본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%B0%98%EB%8F%84%EC%B2%B4
최신순
조회순
IDEC 동탄 교육장 개소 및 시스템반도체설계 실무인력양성과정 시작
우리 대학이 국내 반도체 팹리스(설계 전문회사)의 만성적인 인력 부족 현상을 해소하기 위해 외부 교육장을 개소하고 실무 인력 양성에 나선다. KAIST 반도체설계교육센터(소장 박인철, 이하 IDEC)는 4일 'KAIST IDEC 동탄 교육장 개소식 및 시스템반도체설계 실무인력양성과정 제1기 입교식'을 개최했다. KAIST IDEC 동탄 교육장은 지난해 11월 체결한 화성시와 KAIST 간 업무협약을 바탕으로 설치됐다. 롯데백화점 동탄점이 화성시에 기부한 KAIST-화성 사이언스 허브에 입주하며, 산업계가 필요로 하는 시스템반도체 설계 교육센터를 운영하고 관련 교육과정을 개발할 예정이다. 이날 행사에서는 교육장 개소식과 함께 시스템반도체설계 실무인력양성과정 제1기 입교식이 개최됐다. 시스템반도체설계 실무인력양성과정은 산업현장에 투입할 수 있는 실무 인력을 양성하는 중·장기 교육 프로그램이다. 이를 위해, 지난 6월 말부터 수강생을 모집했다. 당초 40명을 선발할 예정이었으나, 총 306명이 지원해 8대 1이 넘는 높은 경쟁률을 기록했다. IDEC은 수강생들의 실질적인 수요를 반영해 계획된 정원을 두 배로 늘린 80명을 최종 선발했다.이날 입교한 학생들은 오는 11월까지 총 16주 동안 반도체 설계 전문교육을 받게 된다. 아날로그 트랙 40명, 디지털 칩 설계 특화 트랙 40명으로 구분되어 각각 기초과정부터 설계 실습이 포함된 심화 과정까지 아우르는 교육과정을 수강하게 된다. 이를 위해, KAIST, POSTECH 등 국내 우수대학 교수와 현직 설계 기업 임원 및 엔지니어 등 총 23명의 반도체 설계 전문 강사진을 초빙했다.또한, 교육과정 중 수강생 대상으로 기업설명회 등을 개최하며, 한국팹리스연합(회장 이서규)과 연계해 교육 수료자들에게 관련 분야 취업 기회도 제공할 예정이다. 차년도에는 기업과 수강생의 수요를 조사하여 FPGA(Field Programmable Gate Array: 용도에 맞게 회로를 다시 새겨넣을 수 있는 비메모리 반도체), 인공지능(AI) 트랙 등의 추가 교육과정도 신설할 계획이다. 이날 행사에는 이승섭 KAIST 부총장, 박인철 KAIST IDEC 소장, 임종철 화성시 부시장, 이서규 한국팹리스연합 회장, 이윤식 반도체공학회 회장, 백광현 대한전자공학회 부회장, 라정인 산업통상자원부 사무관 및 교육생 80명이 참석했다. 임종철 화성시 부시장은 축사를 통해 "화성시와 KAIST 그리고 롯데백화점이 손을 잡은 이 공간에서 우리나라 반도체 산업을 이끌 핵심 인재를 배출할 수 있도록 각 기관의 적극적인 지원을 부탁드린다"라고 전했다.박인철 KAIST IDEC 소장은 "산업체 현장에 즉시 투입할 수 있는 실무 인력을 양성하는 이번 프로그램이 국내 반도체 중소·중견 팹리스 업계의 인력 부족 현상을 해소하는 데 보탬이 되길 기대한다"라고 포부를 밝혔다.
2022.08.04
조회수 12680
KAIST, 인공지능 반도체 생태계를 선도하다
인공지능 반도체(이하 AI 반도체)가 국가적인 전략기술로 두드러지면서 KAIST의 관련 성과도 주목받고 있다. 과학기술정보통신부는 지난해 2030년 세계 AI 반도체 시장 20% 점유를 목표로 인공지능 반도체 지원사업에 본격적으로 착수한 바 있다. 올해에는 산학연 논의를 거쳐 5년간 1조 200억 원을 투입하는 `인공지능 반도체 산업 성장 지원대책'으로 지원을 확대했다. 이에 따라 AI 반도체 전문가 양성을 위해 주요 대학들의 행보도 분주해졌다. KAIST는 반도체와 인공지능 양대 핵심 분야에서 최상급의 교육, 연구 역량을 쌓아 왔다. 반도체 분야에서는 지난 17년 동안 메사추세츠 공과대학(이하 MIT), 스탠퍼드(Stanford)와 같은 세계적인 학교를 제치고 국제반도체회로학회(이하 ISSCC, International Solid State Circuit Conference)에서 대학 중 1위를 지켜 왔다는 점이 돋보인다. ISSCC는 1954년 설립된 반도체 집적회로 설계 분야 세계 최고 권위 학회다. 참가자 중 60% 이상이 삼성, 퀄컴, TSMC, 인텔을 비롯한 산업계 소속일만큼 산업적인 실용성을 중시해서 `반도체 설계 올림픽'이라는 별명도 있다. KAIST는 ISSCC에서 채택 논문 수 기준 매년 전 세계 대학교 중 1~2위를 유지했다. 최근 17년간 평균 채택 논문 수를 살펴보면 압도적인 선두다. 해당 기간 채택된 KAIST의 논문은 평균 8.4편으로, 경쟁자인 MIT(4.6편)와 캘리포니아대학교 로스앤젤레스(UCLA)(3.6편)에 비해 두 배 가까운 성과다. 국내에서는 반도체 설계 분야 부동의 1위인 삼성에 이어 종합 2위 자리를 유지하고 있다. 그럴 뿐만 아니라 ISSCC와 쌍벽을 이루는 집적회로 분야 학술대회인 초고밀도집적회로학회에서도 KAIST는 2022년 전 세계 대학 중 1위를 기록했다. KAIST의 연구진들이 반도체 산업 핵심 분야 전반에서 신기술을 발표해 연구의 질적인 수준도 높다. 