본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%B0%94%EC%9D%B4%EC%98%A4
최신순
조회순
예종철 교수, 국제전기전자학회 석학회원 선임
우리 대학 바이오및뇌공학과 예종철 교수가 국제전기전자학회(IEEE) 석학회원(Fellow)에 선임됐다. 국제전기전자학회(IEEE)는 지난 1일 학회 홈페이지를 통해 바이오 의료영상 분야 신호처리와 인공지능 기술에 대한 공로를 인정해 국제전기전자학회 신호처리 소사이어티(IEEE Signal Processing Society)의 추천을 받아 예종철 교수를 석학회원에 선임했다고 밝혔다. 전기 전자 분야 세계 최대 학회인 국제전기전자학회는 연구 업적이 특히 뛰어난 최상위 0.1% 내 회원을 석학회원으로 선정한다. 예종철 교수는 국제전기전자학회 산하 학술지를 포함한 의료영상 분야의 세계적 학술지에 100여 편의 국제 논문을 발표했고, 국제자기공명의과학회(ISMRM:International Society for Magnetic Resonance Imaging) 연례 학회에서 의료 인공지능에 관한 기조 강연을 하는 등 이 분야에서 세계적인 실력자로 권위를 인정받고 있다. 특히 2004년 부임한 이후 독자적으로 연구한 결과들을 국제적으로 인정받아 석학회원에 선임됨으로써 그 의미를 더했다. 예 교수는 이밖에 국제전기전자학회 신호처리 소사이어티의 계산영상학(Computational Imaging) 기술위원회에서 차기 의장으로, 미국 아이오와주에서 개최되는 2020년 국제전기전자학회 의료영상심포지움(IEEE Symposium on Biomedical Imaging: ISBI) 의장으로 각각 임명되는 등 영상 분야의 세계적인 학회를 이끌어 가고 있다. 예 교수는 “의료영상에서 인공지능의 중요성이 나날이 커지고 있는 상황에서 이 분야의 공헌을 국제적으로 인정받아 석학회원이 되었다는 점에서 자부심을 느낀다”라고 말했다.
2019.12.10
조회수 6534
황경민 박사과정 학생, 창업 경진대회 연이어 석권
바이오및뇌공학과 정기훈 교수 연구실의 황경민 박사과정 학생이 스타트업 ㈜브이픽스메디칼을 창업해 지난 11월 28일 서울 동대문에서 열린 `도전 K-Startup 2019' 창업리그 부문 우수상과 `제20회 여성창업경진대회' 대상을 각각 수상했다. `도전 k-startup 2019'는 국내 최대 규모·최대 상금의 창업경진대회로 중소벤처기업부, 교육부, 과학기술정보통신부, 국방부 등 4개 부처가 합동으로 주최했다. 황경민 학생이 창업한 ㈜브이픽스메디칼은 도전 K-startup 2019 창업리그 부문에 펜 형태의 수술용 초소형 현미경인 `씨셀(cCeLL)'을 출품해 중소벤처기업 장관이 수여하는 우수상과 함께 상금 1억 원을 받았다. 창업투자회사 대표 등으로 구성된 6인의 전문 심사위원과 엔젤 투자자·액셀러레이터 등이 포함된 20인의 청중평가단의 점수를 각각 6:4의 비율로 합산해 최종 순위가 결정 되었으며 ㈜브이픽스메디칼은 총 3,894개 팀 중 2위에 올랐다. 한편, `씨셀(cCeLL)'은 여성기업종합지원센터(이사장 정윤숙)가 우수 여성창업자 발굴 및 육성을 위해 개최하는 `여성창업경진대회'에서도 참가해 대상의 영예를 안았다. 1,147개 팀이 참가한 이번 대회는 IT·ICT기술, 생활․바이오헬스, 교육서비스․콘텐츠 분야 등 4차 산업혁명에 부합하는 창업 아이템의 비중이 84.3%를 차지했다. 