-
스타트업 4.0 / 2017 아이디어 팩토리 제품전시회, 25일 개최
‘아이디어 팩토리(Idea Factory)’는 대학생들의 신선하고도 기발한 아이디어가 창업으로 이어질 수 있게 시제품 제작을 지원하는 제도이다. 국내대학 중 우리대학이 지난 2014년 이 제도를 처음으로 도입, 운영 하고 있는 만큼 우리대학의 아이디어 팩토리는 자타공인 ‘국내 1호 아이디어 팩토리’인 셈이다. 올 4월 현재 전국의 10개 대학에서 아이디어 팩토리를 운영 중이다.
우리대학을 비롯해 전남대·경일대·경남대·한국해양대·단국대 등 전국 6개 대학 학생들이 톡톡 튀는 아이디어를 내 개발한 시제품을 한자리에서 모두 볼 수 있는 전시회가 대전에서 열린다. 우리대학은 25일 오전 10시부터 대전 본교 스타트업 스튜디오빌딩(W8) 로비에서 KAIST 창업원(원장 김병윤) 주관으로 주요 내· 외빈 인사가 참석한 가운데 ‘스타트업 4.0 / 2017 아이디어 팩토리 제품 전시회’를 개최한다.
올해로 4회째를 맞는 이번 전시회에는 우리대학에서 6개, 전남대와 경일대·경남대·단국대에서 각각 5개, 그리고 한국해양대가 4개의 시제품을 출품하는 등 6개 대학에서 주목을 받았던 시제품 30종이 전시된다. 우리대학이 이번 전시회에 출품한 ▲시각장애인을 위한 점자프린터 ▲멀티 헤드 3D 프린터 ▲아이 시터(Eye Sitter) 등 총 6종의 시제품 가운데 단연 눈에 띠는 제품은 3D 프린팅 교육 콘텐츠인 ‘놀이동산 속 과학 찾기’다.
‘놀이동산 속 과학 찾기’는 우리 대학의 학생 창업기업인 HiX(대표 서석현)가 자체 개발한 블록 기반의 3D 설계 프로그램을 이용해 제작한 중등 교육용 콘텐츠다. 과학 원리를 활용한 교육 및 자기주도 학습이 가능하다는 장점 때문에 기존 경쟁업체 제품과의 차별화가 확연하다. 현재 경기지역 일부학교와 캠프에서 시범 운영 중이며 타 지역에서도 판매권에 대한 논의가 진행 중에 있다. 이와 함께 16개의 헤드를 한 번에 제어해서 출력할 수 있는 ‘멀티 헤드 3D 프린터’또한 3D 프린터의 한계점으로 여겨지는 대량생산에 대한 문제를 해결하기 위한 학생들의 아이디어가 돋보이는 제품이다. 우리대학은 이번 출품작 중 몇몇 제품은 사업화가 바로 가능하기 때문에 곧 상용화될 것으로 내심 큰 기대를 걸고 있다.
이밖에 ▲ 시각장애인을 위해 스스로 학습·복습이 가능한 점자학습장치 ‘PUSH DOT(전남대)’와 ▲ 섬유강화 복합제를 이용해 개발한 ‘도시형 자전거 휠(한국해양대)’▲ 반려견의 짖는 소리로 인해 발생하는 소음을 줄여주는 ‘반려견 짖음 방지 목걸이(경일대)’▲ 재활용 쓰레기를 쓰레기통 모양으로 인식한 후 분리시켜 버릴 수 있도록 한 ‘디자인 분리 쓰레기 통(경남대)’▲ 자체개발한 웹크롤링 기술을 이용해서 뉴스뿐만 아니라 SNS 데이터를 일괄 수집·분석해 여론 서비스를 제공하는 ‘인사이트 아이(단국대)’등 참신하면서도 다양한 제품을 만날 수 있다.