전기및전자공학부 정명수 교수 연구팀은 고성능 저전력을 추구하는 현재 업계의 수요에 대응해 전력 공급 없이도 동작을 유지하는 컴퓨터를 개발했다. 소재 분야에서는 신소재공학과의 박병국 교수 연구팀이 기존의 메모리에 비해 동작 속도가 10배 이상 빠른 `스핀궤도토크 자성메모리' 소자를 개발해서 기존 `폰노이만 구조'의 한계를 극복하는 방안을 제시하기도 했다. 이처럼 현재 반도체 산업의 주요 과제에 솔루션을 제공하는 한편으로 미래의 새로운 반도체 분야를 선점하는 데 필요한 신기술 개발도 활발하다. 암호 및 비선형 연산 분야에서 차세대 컴퓨팅으로 주목받는 양자컴퓨팅 분야에서는 전기및전자공학부 김상현 교수 연구팀이 3차원 집적 기술을 세계 최초로 선보였다. 신경계의 원리를 활용해 인공지능 분야에서 발군의 성능을 보일 것으로 기대되는 뉴로모픽 컴퓨팅에서는 전기및전자공학부 최신현 교수 연구팀이 신경세포를 모사하는 차세대 멤리스터를 개발 중이다. 인공지능 분야에서도 비약적으로 성장했다. 인공지능 분야의 양대 세계 최고 권위 학회인 국제머신러닝학회(ICML)과 인공신경망학회(NeurIPS) 논문 수 기준으로 KAIST는 2020년 세계 6위, 아시아에서는 1위를 기록했다. KAIST의 순위는 2012년부터 꾸준히 우상향 그래프를 그려 8년만에 37위에서 6위로, 무려 31계단이나 도약했다. 2021년에는 인공지능 분야 톱 학회 11개에 발표된 한국 논문 중 약 40%에 달하는 129편이 KAIST에서 나왔다. KAIST의 이러한 활약에 힘입어 2021년 한국은 글로벌 인공지능 톱 학회 등재 논문 수 기준으로 미국, 중국, 영국, 캐나다, 독일에 이어 6위에 올랐다. 내용 면에서도 KAIST의 인공지능 연구는 최전선에 있다. 전기및전자공학부 유회준 교수 연구팀은 모바일기기에서 인공지능 실시간 학습을 구현해 에지 네트워크의 단점을 보완했다. 인공지능을 구현하려면 데이터 축적관 막대한 양의 연산이 필요한데, 이를 위해 고성능 서버가 방대한 연산을 담당하고 사용자 단말은 데이터 수집과 간단한 연산만 하는 `에지 네트워크'가 사용된다. 유 교수의 연구는 사용자 단말에 학습 능력을 부여함으로써 인공지능의 처리 속도와 성능을 크게 높일 수 있다. 지난 6월에는 전산학부 김민수 교수 연구팀이 초대규모 인공지능 모델 처리에 꼭 필요한 솔루션을 제시했다. 연구팀이 개발한 초대규모 기계학습 시스템은 현재 업계에서 주로 사용되는 구글의 텐서플로우(Tensorflow)나 IBM의 시스템DS 대비 최대 8.8배나 빠른 속도를 달성할 수 있을 것으로 기대된다. KAIST는 반도체와 인공지능이 결합된 AI 반도체 분야에서도 주목할만한 성과를 내고 있다. 2020년 전기및전자공학부 유민수 교수 연구팀은 세계 최초로 추천시스템에 최적화된 AI 반도체를 개발하는 데 성공했다. 인공지능 추천시스템은 방대한 콘텐츠와 사용자 정보를 다룬다는 특성상 범용 인공지능 시스템으로 운영하면 병목현상으로 성능에 한계가 있다. 유민수 교수팀은 `프로세싱-인-메모리(이하 PIM, Processing-In-Memory)' 기술을 기반으로 기존 시스템 대비 최대 21배 빠른 속도를 낼 수 있는 반도체를 개발했다. PIM은 처리할 데이터를 임시로 저장하기만 하던 `램'에서 연산까지 수행해 효율을 높이는 기술이다. PIM 기술이 본격적으로 상용화되면 메모리 분야에서 강세인 한국 기업의 AI 반도체 시장 경쟁력이 비약적으로 높아질 것으로 기대된다. KAIST는 그간의 성과에 안주하지 않고 인공지능 및 반도체, 그리고 AI 반도체 분야 초격차를 유지하고자 다각적인 노력을 기울이고 있다. 1990년 국내 최초로 인공지능연구센터를 설립한 데 이어 2019년에는 김재철AI대학원을 개설해 전문인력을 양성 중이다. 2020년에는 인공지능과 반도체 연구를 융합해 ITRC 인공지능반도체시스템 연구센터가 출범했으며, 2021년에는 인공지능을 다양한 분야에 접목하는 `AI+X' 연구를 활성화하고자 김재철AI대학원과 별도로 AI 연구원을 설립했다. KAIST는 이러한 노력으로 축적된 내적 역량을 바탕으로 네이버 등 기업과 공동연구센터를 설립하는 한편, 화성시와 같은 지자체와 협력해 동시다발적인 전문인력 양성에 나섰다. 지난 2021년에는 삼성전자와 함께 반도체시스템공학과 설립 협약을 체결하고 새로운 반도체 전문인력 교육과정을 준비하고 있다. 새로 설립되는 반도체시스템공학과는 2023년부터 매년 100명 내외의 신입생을 선발하고, 이들이 전문역량을 꽃피울 수 있도록 학생 전원에게 특별장학금을 지급할 예정이다. 또한 산업계와의 긴밀한 협력을 통해 삼성전자 견학과 인턴십, 공동 워크숍을 지원해 현장에 밀착한 교육을 제공할 예정이다. KAIST는 국내 반도체 분야 박사 인력의 25%, 박사 출신 중견 및 벤처기업 CEO의 20%를 배출하며 한국 반도체 산업 생태계가 성장하는 데 중대한 공헌을 했다. 본격적으로 열린 AI 반도체 경쟁 체제를 앞두고 KAIST가 다시 산업 생태계의 구심점 역할을 할지 귀추가 주목된다.
