종양에서 기존 항암제와 달리 부작용이 적고 임상효능이 높아 전 세계 과학자들로부터 큰 주목을 받고 있다. 특히 표적항암제는 개인 맞춤형 항암치료제로 개발될 수 있어 기대를 모으고 있다. 그러나 실제 임상 또는 전(前)임상 단계에서 많은 표적항암제의 내성이 관찰되어, 결국 신약개발로 이어지지 못하는 경우가 많다. 또한 효능은 있더라도 생존율이 낮거나 재발하는 경우가 빈번한 것으로 알려졌다. 대표적인 종양세포 신호전달경로인 어크(ERK) 신호전달경로는 대부분의 종양에서 활성화되는 경로인데, 특히 피부암이나 갑상선암은 이 경로에 있는 물질(비라프, BRAF)의 변이로 활성화되어서 암으로 발전하는 사례가 많다. 이 경우 어크 신호전달경로를 표적으로 하는 멕 억제제가 효과적인 치료법으로 알려져 있지만, 결국 내성이 발생하여 암이 다시 진행된다. 조광현 교수가 이끈 융합 연구팀은 어크 신호전달경로를 표적으로 하는 멕 억제제에 대한 내성과 그 근본원리를 수학모형과 대규모 컴퓨터 시뮬레이션을 이용해 분석하고, 그 결과를 분자생물학실험과 바이오이미징*기술을 통해 검증하였다. *) 바이오이미징 : 세포 또는 분자 수준에서 일어나는 현상을 영상으로 확인하는 기술 조 교수팀은 종양의 다양한 변이조건을 컴퓨터 시뮬레이션과 실험을 수행한 결과, 멕 억제제를 사용하면 어크 신호전달은 줄어들지만, 또 다른 신호전달경로(PI3K로의 우회 신호전달경로)가 활성화되어 멕 억제제의 효과가 반감됨을 입증하였다. 또한 이러한 반응이 신호전달 물질간의 복잡한 상호작용과 피드백으로 이루어진 네트워크 구조에서 비롯되었음을 밝히고, 그 원인이 되는 핵심 회로를 규명하여 이를 억제하는 다른 표적약물을 멕 억제제와 조합함으로써 표적항암제의 효과를 증진시킬 수 있음을 제시하였다. 조광현 교수는 “이번 연구는 멕 억제제에 대한 약물저항성의 원인을 시스템 차원에서 규명한 첫 사례로, 약물이 세포의 신호전달경로에 미치는 영향을 컴퓨터 시뮬레이션으로 예측함으로써 표적항암제의 내성을 극복할 수 있음을 보여주었다. 또한 신호전달 네트워크에 대한 기초연구가 실제 임상의 약물 사용에 어떻게 적용될 수 있는지와 표적항암물질의 저항성에 대한 근본원리를 이해하고, 그 극복방안을 찾아내는 새로운 융합연구 플랫폼을 제시한 것으로 평가받고 있다”고 연구의의를 밝혔다.
2012.06.12
조회수 15803
바이오 및 뇌공학의 미래를 미리 본다
- KAIST 바이오및뇌공학과 10주년 맞이해 심포지엄 개최 - 우리 학교는 바이오및뇌공학과 10주년을 맞아 이 분야 발전 가능성을 미리 엿볼 수 있는 ‘바이오 및 뇌공학의 미래’ 심포지엄이 8일 오후 1시 30분부터 300명이 넘는 고등학생과 학부모가 참가한 가운데 성황리에 개최됐다고 밝혔다. 이번 심포지엄은 KAIST 바이오및뇌공학과 이도헌 학과장의 개회사를 시작으로, 교내 응원동아리 ‘엘카’의 축하공연, 학생 3분 발표, ‘디지털생물학(Digital Biology)’의 저자인 영국 런던대 피터 벤틀리(Peter Bentley) 교수와 KAIST 정재승 교수의 기조강연, 그리고 바이오 및 뇌공학의 미래에 대한 특별강연 순으로 진행됐다. 2002년 정문술 前 미래산업 회장이 “미래 한국을 이끌어 갈 융합형 인재를 키워 달라”며 KAIST에 300억을 기부해 설립된 바이오및뇌공학과의 10주년을 기념해 개최된 이번 심포지엄은 바이오 및 뇌공학을 알기 쉽게 전하기 위해 중고등학생들의 눈높이에 맞춰졌다. 특히, ‘학생 3분(分) 발표’는 이 학과에서 치열한 예선을 거쳐 선발된 4명의 학생이 미래에 가능한 관련 기술들을 3분 이내에 영상 및 연극으로 흥미롭게 구성해 참가한 고등학생과 학부형들로부터 인기를 끌었다. 이도헌 바이오및뇌공학과 학과장은 “10년전 학과를 설립할 때 큰 도움을 주신 김영환 당시 과학기술부 장관과 홍창선 당시 KAIST 총장을 포함한 많은 분들께 깊은 감사의 뜻을 전한다”며 “앞으로 KAIST 바이오및뇌공학과가 더욱더 국민의 자랑이 되고 사랑을 받을 수 있는 학과가 되도록 노력하겠다”고 포부를 밝혔다. [사진] 홍창선 前 KAIST 총장이 축사를 하고 있다.
2012.05.08
조회수 10589
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
>
다음 페이지
>>
마지막 페이지 7