이번 행사를 주관한 김병윤 창업원장은 “제품 전시회를 통해 전국의 대학생들에게 아이디어만 있으면 누구나 창업에 도전할 수 있다는 자신감을 갖게 하는 창업문화가 확산되고 창업을 원하는 학생들 간에 정보를 교환하고 나누는 교류의 장이 됐으면 한다”고 말했다. 한편 우리대학 창업원이 운영 중인 아이디어 팩토리는 2014년 출범이후 지난 4년간 60건 이상의 시제품 개발을 지원하고 교육용 3D 프린터 등 기술창업 3건, 기술이전 1건의 성과를 거두는 등 학생들의 창의적 아이디어를 대상으로 신속한 사업화 지원을 통해 혁신적인 제품개발 촉진과 창업활동을 지원하고 있다.
2017.04.24
조회수 12939
-
제7회 KINC 융합연구상 시상식 개최
(왼쪽부터) 이도창 생명화학공학과 교수, 배병수 신소재공학과 교수, 정희태 나노융합연구소 소장, 정후영 UNIST 교수, 윤다은 생명화학공학과 박사과정, 김회윤 신소재공학과 박사과정, 최성율 전기및전자공학부 교수, 이건재 신소재공학과 교수
우리 대학 나노융합연구소(소장 정희태)는 본교 KI빌딩에서 교수님들의 융합연구를 장려하고 대학원생 및 연구원들의 연구 의욕 고취를 위한 '제7회 KINC 융합연구상 시상식' 을 22일(수) 개최했다.
올해로 일곱 번째를 맞이하는 시상식은 연구자의 노고를 격려하고, 우수 연구로 선정된 연구 성과를 구성원들과 함께 공유함으로써 융합연구 분위기를 활성화 시키자는 취지로 마련되었다.
KINC 융합연구상은 공모를 통해 접수된 논문을 대상으로 창의성과 융합성이 가장 우수한 논문 2편을 선정하여 논문에 참여한 공동 제1저자와 교신저자에게 각각 상패와 상금을 수여한다.
첫 번째 수상 팀은 고온 및 고습에 견딜 수 있는 퀀텀닷 기술을 개발한 신소재공학과 배병수 교수, 생명화학공학과 이도창 교수 연구팀으로, 연구 결과는 화학분야의 권위 있는 국제 학술지인 ‘미국화학회 학회지(Journal of the American Chemical Society, JACS)’ 2016년 12월 21일자에 게재됐다.
두 번째 수상 팀은 초단시간의 레이저를 조사해 단결정 탄화규소(SiC)의 고체 상분리 현상을 발견하고 이를 활용한 그래핀 생성원리를 밝힌 신소재공학과 이건재 교수와 전기및전자공학부 최성율 교수 연구팀으로, 연구결과는 자연과학 및 응용과학 분야 세계적인 학술지 '네이처 커뮤니케이션즈(Nature Communications)' 2016년 11월 30일자에 게재됐다.
정희태 소장은 “세계적으로 인정받는 우수한 연구 성과들이 많이 도출되어 매우 기쁘며, 교내 융합연구의 발전적인 연구 환경을 조성하기 위하여 앞으로 행사를 더욱 확대해 나갈 계획이다.”라고 뜻을 밝혔다.
※ KAIST 나노융합연구소는 나노과학기술분야에 대해 학과간의 경계를 허물고 진정한 학제 간 공동연구를 촉진하여 창조적인 융합연구를 추진하기 위해 지난 2006년 6월 KAIST 연구원 산하에 설립되었다. 현재 나노융합연구소에서는 총 85명의 겸임교수가 참여하고 있으며, 최근에는 나노연구의 미래 이슈와 KAIST 경쟁력을 고려하여 재설정한 중점 연구 분야의 연구역량을 결집하여 연구를 수행하면서 세계 최고 수준의 나노융합연구 허브 대학연구소로 성장해 나가고 있다.