2022.08.04
조회수 19215
무한대 화소 수준의 초고해상도 AR/VR 디스플레이 기술 개발
우리 대학 전기및전자공학부 김상현 교수 연구팀이 *모놀리식 3차원 집적의 장점을 활용한 1,600PPI*에 상응하는 마이크로LED 디스플레이를 구현하는 데 성공했다고 29일 밝혔다. 1,600 PPI는 초고해상도 증강현실(AR)/가상현실(VR) 디스플레이에 적용 가능한 해상도로써 2020년 출시된 오큘러스(Oculus) 社(現 메타(Meta))의 메타 퀘스트 2(Meta quest 2, 442 PPI)의 3.6배에 해당하는 디스플레이 해상도다. ☞ 모놀리식 3차원 집적: 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로 궁극적 3차원 집적 기술로 불린다. ☞ PPI: Pixel per Inch. 디스플레이에서 1인치에 포함되는 픽셀의 갯수 전기및전자공학부 박주혁 박사과정과 금대명 박사가 제1 저자로 주도하고 백우진 박사과정과 대만의 제스퍼 디스플레이(Jasper Display)의 존슨 쉬(Johnson Shieh) 박사와 협업으로 진행한 이번 연구는 반도체 올림픽이라 불리는 하와이 호놀롤루에서 열린 `VLSI 기술 & 회로 심포지엄 (2022 IEEE Symposium on VLSI Technology & Circuits)'에서 지난 6월 16일에 발표됐다. (논문명 : Monolithic 3D sequential integration realizing 1600-PPI red micro-LED display on Si CMOS driver IC) VLSI 기술 심포지엄은 국제전자소자학회(International Electron Device Meetings, IEDM)와 더불어 대학 논문의 채택 비율이 25%가 되지 않는 저명한 반도체 소자 분야 최고 권위 학회다. 최근 디스플레이 분야는 각종 TV, 모니터 및 모바일 기기뿐만 아니라 스마트 워치, 스마트 글라스 등의 웨어러블 디바이스까지 그 응용처가 크게 확장됐다. 이처럼 디스플레이의 활용이 점차 다양화되고 고도화됨에 따라 요구되는 픽셀의 크기가 점점 작아지고 있는데, 특히 증강현실(AR)/가상현실(VR) 스마트 글라스 등과 같이 사람의 눈과 매우 가까운 거리를 유지하는 디스플레이의 경우 *픽셀화가 없는 완벽한 이미지의 구현을 위해서는 4K 이상의 고해상도가 요구된다. ☞ 픽셀화(Pixelation): 컴퓨터 그래픽에서 비트맵을 구성하는 작은 단색 정사각형 디스플레이 요소인 개별 픽셀이 보이는 현상. 앞서 언급한 초고해상도 디스플레이를 구현하기 위한 차세대 디스플레이 소자로서 무기물 기반의 인듐갈륨나이트라이드/갈륨나이트라이드(InGaN/GaN), 혹은 알루미늄 갈륨 인듐 인화물/갈륨 인듐 인화물(AlGaInP/GaInP)로 대표되는 3-5(III-V)족 화합물 반도체를 활용한 마이크로 LED 소자가 핵심 소재 및 부품으로써 주목받고 있다. 마이크로 LED는 현재 TV, 모바일 기기에 많이 사용되고 있는 OLED, LCD 디스플레이에 비해 높은 휘도와 명암비, 긴 픽셀 수명 등의 장점이 있어 차세대 디스플레이 소자로서 장점이 뚜렷하다. ☞ III-V 화합물 반도체: 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체로 전하 수송 특성 및 광 특성이 매우 우수한 소재. 하지만 무기물 기반 마이크로 LED를 활용해 디스플레이를 제작하기 위해서는 적색, 청색, 녹색의 각 색상의 픽셀을 각각의 기판에서 분리해 디스플레이 패널로 옮기는 패키징 작업이 필수적이다. 기존에 사용돼온 픽앤플레이스(Pick-and-place) 방법은 각각의 픽셀을 일일이 기계적으로 옮겨서 디스플레이 패널에 결합하는 방법으로 픽셀의 크기가 수십 마이크로미터 미만 수준으로 작아지게 되면 기계적인 정렬 정밀도가 저하되고 전사 수율이 감소해 초고해상도 디스플레이에는 적용이 어려울 것이라는 평가를 받고 있다. 연구팀은 이러한 문제의 해결을 위해 디스플레이 구동용 규소 상보적 금속산화물 반도체(이하 Si CMOS) 회로 기판 위에 적색 발광용 LED를 모놀리식 3차원 집적하는 방식을 적용했다. 위 방식은 Si CMOS 회로 위에 마이크로 LED 필름층을 먼저 웨이퍼 본딩을 통해 전사한 뒤, 포토리소그래피 공정으로 픽셀을 구현하는 방법으로, 기계적 픽셀 전사 공정이 제외된다. 이후 연구팀은 Si CMOS 회로상에서 상단에서 하단 방향으로(Top-down) 연속적인 반도체 공정 과정을 통해 고해상도 디스플레이 데모에 성공했다. 이 과정에서 연구팀은 조명용으로 활용돼왔던 무기물 기반 LED 반도체가 아닌 디스플레이용 LED 반도체층을 설계해 발광을 위한 활성층의 두께를 기존의 1/3로 감소시켜, 픽셀 형성에 필요한 식각 공정의 난도를 크게 낮추어 이번 연구성과를 얻어냈다. 또한, 연구팀은 하부 디스플레이 구동 회로의 성능 저하 방지를 위해 350oC 이하에서 상부 III-V 소자를 집적하는 웨이퍼 본딩 등의 초저온 공정을 활용해 상부 소자 집적 후에도 하부 드라이버 IC(Driver IC)의 성능을 그대로 유지할 수 있었다. 이번 연구 결과는 적색 마이크로 LED를 3차원 적층 방식으로 집적해 세계적인 수준의 해상도인 1,600 PPI 구현에 성공한 연구로서 연구에서 활용된 모놀리식 3차원 집적에 관한 연구 결과는 차세대 초고해상도 디스플레이 구현을 위한 좋은 가이드가 될 것으로 예상된다. 김상현 교수는 "향후 유사 공정을 확대 적용해 적색, 녹색, 청색이 모두 포함된 풀 컬러 디스플레이 제작도 가능할 것으로 생각한다ˮ라고 말했다. 한편 이번 연구는 삼성 미래기술육성센터의 지원을 받아 수행했다.