각 출품 아이템 분야의 구성된 외부 심사위원의 평가를 통해 최종 30팀이 선정됐으며, 황경민 학생의 출품작은 수술시 조직을 떼어내지 않고도 병변이 의심되는 부분의 세포 이미지를 병리과로 보내 원격 진단을 가능하게 한 창업 아이템으로 기술성과 사업성 모두 높은 점수를 받아 대상으로 선정됐다. 황경민 학생은 이달 19일 열리는 시상식에서 중소벤처기업부장관상 등 상장과 함께 1천만 원의 상금을 받을 예정이다. ㈜브이픽스메디칼은 우리 대학 바이오및뇌공학과 정기훈 교수 연구실에서 시작된 스타트업으로, 2016년 12월에 설립됐다. 황경민 학생은 박사 과정 재학 중에 직접 연구해 발명한 "광학생검을 위한 초소형 공초점 현미경ˮ 관련 기술을 학교로부터 이전받아 지도교수 정기훈과 함께 ㈜브이픽스메디칼을 설립했다. 핵심 제품인 `cCeLL'은 암 수술실에서 실시간으로 암을 진단할 수 있는 초소형 공초점 현미경이다. CeLL은 단일섬유 스캐닝 기법과 리사주 패턴을 활용한 고유의 스캐닝 기술을 활용해 타 경쟁사보다 월등한 해상도와 이미징 속도를 자랑한다. ㈜브이픽스메디칼은 KAIST 나노종합기술원 건물 9층에 본사를 두고 있으며, 대전 서구 월평동에 기업부설연구소를 설립하여 운영하고 있다. 황경민 학생은 "브이픽스메디칼은 진단의 새로운 패러다임을 준비하고자 한다.큰 상을 받은 만큼 그에 걸맞은 대한민국의 대표 스타트업이 되겠다.ˮ라는 수상 소감과 함께 "연구실 창업으로 시작해 각 분야의 KAIST 출신 졸업생들과 함께 성공적으로 기술 창업을 이어가고자 한다ˮ라며 포부를 밝혔다. ㈜브이픽스메디칼 대표전화: 042-385-0583
2019.12.09
조회수 9967
이행기, 이정호 교수, 2019 국가연구개발 우수성과 100선 선정
〈 이행기 교수, 이정호 교수 〉 과학기술정보통신부와 한국과학기술기획평가원이 발표한 ´2019년 국가연구개발 우수성과 100선´에 우리 대학 이행기 교수, 이정호 교수가 선정됐다. 건설및환경공학과 이행기 교수는 기계·소재분야 우수성과에 선정됐다. 이 교수는 나노 및 바이오 기술을 융합한 차세대 건설재료를 개발한 연구 성과를 인정받았다. 의과학대학원 이정호 교수는 생명·해양 분야 우수성과에 선정됐다. 악성 뇌종양, 소아 뇌종양의 근본 원인을 규명하고 혁신적인 치료법을 개발한 공을 인정받았다. 우수성과로 선정된 성과는 과학기술정보통신부장관의 인증서와 현판이 수여된다. 선정된 교수에게는 국가연구개발 성과평가 유공포상(훈·포장, 대통령표창, 국무총리표창 등) 후보자로 추천되고, 신규 연구개발(R&D) 과제 선정에서 우대받게 된다.
2019.10.11
조회수 10334
박현규 교수, 바이오센서&바이오일렉트로닉스 저널 부편집장 선임
〈 박현규 교수 〉 우리 대학 생명화학공학과 박현규 교수가 엘스비어(Elsevier) 출판사가 발간하는 국제 학술지 ‘바이오센서& 바이오일렉트로닉스’(Biosensors and Bioelectronics) 저널 부편집장(associate editor)으로 선임됐다. 해당 저널은 화학, 분석(Chemistry, Analytical) 분야 상위 2.5%의 정상급 SCI 저널로(IF 9.518, 2018년 기준), 박현규 교수는, 핵산공학, 바이오센서, 나노바이오공학 분야에서 탁월한 연구 업적을 인정받아 부편집장(associate editor)에 선임됐다. 박 교수의 임기는 올해 10월부터 2021년 12월까지로 1년에 200여 편의 투고 논문에 대한 초기평가, 평가위원 선정, 최종 논문 게재 승인 결정 등 논문 게재 과정의 핵심 임무를 수행하게 된다.