2017.03.22
조회수 18526
-
이건재, 최성율 교수, 고체 상분리 현상에 의한 그래핀 생성원리 발견
우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 최성율 교수 연구팀이 초단시간의 레이저를 조사해 단결정 탄화규소(SiC)의 고체 상분리 현상을 발견하고 이를 활용한 그래핀 생성원리를 밝혔다.
기존에 활용되고 있는 화학기상증착(Chemical Vapor Deposition, CVD) 기반의 그래핀 합성법이 상당시간의 고온 공정을 필요로 하는 것과 달리 새로운 레이저 열처리법은 상온환경에서 단시간의 공정으로 그래핀을 합성할 수 있어 향후 그래핀 활용의 폭을 넓힐 수 있을 전망이다.
연구진은 단결정 탄화규소 소재 표면에 나노초(10억분의 1초) 단위의 극히 짧은 시간 동안 레이저를 쪼여 표면을 순간적으로 녹였다가 다시 응고시켰다. 그러자 탄화규소 표면이 두께 2.5나노미터의 탄소(C) 초박막층과 그 아래 두께 5나노미터의 규소(Si, 실리콘)층으로 분리되는 상분리 현상이 나타났다. 여기에 레이저를 다시 쪼이자 안쪽 실리콘층은 증발하고, 탄소층은 그래핀이 됨을 확인했다.
특히 탄화규소와 같은 이종원소 화합물과 레이저의 상호작용에 대한 연구는 아주 짧은 시간에 일어나는 복잡한 상전이 현상으로 지금까지 그 규명이 쉽지 않았다. 그러나 연구진은 레이저에 의해 순간적으로 유도된 탄소 및 실리콘의 초박막층을 고해상도 전자현미경으로 촬영하고, 실리콘과 같은 반도체 물질이 고체와 액체 상태일 때 나타나는 광학 반사율이 다르다는 점에 착안해 탄화규소의 고체 상분리 현상을 성공적으로 규명해낼 수 있었다.
연구에 활용된 레이저 열처리기술은 AMOLED(능동형 유기발광다이오드) 등 상용 디스플레이 생산공정에 널리 활용되고 있는 방법으로, CVD 공정과 달리 레이저로 소재 표면만 순간적으로 가열하기 때문에 열에 약한 플라스틱 기판 등에도 활용이 가능하여, 향후 플렉시블 전자 분야로 응용의 폭을 넓힐 수 있을 것으로 기대된다.
이 교수는 "이번 연구 결과를 통해 레이저 기술이 그래핀과 같은 2차원 나노소재에 보다 폭넓게 응용될 수 있을 것이다”고 말했다.
최 교수는 "앞으로 다양한 고체 화합물과 레이저의 상호작용을 규명해 이들의 상분리 현상을 활용하면 새로운 나노소재 개발을 기대할 수 있을 것이다”고 말했다.
이번 연구결과는 자연과학 및 응용과학 분야 학술지 '네이처 커뮤니케이션즈(Nature Communications)' 최신호에 게재됐다.
□ 그림 설명
그림1. 단결정 탄화규소의 용융을 통한 상분리 현상의 원리를 밝혀내는 분자동역학 시뮬레이션의 모식도
그림2. 레이저에 의해 순간적으로 유도된 단결정 탄화규소의 용융 및 응고 현상을 증명하는 실시간 시간 분해능 반사율 (In-situ time-resolved reflectance) 측정 스펙트럼
그림3. 레이저가 조사된 탄화규소 표면의 전체적인 전자현미경 사진(a) 및 이로 의한 탄소와 실리콘으로의 상분리 현상을 촬영한 고해상도 전자현미경 사진(b)
2016.12.05
조회수 16947
-
이동영 박사과정, 복합구조학회 최우수 논문상 수상
이 동 영 박사과정
우리 대학 기계공학과 이동영 박사과정(지도교수 이대길)이 지난 6월 포르투갈 리스본에서 열린 제 18회 복합구조학회(ICCS : International Conference on Composite Structures)에서 최우수 논문상을 수상했다.