2022.07.29
조회수 11552
고정확도 실시간 학습 가능한 모바일 인공지능 반도체 칩 세계 최초 개발
우리 대학 전기및전자공학부 유회준 교수 연구팀이 인공지능의 실시간 학습을 모바일 기기에서 구현, 고정확도 인공지능(AI: Artificial Intelligent) 반도체*를 세계 최초로 개발했다고 23일 밝혔다. * 인공지능 반도체 : 인식·추론·학습·판단 등 인공지능 처리 기능을 탑재하고, 초지능·초저전력·초신뢰 기반의 최적화된 기술로 구현한 반도체 연구팀이 개발한 인공지능 반도체는 저비트 학습과 저지연 학습 방식을 적용해, 모바일 기기에서도 학습할 수 있다. 특히 이번 반도체 칩은 인공지능의 예상치 못한 성능 저하를 막을 수 있는 실시간 학습 기술을 성공적으로 구현했다. 전기및전자공학부 한동현 박사과정이 제1 저자로 참여한 이번 연구는 지난 6월 12일부터 15일까지 인천 연수구 송도 컨벤시아에서 개최된 국제 인공지능 회로 및 시스템 학술대회(AICAS)에서 발표됐으며 응용 예시를 현장에서 시연했고, 최우수 논문상과 최우수 데모상을 모두 석권해 그 우수성을 널리 알렸다. (논문명 : A 0.95 mJ/frame DNN Training Processor for Robust Object Detection with Real-World Environmental Adaptation (저자: 한동현, 임동석, 박광태, 김영우, 송석찬, 이주형, 유회준)) 인공지능 (AI) 반도체 기술을 망라하는 국제 학술 대회 ‘AICAS 2022’는 인공지능 반도체 분야 세계 최고 권위를 가진 IEEE(미국 전기 전자 기술자 협회)학회로 평가받으며, 삼성, SK를 필두로, 한국전자통신연구원(ETRI), 엔비디아(NVIDIA), 케이던스(Cadence) 등 국내외 저명한 기업과 기관 등이 참석해 인공지능 반도체 회로와 시스템 전 분야, 인공지능 반도체와 관련된 연구성과를 공유하는 행사다. 기존 인공지능은 사전에 학습된 지능만으로 추론을 진행했기 때문에 학습하지 않은 새로운 환경 혹은 물체에 대해서는 물체 검출이 어려웠다. 하지만 유회준 교수 연구팀이 개발한 실시간 학습은 추론만 수행하던 기존 모바일 인공지능 반도체에 학습 기능을 부여함으로써, 인공지능의 지능 수준을 크게 끌어올렸다. 유 교수팀의 새로운 인공지능 반도체는 사전에 학습한 지식과 애플리케이션 수행 중에 학습한 지식을 함께 활용해 고정확도 물체검출 성능을 보였다. 특히 유회준 교수 연구팀은 렌즈가 깨지거나, 기계 오류로 인한 인공지능의 예상치 못한 정확도 감소도 자동으로 인지하고 이를 실시간 학습을 통해 보정, 기존 인공지능의 문제점을 해결했다. 유 교수팀은 실시간 학습 기능에 더해, 모바일 기기에서 저전력으로 학습이 가능할 수 있도록, 저비트 인공지능 학습 방법, 직접 오류 전사 기반 저지연 학습 방식을 제안, 이를 최적화할 수 있는 반도체(HNPU) 와 응용 시스템을 모두 개발했다. 저전력, 실시간 학습을 수행할 수 있는 모바일 인공지능 전용 반도체, HNPU는 다음과 같이 6가지 핵심 기술이 도입됐다. ○ 확률적 동적 고정 소수점 활용 저비트 학습 방식 (SDFXP: Stochastic Dynamic Fixed-point Representation) - 동적 고정 소수점에 확률적 표현을 결합하고 확률적 반올림을 도입하여 인공지능 학습에 필요한 비트 정밀도를 최소화 할 수 있는 방법 ○ 레이어별 자동 정밀도 검색 알고리즘 및 하드웨어 (LAPS: Layer-wise Adaptive Precision Scaling) - 학습의 난이도를 자동으로 파악하고 심층신경망의 레이어별로 최적의 비트수를 자동으로 찾아주는 알고리즘 및 이를 가속하는 하드웨어 ○ 입력 비트 슬라이스 희소성 활용* (ISS: Input Slice Skipping or Bit-slice Level Sparsity Exploitation) - 데이터를 이진수로 표현했을 때 중간중간 나타나는 ‘0’ 비트를 활용하여, 데이터 처리량을 높이는 방식 ○ 내재적 순수 난수 생성기 (iTRNG: Intrinsic True Random Number Generator) 인공지능 연산을 활용한 순수 난수 생성기를 설계, 데이터의 암호화 및 확률적 반올림을 구현 ○ 다중 학습 단계 할당을 통한 고속 학습 알고리즘 및 하드웨어 (MLTA: Multi Learning Task Allocation & Backward Unlocking) 기존 역전파 (Back-propagation) 알고리즘에서 탈피해, 직접 오류 전사를 통한 저지연 학습 구현 ○ 실시간 인공지능 학습 기반 자동 오류 검출 기능 저하 보정 시스템 개발 (Real-time DNN Training based Automatic Performance Monitor and Performance Recovery System) 평상시 물체 검출 결과를 주기적으로 모니터링하면서, 갑작스러운 확률 변화를 자동으로 인식, 정확도 저하를 보정하기 위해 실시간 학습을 적용 * 희소성 활용 (Sparsity Exploitation) : 심층 신경망 모델의 연산은 수많은 곱셈누적(MAC: Multiply-And-Accumulate)연산의 연속이다. 연산자에 0이 존재할 시, 굳이 연산을 해보지 않아도 결과는 0임을 알기에 이를 뛰어넘는 방식으로 연산 속도를 높이는 방식. 이러한 기술을 사용해 HNPU는 저전력 물체검출을 구현하여, 다른 모바일 물체검출 시스템과 비교해 75% 높은 속도, 44% 낮은 에너지 소모를 달성하면서도, 실시간 학습으로 고정확도 물체검출을 개발해 주목을 받았다. 연구팀은 HNPU의 활용 예시로 카메라 렌즈가 깨지거나, 기계 오류, 조명, 밝기 변화로 인공지능의 추론 능력이 떨어졌을 때, 실시간 학습을 통해 다시 정확도를 높이는 고정확도 물체검출 시스템을 개발했다. 이는 이후 자율 주행, 로봇 등 다양한 곳에 활용될 것으로 기대된다. 특히 연구팀의 HNPU 연구는 2022 국제인공지능회로및시스템학술대회(AICAS 2022)에서 발표돼, 최우수 논문상과 최우수 데모상을 모두 석권하여 그 우수성을 널리 알렸다. 연구를 주도한 KAIST 전기및전자공학부 유회준 교수는 “현재 인공지능은 사전에 학습한 지식만으로 주어진 문제를 해결하고 있으며, 이는 변화하는 환경과 상황에 맞춰 계속 학습하는 인간의 지능과 뚜렷한 차이를 보인다”라며 “이번 연구는 실시간 학습 인공지능 반도체를 통해 인공지능의 지능 수준을 사람 수준으로 한층 더 끌어올리는 연구”라고 본 연구의 의의를 밝혔다.
2022.06.23
조회수 10117
차세대 반도체 나노구조 공정을 혁신하는 새로운 3차원 노광 공정 개발
우리 대학 신소재공학과 전석우 교수와 신종화 교수 공동연구팀이 차세대 반도체 공정 핵심기술인 3차원의 나노구조를 단일 노광으로 효율적으로 제작하는 방법을 개발했다고 27일 밝혔다. 노광 공정이란 빛을 이용해 실리콘 웨이퍼에 전자 회로를 새기는 공정을 말한다. 이번 연구 성과는 갈수록 복잡해지는 반도체 구조와 배선구조 등을 기존 2차원 평면 노광 방식으로 건물을 한층 한층 제작하듯이 진행하던 방식에 비해 훨씬 더 낮은 비용과 공정으로 제작할 수 있는 근거를 마련한 획기적인 연구 결과로 판단된다. 전석우 교수와 신종화 교수가 교신 저자로, 남상현 박사와 김명준, 김나영 박사과정이 공동 제1 저자로 참여한 이번 연구는 저명한 국제 학술지 `사이언스 어드밴시스(Science Advances)' 5월 25일 字 온라인판에 게재됐다. (논문명: Photolithographic Realization of Target Nanostructures in 3D Space by Inverse Design of Phase Modulation) 공동연구팀은 수반행렬 방법(Adjoint method) 기반 역설계 알고리즘을 활용해, 적은 연산으로 원하는 형태의 나노 홀로그램을 생성하는 위상 마스크의 격자구조를 효율적으로 찾아내는 방법론을 제시했다. 이는 기존의 반도체 리소그래피 공정에 적용됐으며, 연구팀은 광감응성 물질에 단 한 번의 빛을 쏘아 목표하는 나노 홀로그램을 형성하고, 물질화해 원하는 3차원 나노구조를 단 한 번의 노광으로 구현할 수 있음을 실험적으로 증명했다. 최근 리소그래피 및 패터닝 기술의 발달로 소재의 형상을 나노스케일에서 구현하는 기술이 발달함에 따라 기존 소재의 물성을 극복하는 메타 소재 및 3차원 프린팅 연구가 주목받고 있다. 특히 3차원 나노소재를 구현하기 위해 활용되는 기존 공정들은 구현하는 구조의 자유도, 생산성, 정밀도를 모두 만족하기 어려운 점이 있어 이를 개선하기 위한 다양한 시도가 진행 중이다. 다양한 3차원 패터닝 공정 가운데, 근접장 나노패터닝(PnP, Proximity-field nanoPatterning)은 단일 노광으로 주기적인 3차원의 나노구조를 정확하고 생산성 있게 구현할 수 있다. 하지만, 현재까지 주기적인 위상 마스크 패턴을 활용해 구현할 수 있는 구조의 자유도는 제한돼왔으며, 이를 극복하기 위해서는 감광물질에 원하는 형태의 홀로그램을 구현하는 위상 마스크의 디자인을 계산하는 과정이 필요하다. 기존 연구에서는 유전 알고리즘(Genetic Algorithm)을 통해 이러한 역계산을 수행했으나, 비효율적인 계산방식, 많은 계산량 등의 문제로 활용이 제한된다. 최근 주목받는 머신러닝도 학습을 위한 데이터양이 최소 수천 개 이상으로 많이 요구돼 현실적으로 이를 역계산에 활용하기에는 아직 요원한 상황이다. 연구팀은 수학적 방법론인 수반행렬 방법(Adjoint Method) 기반 알고리즘을 위상 마스크의 패턴이 빛과 상호작용하는 광학현상에 적용해, 원하는 홀로그램 형상을 광감응성 소재에 효율적으로 계산해 그 형상을 얻어내는 데 성공했다. 이 알고리즘은 수식으로 표현된 목표 디자인을 최소한의 계산 경로로 찾아내는 알고리즘이며, 행렬 연산을 활용해 많은 계산량을 효율적으로 처리한다는 장점이 있다. 기존의 단순한 주기적 위상 마스크 패턴은 수직 입사하는 빛으로 특정 배열의 나노구조만을 발생시켰다. 연구팀은 해당 연구에서 위상 마스크에 반도체 공정에 적용 가능한 수직 입사 빔 방식으로 기존의 마스크로 얻어내는 것이 불가능했던 새로운 배열의 3차원 나노구조를 얻어내는 데 성공했다. 이번 연구는 이를 통해 기존의 반도체 노광공정이 갖는 자유도의 한계를 극복하고 더 나아가 보다 복잡한 나노구조를 구현할 수 있다는 것을 이론적, 실험적으로 증명한 주요 연구라 할 수 있다. 이렇게 제작된 3차원의 나노구조는 원자층 증착법을 활용해 구조에 따라 물질의 주입 및 치환으로 다양한 소재를 원하는 구조로 제작할 가능성을 열어준다. 이번 기술이 차세대 반도체 소자인 GAA(Gate All Around) 소자나 3차원 반도체 집적기술에 적용된다면 현재 국가적으로 많은 노력을 기울이고 있는 차세대 반도체 역량 강화에 크게 이바지할 것으로 기대된다. 더 나아가 소재의 물성이 소재를 구성하는 원자나 결합이 아닌 순수한 나노구조에서 기인하는 새로운 물성을 확보하는 메타 소재 연구에서 원하는 나노구조를 낮은 비용으로 대면적에 생산함으로 국내의 소재 경쟁력을 크게 강화할 원천기술이 될 것이다. 이번 연구는 한국연구재단 원천기술개발사업의 미래소재디스커버리 사업과(NRF-2020M3D1A1110522) 삼성전자의(G01190420) 지원을 통해 수행됐다.
2022.05.27
조회수 11076
전기및전자공학부 이정용 교수, 5월 이달의 과학기술인상 수상
과학기술정보통신부(과기정통부)와 한국연구재단은 이달의 과학기술인상 5월 수상자로 우리 대학 전기및전자공학부 이정용 교수를 선정했다고 11일 밝혔다. 이 교수는 고성능 하이브리드 태양전지 개발에 성공하여 에너지·환경 문제 해결의 단초를 마련한 공로를 인정받았다. 이 교수는 유기 고분자와 양자점(Quantum Dot)을 이용하는 하이브리드 태양전지에서 높은 광전변환효율을 내는 새로운 전하추출 경로를 발견했다. 그는 유기 고분자와 양자점의 계면에서 빛에 의해 생성되는 엑시톤(전자·정공 쌍)이 전기로 변환되기 전에 소실되면서 광전변환효율이 낮아지는 원리를 규명하고, 전자를 분리·추출하는 효과적인 물질을 도입해 새로운 엑시톤 분리 경로를 만들었다. 그 결과 광전변환효율이 최대 13.1% 높은 유무기 하이브리드 태양전지를 만들었으며, 기존 하이브리드 태양전지보다 30% 이상 높은 효율을 입증했다. 이 교수는 "이번 연구는 하이브리드 구조의 한계를 극복하고 고효율 차세대 광전소자 구현의 활로를 개척했다는 점에서 의의가 있다"고 설명하면서 "기존과 다른 새로운 형태의 소자 모델을 제안함으로써 차세대 반도체 분야의 전반에서 기술 증진을 기대한다"고 수상소감을 밝혔다. 연구성과는 2019년 11월 네이처 에너지(Nature Energy)에 게재됐다. 이달의 과학기술인상은 우수한 연구개발 성과로 과학기술 발전에 공헌한 사람을 매월 1명 선정한다. 수상자는 과기정통부 장관상과 상금 1천만원을 받는다.