ICCS는 2년마다 열리는 복합재료 분야 최고 권위의 국제 학회이다. 올해는 총 680편의 논문이 발표됐고 그 중 이동영 학생을 포함한 2편의 논문이 최우수 논문상에 선정됐다.
논문 제목은 ‘고온 연료 전지용 가스켓 일체형 탄소/실리콘 복합재료 분리판(Gasket-integrated carbon/silicone elastomer composite bipolar plate for high-temperature PEMFC)’이다.
이 연구를 통해 기존 복합재료의 틀을 벗어나 고무로 복합재료 분리판을 개발하고, 연료 전지의 상용화에 걸림돌이었던 가스켓을 일체형으로 만들었다. 이를 통해 연료 전지의 성능 및 생산성을 크게 향상시켰다.
이 논문은 구글 스콜라 매트릭스(Google Scholar Metrics)의 기계공학 분야 1위 저널인 컴포지트 스트럭쳐스(Composite Structures) 9월호에 게재될 예정이다.
이동영 학생은 “다양한 분야의 학문을 융합하여 콜럼버스의 달걀과 같은 혁신을 이끌어 내는 이대길 교수님의 지도 덕분에 수상이 가능했다”며 “지속적인 기술 개발을 통해 에너지 문제 해결 및 복합재료 원천기술의 국산화에 기여하고 싶다”고 말했다.
이번 연구는 이동영 박사과정 외에 임준우 전북대 교수, 최일범 국방과학연구소 선임연구원, 남수현 박사과정의 참여로 진행됐다.
2015.07.03
조회수 15286
-
이산화탄소 포집 효율을 획기적으로 향상시킨 물질 개발
- 질소대비 CO2 선택성 300배 증가, 네이처 커뮤니케이션즈 게재 -
우리 학교 WS 대학원의 자페르 야부즈 교수, 알리 조스쿤 교수, 정유성 교수 공동연구팀이 질소대비 이산화탄소 선택성을 300배 높인 세계 최고 수준의 CO2흡수제를 개발했다.
최근 전 세계적으로 기후변화 대응을 위한 현실적 대안으로 이산화탄소를 포집하여 저장․처리하는 CCS*기술의 중요성이 부각되고 있다.
* CCS : Carbon Capture and sequestration
현재 이산화탄소를 포집하는 기술로는 액상흡수제를 이용한 습식포집기술, 고체 흡수제를 이용한 건식포집기술, 필름과 같은 얇은 막을 이용하는 분리막 포집기술이 있다.
발전소, 제철소와 같이 이산화탄소 대량 배출원에 적용하게 되는 동 기술은 고온과 다량의 수분이 존재하는 극한조건하에서도 포집효율이 낮아지지 않는 것이 연구개발의 핵심과제이다.
기존에 연구되었던 건식흡수제인 MOF(Metal Organic Framework)나 제올라이트의 경우는 수분 조건에서 불안정하거나 합성이 비싸다는 단점이 존재하였다.
연구팀이 이번에 개발한 흡수제는 건식흡수제로서 ‘아조-코프(Azo-COP)’라고 명명하였는데 값비싼 촉매 없이도 합성이 가능하여 제조비용이 매우 저렴하며, 고온 및 수분 조건에서도 안정한 특성을 나타내었다.
코프(COP)는 간단한 유기분자들을 다공성 고분자형태로 결합시킨 구조체로 동 연구팀이 처음으로 개발한 건식 이산화탄소포집물질이다.
연구팀은 이물질에 ‘아조(Azo)’라는 기능기를 추가로 도입함으로써 질소를 배제하고 혼합기체 중에서 이산화탄소만을 선택적으로 포집하도록 하였다.
‘아조(Azo)"기를 포함하는 아조-코프(Azo-COP)는 일반적 합성방법을 통해 쉽게 제조하였으며, 값비싼 촉매대신 물과 아세톤 등의 용매를 사용해 불순물도 쉽게 제거함으로써 제조비용을 대폭 낮출 수 있었다.
특히, 아조-코프(Azo-COP)는 이산화탄소와 화학적 결합이 아닌 약한 인력을 통해 결합함으로써 흡착제 재생 에너지 비용을 혁신적으로 낮출 수 있으며,
350℃ 정도의 극한 조건에서도 안정해 이산화탄소 포집제로서 활용은 물론 더욱 가혹한 환경의 다양한 분야에서 포집 물질로 활용될 것으로 기대된다.
해당성과는 교과부 산하 (재)한국이산화탄소포집및처리연구개발센터(센터장 박상도) 및 KAIST EEWS 기획단의 지원으로 이루어졌다.
자페르 야부즈 교수와 알리 조스쿤 교수는“Azo-COP를 CO2, N2 분리 실험에 적용한 결과 포집 효율이 수백배 향상됐다”며 “이 물질은 촉매가 필요 없고, 수분 안정성, 구조 다양성 등 우수한 화학적 특성으로 인해 앞으로 이산화탄소 포집을 비롯한 많은 분야에 활용될 것으로 기대한다”고 밝혔다.
한편, 이번 연구 결과는 세계적 학술지인 ‘네이처’ 자매지 ‘네이처 커뮤니케이션즈’ 1월 15일자로 게재됐다.
2013.02.01
조회수 16287
-
KAIST 출신 서명은 박사, 사이언스지 논문 게재
- 미국 미네소타 주립대서 손쉽게 다공성 고분자 물질 만드는 방법 개발 -
우리 학교 화학과 졸업생(지도교수: 김상율)으로 미국 미네소타 주립대에서 박사 후 연구원으로 재직 중인 서명은 박사가 작은 세공이 그물처럼 연결돼 있는 다공성 고분자 물질을 손쉽게 만드는 방법을 개발해 세계적 학술지 ‘사이언스(Science)’ 6월 15일자 온라인판에 실렸다.
이 연구결과는 물속의 미세한 불순물을 선택적으로 제거하는 나노 여과막에 적용하면 정수처리, 하수처리, 해수 담수화 등에 폭넓게 활용될 것으로 전망된다.
서 박사 연구팀은 서로 섞이지 않는 두 고분자로 구성된 블록 공중합체가 미세 상분리를 통해 나노 구조를 형성하는 현상을 이용했다.
그러나 기존 연구와는 달리 블록 공중합체가 합성되는 중에 미세 상분리를 유도해 나노 구조를 형성하는 동시에, 가교 반응을 통해 구조를 굳혀 두 고분자가 서로 섞이지 않으면서도 각각의 고분자는 연속상을 이루는 매우 안정한 나노 구조체를 제조했다.
이렇게 얻어진 나노 구조체 중 한 종류의 고분자를 선택적으로 제거해 열적・기계적으로 높은 안정성을 갖는 다공성 고분자 물질을 얻는 데 성공했다.
서명은 박사는 “이번 연구결과는 블록 공중합체를 구성하는 고분자의 길이를 조절함으로써 세공의 크기를 쉽게 조절할 수 있고, 세공의 크기 분포가 균일하며, 세공의 구조가 물질 전달에 매우 효과적인 그물상 구조인 것이 큰 특징”이라고 말했다.
서 박사는 또 “나노 구조체를 형성하는 과정에서 용매를 사용하지 않고 사용하는 단량체를 거의 전량 소모하기 때문에 별도의 후처리가 필요 없고, 가교 반응이 구조 형성 과정에서 동시에 진행되므로 별도로 가교 반응을 수행할 필요가 없다”고 강조했다.
특히, 이번에 개발한 세공은 3차원적 그물상 구조를 갖고 있다.
따라서 세공의 방향에 따라 물질이동이 어려운 1차원적 원통형 세공에 비해 세공의 방향에 상관없이 물질이 이동할 수 있고, 일부가 막히더라도 돌아서 이동할 수 있는 특성상 물질 전달에 더욱 효과적이다.