2022.05.11
조회수 10455
그래핀 기반 2차원 반도체 소자 시뮬레이션의 양자 도약 달성
반도체 연구 개발에서 소자의 미세화에 따라 원자 수준에서 전류의 흐름을 이해하고 제어하는 것이 핵심적 요소가 되고 있는 상황에서, 우리 연구진이 기존에는 불가능했던 원자만큼 얇은 2차원 반도체 소자의 엄밀한 양자 역학적 컴퓨터 시뮬레이션을 성공적으로 구현하고 이를 기반으로 원자 결함에 의해 발생하는 특이한 소자 특성을 세계 최초로 보고했다. 우리 대학 전기및전자공학부 김용훈 교수 연구팀이 자체적으로 개발한 양자 수송 이론을 통해 세계 최초로 그래핀 전극 간 전자의 터널링 현상(전자가 포텐셜 장벽을 투과하는 현상)으로 작동하는 *2차원 터널링 트랜지스터의 **제1 원리 시뮬레이션을 수행하는 데 성공했다고 4일 밝혔다. * 2차원 터널링 트랜지스터: 그래핀을 전극으로 하여 전극 간 전자의 터널링(tunneling) 현상을 통해 소자가 작동하는 반도체 소자이다. 소자의 동작 특성을 결정하는 그래핀 전극간 전자의 터널링 현상은 소스-드레인(source-drain) 전극 및 게이트(gate) 전압에 의해 결정된다. **제1 원리 시뮬레이션: 제1원리 계산은 물질 내 전자들의 거동을 해석할 때 실험적 데이터나 경험적 모델을 도입하지 않고 지배방정식인 슈뢰딩거 방정식을 원자 정보를 포함시켜 직접 푸는 양자역학적 물질 시뮬레이션 방법으로 대표적인 방법론은 밀도 범함수론(density functional theory, DFT)이 있음 전기및전자공학부 김태형 박사과정과 이주호 박사가 공동 제1 저자로 참여한 이번 연구는 소재 계산 분야의 권위 있는 학술지 `네이쳐 파트너 저널 컴퓨테이셔널 머터리얼즈(Npj Computational Materials)' (IF 13.20) 3월 25일 字 온라인판에 게재됐다. (논문명: Gate-versus defect-induced voltage drop and negative differential resistance in vertical graphene heterostructures) 제1 원리 시뮬레이션이란 슈퍼컴퓨터에서 원자 수준의 양자역학 계산을 수행해 실험적 데이터나 경험적 모델의 도움 없이 물질의 특성을 도출하는 방법으로 제1 원리 계산을 통한 평형 상태의 소재 연구는 1998년 월터 콘(Walter Khon) 교수가 노벨상을 받은 `밀도 범함수론(density functional theory: DFT)'을 기반으로 다방면으로 수행돼왔다. 반면 전압 인가에 따른 비평형 상태에서 작동하는 나노 소자의 제1 원리 계산은 DFT 이론을 적용하기 어렵고 그 대안으로 제시된 이론들에도 한계가 있어 현재 그래핀 기반 2차원 반도체 소자의 엄밀한 양자역학적 시뮬레이션은 불가능한 상황이었다. 연구팀은 먼저 이러한 어려움을 극복하기 위해 자체적으로 수립한 새로운 양자 수송 계산 체계인 다공간 DFT 이론을 발전시켜 그래핀 기반 2차원 터널링 트랜지스터의 제1 원리 시뮬레이션을 가능하게 했다. 다음으로 이를 그래핀 전극-육각형 질화붕소 채널-그래핀 전극 소자 구조에 적용해 질화붕소 층에 존재하는 원자 결함이 다양한 비선형 소자 특성들을 도출시킬 수 있음을 보여 원자 결함의 종류와 위치에 대한 정보가 신뢰성 있는 2차원 소자의 구현에 매우 중요함 요소을 입증했다. 한편 이러한 비선형 소자 특성은 연구진이 기존에 세계 최초로 제안했던 양자 혼성화(quantum hybridization) 소자 원리(device principle)에 따라 발현됨을 보여 2차원 소자의 양자적 특성을 활용하는 한 방향을 제시했다. 김 교수는 "나날이 치열해지는 반도체 연구/개발 분야에서 세계적으로 경쟁력 있는 나노 소자 전산 설계 원천기술을 확보했다ˮ고 연구의 의미를 소개하며 "양자 효과가 극대화될 수밖에 없는 차세대 반도체 연구/개발에서 양자역학적 제1 원리 컴퓨터 시뮬레이션의 역할이 더욱 중요해질 것”이라고 강조했다. 한편 이번 연구는 삼성전자 미래기술 육성센터의 지원을 받아 수행됐다.
2022.04.04
조회수 14762
준강자성체를 이용한 차세대 반도체 기술의 발전방향 제시
우리 대학 물리학과 이경진 교수, 김세권 교수 연구팀이 스핀 기반 차세대 반도체 기술(스핀트로닉스)의 최신 연구 동향 및 미래 발전 전략을 정리한 `*준강자성체 기반 스핀트로닉스' 리뷰 논문을 물리 및 재료 분야의 세계적인 학술지 `네이처 머터리얼스 (Nature Materials)' 2022년 1월호에 표지논문으로 게재했다고 6일 밝혔다. ※ 준강자성체: 반강자성체와 같이 서로 이웃하는 자성 이온이 반대 방향으로 정렬되지만, 서로 자성의 크기가 달라서 물질 전체적으로는 자발적인 자성이 남아있는 물체 스핀트로닉스는 성장 한계에 다다른 기존 반도체 기술의 근본적인 문제점들을 전자의 양자적 성질인 스핀을 이용해 해결하고자 하는 연구 분야다. 이는 기존 정보처리 기술을 혁신적으로 발전시켜 초고속 초고집적 차세대 반도체 기술을 구현할 것으로 기대되고 있다. 스핀트로닉스 장치의 핵심 구성 요소는 자성체이기 때문에, 스핀 기반의 초고속 초고집적 정보처리를 구현하기 위해서는 최적의 자성 물질을 규명하는 것이 필수적이다. 지난 수십 년간 스핀트로닉스에서 주로 사용돼왔던 강자성체는 스핀 동역학 속도가 기존 정보 처리 기술의 수준과 유사한 기가헤르츠(GHz) 수준에 머물러 정보 처리 속도 향상에 어려움을 겪고 있었다. 또한, 강자성체가 생성하는 강력한 주위 자기장으로 인해 강자성체 기반 장치들이 서로 강하게 간섭해, 스핀 장치의 집적률을 증가시키는 데도 어려움이 있었다. 물리학과 이경진 교수와 김세권 교수는 지난 수년간의 연구를 통해 새로운 자성체인 준강자성체를 이용하면 강자성체가 갖는 문제점들을 해결해 초고속 초고집적 스핀 기반 정보 처리 장치를 개발할 수 있음을 밝혀왔고, 이를 기반으로 이번 리뷰 논문을 게재했다. 과거 2017년 연구팀은 준강자성체의 스핀 동역학 속도가 기존 정보 처리 기술보다 약 천배 빠른 테라헤르츠(THz) 수준이라는 점을 주목하고, 이를 이용해 스핀 메모리로 활용되는 자구벽을 강자성체보다 월등히 빠른 속도로 구동할 수 있음을 보여 네이처 머터리얼스에 논문을 게재했다. 또한, 2018년 이경진 교수는 반강자성체를 이용하면 스핀 양자 정보의 장거리 전송이 가능함을 밝혀 네이처 머터리얼스에 보고했다. 수년간에 걸친 꾸준한 연구성과로 인해 준강자성체 기반의 초고속 초고집적 스핀트로닉스에 대한 관심이 고조돼, 현재 세계적으로 관련 연구가 활발히 진행중이다. 최신 연구 동향 정리와 더불어, 연구팀은 준강자성체 기반 스핀트로닉스의 미래 발전 방향도 제시했다. 준강자성체 기반의 초고속 자기광학 장치 개발, 준강자성체가 갖는 독특한 스핀파 성질을 이용한 파동/양자 정보처리 장치 개발, 그리고 준강자성체를 이용한 뇌 모사 컴퓨팅 개발 등이 기대된다. 또한, 새로 개발된 준강자성체는 기존의 자성체와 근본적으로 다른 흥미로운 물리현상을 보일 것으로 기대돼 준강자성체 기반의 근본 자성 연구에 대한 발전 방향도 제시했다. 이경진 교수는 "이번 리뷰논문은 그동안 강자성체에만 집중돼왔던 스핀트로닉스 연구를 준강자성체로 확장시키는 데 중요한 이정표가 될 것ˮ이라고 기대감을 내비쳤다. 이번 연구는 이경진 교수, 김세권 교수, 그리고 미국 MIT Geoffrey Beach 교수, 일본 교토대학 Teruo Ono 교수, 네덜란드 Radboud 대학 Theo Rasing, 싱가포르국립대 양현수 교수의 공동 연구로 진행되었으며, 삼성미래기술육성재단과 한국연구재단의 지원을 받아 수행됐다.