다공성 고분자 물질은 기존에 잘 알려진 제올라이트나 메조포러스 실리카 등의 다공성 무기 물질과 같이 표면적이 넓고 일정한 크기의 세공을 지녀 물질의 정제 및 분리 또는 반응에 사용될 수 있는 장점을 갖고 있다.
아울러 비약적으로 발달한 고분자 합성 및 공정 기술을 바탕으로 응용 분야에 알맞은 화학적 구조와 물성을 갖는 고분자 골격 및 표면을 구현할 수 있고 나아가 원하는 형태로 물질을 가공할 수 있을 것으로 기대돼 학술적∙산업적으로 매우 높은 가치가 있는 것으로 평가받고 있다.
한편, 서 박사는 98년 KAIST 화학과에 입학해 석사, 박사학위를 모두 KAIST에서 받은 토종 국내파 박사로, 2008년에 졸업해 미네소타 주립대 화학과 마크 힐미어(Marc A. Hillmyer) 교수 연구팀에서 박사 후 연구원으로 일해 왔다.
2012.06.26
조회수 13071
-
고용량 분자 저장기술 개발 성공
- KAIST EEWS 대학원 Yaghi 교수팀, 고용량의 단백질 저장체 개발 성공해 사이언스(Science)지 5월호에 실려 -
- “선택적으로 반응하는 신약 개발에 도움될 것” -
다양한 종류의 단백질 물질을 고용량으로 저장할 수 있는 기술이 KAIST 연구진에 의해 개발됐다.
우리대학 EEWS대학원 오마르 야기(Omar M. Yaghi)교수 연구팀이 커다란 크기의 기공을 갖는 금속유기골격구조체를 개발해 여러 종류의 단백질을 고용량으로 저장할 수 있는 원천기술을 확보하는데 성공했다. 이번 연구 결과는 세계적 학술지 ‘사이언스(Science)’ 5월호(25일자)에 실렸다.
이번에 개발된 기술은 다양한 종류와 크기의 단백질을 저장 할 수 있어 ▲고용량 고집적의 신약 개발 ▲특정 바이러스 분리 물질 개발 ▲인체 내에서 악성 반응을 일으키는 특정 단백질의 선택적 제거 ▲특정 부위에서 작용하는 신약 수용체 개발 ▲희귀 고분자 단백질 영구 보존 등 다양한 분야에 폭넓게 활용될 수 있을 것으로 학계는 기대하고 있다.
이와 함께 줄기세포를 포한한 모든 인체의 세포까지 선택적으로 분리하고 영구히 저장할 수 있어 난치병 치료나 생명연장을 위한 의학기반 기술 발전에도 크게 도움이 될 것으로 예상된다.
금속유기골격구조체는 분자단위에서 같은 물질들이 일정한 규칙과 간격을 가지고 배열돼 생성되는 것이기 때문에, 1그램당 축구장과 같은 크기의 표면적을 가지고 있으며 고용량의 물질 저장 능력과 빠른 물질 이동특성을 가지고 있다.
따라서 많은 양의 물질을 내부에 저장할 수 있어 최근 다양한 종류의 차세대 저장체 연구에 필수적인 장비로 사용되고 있다.
그러나 지금까지의 금속유기골격구조체는 7.0Å(옴스트롬·100억분의 1m) 크기의 아주 작은 단분자만을 사용했기 때문에 커다란 크기의 고분자 및 단백질의 저장에는 활용될 수 없었으며 고용량 가스 저장체로서의 가능성만 입증된 상태였다. 게다가 기존의 금속유기골격구조체의 경우 구조가 내부에서 서로 엇갈려 있어 큰 크기의 단백질을 저장하는 것은 사실상 불가능했다.