2022.01.06
조회수 11220
삼성전자와 「반도체시스템공학과 설립」 협약 체결
우리 대학은 오늘(25일) 오후 삼성전자와 ‘채용조건형 계약학과’인 「반도체시스템공학과 설립」협약을 체결하고 반도체 특화 인재 양성에 나선다고 밝혔다. 이번 협약은 올해 7월 체결된 업무협약에 따른 후속 조치이다. KAIST-평택시-삼성전자는 「반도체 인력양성 및 산학협력 활성화」 업무협약을 맺고 학과 신설과 교육 운영 투자, 인프라 구축에 뜻을 모은 바 있다. 입학정원은 2022년부터 2027년까지 총 500명 내외이며 2023년부터 매년 100명 내외의 신입생을 선발할 예정이다. 학과 신설 초기 2년 동안 새내기과정학부 학생들은 2학년 진학 시점에 반도체시스템공학과로 진입할 수 있다. 학과 학생 전원에게는 특별장학금을 지원한다. 교육과정은 △반도체 시스템 기초 △반도체 시스템 심화 △현장 체험 및 실습으로 구성되었다. 특히 삼성전자 견학과 인턴십, 공동 워크샵 등의 활동을 통해 현장 적응력을 배양할 계획이다. 또한, 우리 대학 교수진과 삼성전자 멘토의 탁월한 연구역량을 바탕으로 강의·실험·양방향 토론을 결합한 새로운 유형의 수업을 진행할 예정이다. 아울러 인문 사회 교육을 병행하여 삼성전자의 차세대 융합 리더로 육성하는 데 중점을 두고 있다. 25일 오후 삼성전자 화성사업장에서 개최된 「반도체시스템공학과 설립」 협약식에는 우리 대학 이광형 총장, 이승섭 교학부총장, 이동만 공과대학장, 강준혁 전기 및 전자공학부장 등과 삼성전자 강인엽 사장, 최완우 부사장, 정기태 부사장 등 주요 관계자들이 참석했다. 이광형 총장은 “반도체 기술은 4차산업혁명 시대의 핵심 기반인 만큼 지속적인 역량 강화는 필수적이다. 급격한 환경 변화에 대응하고 미래를 선도할 반도체시스템학과 인재 양성에 최선을 다하겠다”라고 말했다. 이어, “삼성전자와 함께 산학협력의 새로운 모델을 제시하고 국가 과제인 K-반도체 전략 실현에 기여하게 되어 의의가 크다. KAIST-삼성전자의 전문성과 실무 리더십을 강조하는 교육 철학을 선보일 것”이라고 밝혔다.
2021.11.25
조회수 9711
평택캠퍼스 조성을 위한 실시협약 체결
우리 대학이 평택시, 브레인시티 프로젝트 금융투자회사(Project Financing Vehicle, PFV)와 함께 KAIST 평택캠퍼스 조성을 위한 3자 실시협약식을 25일 오전 11시 평택시청에서 개최했다. 국가 반도체 산업 발전을 위한 반도체 전문 기술 인력 양성 및 세계 최강의 반도체 클러스터를 조성하기 위한 실시협약으로 향후 산-학-지자체의 긴밀한 협력을 바탕으로 공동연구를 활성화하고 미래의 국가 반도체 경쟁력을 강화해 나갈 예정이다. KAIST 평택캠퍼스는 2036년 완성을 목표로 내년부터 3단계 조성 사업에 착수한다. 2026년까지 진행되는 1단계 사업에서는 캠퍼스 부지(약 46만㎡)와 1,000억 원 이상의 시설지원금을 지원받아 캠퍼스를 준공할 예정이다. 2027년부터 2031년까지는 차세대반도체 중심의 미래기술 융합연구를 위한 개방형 연구 플랫폼 구축하는 2단계 사업이 추진되며, 2032년부터 진행되는 마지막 3단계 사업에서는 차세대반도체·바이오·미래도시·미래자동차 등 관련 기술의 글로벌 산학 클러스터 허브를 구축한다는 계획이다. 25일 열린 협약식에는 이광형 KAIST 총장, 정장선 평택시장, 김수우 브레인시티 프로젝트금융투자주식회사 대표이사가 참석해 협약서에 서명했다. 또한, 이광형 KAIST 총장은 협약식 당일 오전 9시 30분에 평택시 의회를 방문해 홍선의 의장을 비롯한 시의원들에게 KAIST 평택 캠퍼스 설립 계획을 설명하고 지원과 협력을 요청했다.이 총장은 "KAIST는 이번 협약을 통해 우리나라를 세계 최고의 반도체 강국으로 이끌 핵심 인력을 양성하고 더 나아가 평택캠퍼스를 글로벌 산학 클러스터 허브 및 한국의 실리콘 밸리로 성장시키겠다ˮ라고 포부를 밝혔다. 한편, 이번 실시협약은 KAIST가 평택시·삼성전자와 지난 7월 맺은 반도체 인력양성 및 산학협력 활성화를 위한 협약ʼ을 토대로 체결됐다.