야기(Yaghi) 교수 연구팀은 5nm 이상의 크기를 가지는 분자체를 이용한 금속유기골격구조체를 개발해 이러한 문제들을 해결하고, 금속유기골격구조체의 주기적인 기공을 처음으로 투과전자현미경을 이용해 관찰하기도 했다.
연구팀은 커다란 크기의 분자들을 이용해 금속유기골격구조체를 만들고 단백질처럼 아주 큰 물질을 구조체 내부에 일정하게 배열시켜 효율적으로 저장하는 방법을 고안해 내 세계 최초로 규칙적 분자구조체 내부에 비타민과 미오그로빈(Myoglobin) 같은 단백질을 고용량으로 저장하는데 성공했다.
야기(Yaghi) 교수는 “이번 연구는 그동안 불가능했던 큰 크기의 단백질 및 고분자들을 규칙적 배열을 가지는 다공성 물질을 개발해 고용량으로 저장하는 원천기술”이라며 “고용량으로 집적된 단백질 약을 원하는 곳에 투여함과 동시에 제거해야 할 분자들을 선택적으로 흡수함으로써 난치병이나 희귀병 치료에 획기적인 역할을 할 수 있을 것으로 기대된다”고 말했다.
2012.05.29
조회수 13658
-
홍합모방 리튬이차전지용 분리막의 출력 특성 향상
- 재료분야 저명 국제학술지 ‘어드밴스드 머티어리얼스 (Advanced Materials)’ 인터넷판 (5월25일)에 게재
- 출력 특성 증가해 차세대 자동차용 리튬이온전지용 분리막 개발의 핵심 기술이 될 것
우리학교 EEWS 대학원의 최장욱, 박정기 교수 공동 연구팀은 유명현 박사 과정 연구원과 더불어 홍합의 족사를 모방한 고분자를 소재로 한 출력 특성 향상을 위한 분리막 코팅 기술을 개발했다.
이 연구 결과는 재료 분야 저명 국제 학술지인 어드밴스드 머티리얼스(Advanced Materials)지에 25일 인터넷판으로 게재되었다.
리튬이차전지는 현재 대부분의 휴대용 전자기기의 에너지원으로 사용되고 있으며, 전기자동차(EV)를 필두로 한 차세대 운송수단으로의 에너지원, 더 나아가 신재생 에너지를 저장하는 전력저장 수단으로 주목 받고 있다. 이에 따라 리튬이차전지는 지금보다 더 높은 에너지 밀도와 출력 특성이 절실히 요구되고 있다.
전지의 구성요소인 분리막은 음극 및 양극 사이에 위치하여 두 전극간의 기계적 접촉을 방지할 뿐만 아니라, 리튬이온이 이동할 수 있는 통로의 역할을 수행한다. 지금까지의 리튬이차전지에서는 폴리에틸렌 중심의 폴리올레핀 계열의 다공성 분리막이 사용되어 왔지만, 이들 분리막은 현재 사용중인 전해질과 표면 친화성이 떨어져, 전해질과의 젖음 특성 및 함침 특성의 저하를 초래하였다. 이러한 분리막의 특성은 막 내의 이온이동능력 저하시켜 전지의 출력 특성을 감소시키는 큰 원인이 되어왔다. 출력 특성은 전기자동차의 경우, 가속력과 직결되는 것이다.
이에 연구팀은 홍합의 족사를 모방하여 제조한 고분자를 분리막에 코팅함으로써, 리튬 이차전지의 출력특성을 획기적으로 개선하였다. 홍합은 파도에 쓸려가지 않고 바위나 선박 등에 달라붙어 있기 위해 매우 강한 접착력을 가진 접착물(족사)를 분비하는데, 주로 엠이에프피-5(Mefp-5)라는 특정 단백질로 구성되어 있다. 이번 연구에서는 홍합 족사의 해당 단백질을 모방하여 제조한 폴리도파민이라는 고분자가 핵심적인 역할을 했다. 폴리도파민 고분자 코팅은 분리막의 표면에 매우 효과적으로 친수성을 부여하기 때문에 전해질 함침양을 기존 분리막 대비 30% 정도 증가시킬 수 있었다.
그 결과 폴리도파민으로 표면을 처리한 분리막이 도입된 전지의 출력 특성은 기존의 분리막과 대비하여 방전 조건에 따라 최대 2배 정도까지의 향상을 보였다. 또한 홍합의 단백질과 마찬가지로 매우 강한 접착력을 보유하기 때문에 분리막의 표면으로부터 쉽게 떨어지지 않아, 코팅 이후에도 매우 우수한 기계적 물성을 유지할 수 있다는 것이 기존의 연구와 구별된다. 특히, 처리 과정이 쉽고 환경친화적이어서 바로 산업계의 공정에 적용될 수 있을 것으로 기대된다. 이번 연구는 EEWS Flagship 프로그램의 지원을 받아 수행되었다.
2011.05.31
조회수 16006
-
생명화공 장호남 교수팀, 음식물 쓰레기 완전 소멸기술 개발
- 한국 아파트에도 선진국 형 無수거 시스템 도입 가능해져
- 지하실에 완전 밀폐식 소규모 시설 설치로 위생적 처리 가능
- 현장 실험 성공, 국내 특허 취득, 미국 등 국제 특허 출원 중
아파트 주방에서 나오는 음식물 쓰레기를 수거하지 않고 소규모 처리 시설만으로 효과적으로 정화할 수 있는 획기적인 기술이 개발되었다.
생명화학공학과 장호남(張虎男, 61) 교수팀은 공동주택 주방에서 분쇄기(디스포저)를 통해 음식물 쓰레기를 분쇄한 뒤, 지하실에 설치된 완전 밀폐식 소규모 처리조에서 정화해 생활하수와 함께 배출할 수 있는 처리 기술(HEROS)을 개발했다고 밝혔다.
이 기술은 미세스크린 고속분리장치에서 하수를 분리 배출하고, 분리된 음식물쓰레기는 고농도 미생물 반응기에서 혐기성 소멸 처리법을 통해 정화한다. 이 처리법은 에너지 소모가 거의 없으며 화학 약품을 전혀 사용하지 않는 친환경적인 정화 기술이다.
주방에 설치된 디스포저로 분쇄된 후 0.1~0.3mm 크기의 미세 스크린 고속분리장치로 분리된 하수는 BOD 150mg/L. SS250mg/L로 추가 처리 없이 도시 하수관로로 바로 배출할 수 있다. 이는 일본에서 정한 도시 하수관로 배출기준인 BOD 300mg/L. SS 300mg/L 보다 훨씬 낮은 수치다. 이렇게 처리된 하수는 분쇄기 처리 기법에 의한 처리 시에 문제가 되는 하수관로 침적을 일으키지 않으며, 하수 종말 처리장 용량에도 전혀 영향을 미치지 않는다.
또한, 아파트에서 음식물 쓰레기를 처리하는 전용 하수관의 별도 설치 없이 기존의 하수관을 사용할 수 있어 신설 아파트는 물론이고 기존 아파트에도 활용이 가능한 기술로 평가되고 있다.
지난 3월부터 9개월간 張 교수팀은 KAIST 교수 아파트에서 이 음식물 쓰레기 처리 기술 현장 실험을 실시하여 성공적인 결과를 얻었다. 이 실험 결과를 바탕으로 내년에는 서울 강남 소재 아파트에서 실용화 추진을 위한 본격적인 실증 실험을 실시할 예정이다.
張 교수는 “HEROS 처리 기술이 본격적으로 활용되면 음식물 쓰레기가 더 이상 생활에 불편과 환경을 오염시키는 것을 막을 수 있을 것”이라고 밝혔다.
이 연구결과는 최근 국내 특허를 취득했으며, 미국, 일본, 싱가폴 등에 국제 특허를 출원 중에 있다.
<HEROS공정도>
2005.12.08
조회수 15412