2021.11.25
조회수 8650
전기및전자공학부 최재혁 교수팀, '제22회 대한민국 반도체 설계대전' 대통령상 수상
우리 대학 전기및전자공학부 최재혁 교수 연구실(연구실명: 집적회로 시스템 연구실, Integrated Circuits and System Lab)에서 ‘제22회 대한민국 반도체 설계대전’의 대통령상 수상자를 배출했다. ‘제22회 대한민국 반도체 설계대전’은 산업통상자원부와 한국반도체산업협회가 공동으로 주관하는 반도체 설계 전문 공모전으로, 반도체 설계분야 대학(원)생들의 설계 능력을 배양하고, 창의적인 아이디어를 발굴하는 것을 목표로 한다. 대통령상 수상자는 최재혁 교수 연구실의 박선의 박사과정, 조윤서 박사과정, 방주은 박사과정 학생으로 6G 통신에서 통신을 방해하는 잡음(noise)을 획기적으로 낮추는 ‘초 저잡음 신호’를 생성할 수 있는 CMOS(상보형금속산화반도체) 공정 기반의 칩을 개발해 대통령상에 선정됐다. 6G 통신은 최대 20 기가bps(Gbps)의 전송 속도를 갖는 5G 통신 대비 최대 50배 빠른 1 테라bps(Tbps)를 목표로 연구가 진행되고 있다. 일반적으로 통신 주파수 대역이 올라갈수록 넓은 통신 대역폭을 사용할 수 있어 데이터 전송 속도를 높일 수 있기 때문에, 6G 통신에서 요구하는 높은 데이터 전송 속도를 위해서는 100 기가헤르츠(GHz) 이상 주파수 대역의 사용이 필수적이다. 하지만, 이러한 높은 주파수 대역에서 반송파로 사용될 수 있는 정확한 기준 신호를 CMOS 공정을 이용해 만드는 것은 큰 난제였다. CMOS 공정이 초소형, 저전력 디자인에 유리함에도 불구하고, 그 동작 주파수와 고주파 대역 이득(gain)에 한계가 있고, 저잡음 특성이 SiGe, InP 등의 현존하는 다른 공정에 비해 불리하기 때문에 100 기가헤르츠(GHz) 이상의 주파수 대역에서 초 저잡음 성능을 달성하기 어려웠기 때문이다. 하지만, 최재혁 교수팀 학생들이 개발한 칩에서는 이러한 한계를 극복하고, CMOS 공정을 사용해 처음으로 100 기가헤르츠(GHz) 이상 대역에서 고차 변‧복조 기술을 지원할 수 있는 초 저잡음 신호 생성 기술을 선보였다. 이 기술은 CMOS 공정 기반으로도 6G 통신에서 요구하는 초 저잡음 성능을 달성할 수 있다는 것을 보여줌으로써, 장차 상용화될 6G 통신 칩의 가격 경쟁력과 집적도를 높이는 데 기여할 것으로 기대된다. 대통령상 수상팀에게는 상금 500만 원과 부상이 수여되며, 시상식은 11월 22일 코엑스에서 진행된다.
2021.11.22
조회수 9106
KAIST-화성사이언스HUB 유치 조성 MOU
화성시(시장 서철모)는 오늘(11일) 오전 우리 대학, 지역국회의원, 롯데백화점 동탄점과 반도체산업 발전을 위한 「KAIST-화성 사이언스 HUB 조성」 업무협약(MOU)을 체결했다고 밝혔다. 롯데백화점 동탄점이 화성시와 협의로 10년간 무상 제공하기로 한 공공기여 공간의 활용방안과 관련하여 지역 국회의원이자 국회 과학기술정보방송통신위원장인 이원욱 의원의 제안으로 화성시와 KAIST가 협력하여 반도체 산업발전과 과학기술 교육을 위한 공간으로 활용하기로 결정하였다. 내년 3월 OPEN을 목표로 추진할 예정으로 허브 내에 반도체설계교육센터(IDEC)를 유치하여 반도체 신규인력양성을 통해 인근 반도체 클러스터에 우수 인재 지원 및 기존 반도체 인력의 재교육을 담당할 계획이다. 또한, 공유오피스 조성하여 관내 청년 창업 지원 및 기업 컨설팅을 실시할 예정이며, 일부 공간에 KAIST 연구성과 전시관 개관 및 KAIST 스타교수진의 대중강연을 일반 시민과 중·고등학생을 대상으로 정기적으로 개최하여 과학기술에 대한 이해를 높이고 흥미를 유발할 예정이다. 화성시는 이번 협력을 통해 「KAIST-화성 사이언스 HUB」는 반도체 인력양성과 창업 육성은 물론, 과학 대중화를 주도할 ‘K-과학 허브’의 역할을 본격 수행할 전망이다. 11일 오전 롯데백화점 동탄점에서 개최된 「KAIST-화성 사이언스 HUB」 업무 협약식에는 서철모 화성시장, KAIST 이광형 총장, 이원욱 지역 국회의원, 롯데백화점 동탄점 정후식 점장, 과기정통부 고서곤 연구개발정책실장 등 총 10여명이 참석했다. 서철모 화성시장은 “화성시는 삼성전자를 비롯하여 1,500여개 반도체 기업이 소재하는 K-반도체 전략의 중심도시이다. 하버드, MIT와 견주어도 부족하지 않은 카이스트 과학 역량을 통해 화성시 반도체산업 발전을 위해 반드시 필요한 과학기술 인재양성 대장정을 카이스트와 함께 시작하게 되어 기대가 크며, 모든 지원을 아끼지 않겠다”고 말했다. 우리 대학 이광형 총장은 “미래 인재 양성을 위해 각 기관의 뜻을 한데 모은 점이 매우 의미가 있다”라며, “화성시와 KAIST, 롯데가 과학기술을 기반으로 한 동반 성장의 발판을 마련하고 성과를 확대해 나갈 것”이라고 말했다. 이원욱 국회의원은 “4차산업혁명시대 경쟁력은 과학기술 인재에서 나온다. 반도체인력양성을 위해 제안한 내용이 화성시와 카이스트의 노력으로 결실을 맺게 되어 매우 기쁘게 생각한다. 과학기술정보방송통신위원장으로서 국회 차원에서의 지원방안을 강구해 나갈 것이다.”라고 말했다. 한편, 이번 업무협약 기간은 2022년 1월 1일부터 2031년 12월 31일까지이며, 내년 3월 「KAIST-화성 사이언스 HUB」 OPEN 이후, 반도체 인력 양성, 대중 강연 및 과학전시 등을 통해 대중의 관심을 키워나갈 예정이다.
2021.11.15
조회수 10338
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 15