2019.09.30
조회수 5038
정재웅 교수, 스마트폰으로 뇌 신경회로 무선 제어 기술 개발
〈 김충연, 변상혁 박사과정, 정재웅 교수〉 우리 대학 전기및전자공학부 정재웅 교수와 미국 워싱턴대(University of Washington) 마이클 브루카스(Michael Bruchas) 교수 공동 연구팀이 스마트폰 앱 조작을 통해 약물과 빛을 뇌 특정 부위에 전달함으로써 신경회로를 정교하게 조절할 수 있는 뇌 이식용 무선 기기를 개발했다. 이번 기술 개발을 통해 장기간의 동물 실험이 필요한 신약 개발뿐 아니라 치매, 파킨슨병 등 뇌 질환 치료에도 적용할 수 있을 것으로 기대된다. 라자 콰지(Raza Qazi, 1저자), 김충연, 변상혁 연구원이 개발하고 워싱턴대 신경과학 연구원들이 공동으로 참여한 이번 연구는 의공학 분야 국제 학술지 ‘네이처 바이오메디컬 엔지니어링(Nature Biomedical Engineering)’ 8월 6일 자에 게재됐다. (논문명 : Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation). 광유전학과 신경약물학은 주변 신경회로에 영향을 주지 않고 목표로 하는 뉴런이나 신경회로만을 빛 또는 약물, 혹은 그 둘의 조합을 이용해 정교하게 제어할 수 있다. 기존의 전기자극을 활용한 방법에 비해 훨씬 더 높은 시공간적 해상도를 가져 최근 뇌 연구 및 뇌 질병 치료 목적으로 주목받고 있다. 하지만 현재 뇌 연구에 일반적으로 쓰는 기기는 상대적으로 크기가 커 뇌 조직 손상, 정교한 선택적 신경회로 제어 불가, 하나의 다기능성 프로브(probe) 형태로 구현이 어렵다. 또한, 기존 기기는 실리카(silica)와 금속 등 고강성 재료로 제작돼 부드러운 뇌 조직과의 기계 특성적 간극이 있다. 이러한 특성으로 인해 염증반응을 악화시켜 장기간 이식용으로 적합하지 않다. 무엇보다 일반적으로 연구실에서 쓰이고 있는 광섬유, 약물주입관 등은 뇌 이식 후 외부기기에 선이 연결된 형태로 사용해야 해 자유로운 행동을 크게 제약하게 된다. 연구팀은 중합체(polymer) 미세유체관과 마이크로 LED를 결합해 머리카락 두께의 유연한 탐침을 만들고, 이를 소형 블루투스 기반 제어 회로와 교체 가능한 약물 카트리지와 결합했다. 이를 통해 스마트폰 앱을 통해 무선으로 마이크로 LED와 약물 전달을 제어할 수 있는 무게 2g의 뇌 이식용 기기를 구현했다. 특히 약물 카트리지는 레고의 원리를 모사해 탐침 부분과 쉽게 조립 및 분리할 수 있도록 제작해, 필요할 때마다 새로운 약물 카트리지를 결합함으로써 원하는 약물을 장기간에 걸쳐 뇌의 특정 부위에 반복 전달할 수 있도록 만들었다. 연구팀은 이 기기를 쥐의 뇌 보상회로에 이식한 후 도파민 활성 약물과 억제 약물이 든 카트리지를 기기와 결합했다. 그 후 간단한 스마트폰 앱 제어와 도파민 활성 약물을 이용해 원하는 타이밍에 자유롭게 움직이는 쥐의 행동을 증가, 억제하는 데 성공했다. 또한, 연구팀은 쥐의 뇌에서 장소 선호도를 유도할 수 있는 부위에 빛에 반응하는 단백질을 주입해 신경세포가 빛에 반응하도록 처리했다. 그 후 쥐가 특정 장소로 이동했을 때 마이크로 LED를 켜 빛 자극을 통해 쥐가 그 장소에 계속 머물고 싶게 만들었다. 반대로 약물 전달을 통해 뇌 신경회로를 제어함으로써 쥐의 특정 장소 선호도를 없애는 데도 성공했다. 정 교수는 “빛과 약물을 이용한 신경회로 제어는 기존의 전기자극 방법보다 훨씬 더 정교해 부작용 없는 뇌 제어가 가능하다”라며 “개발된 기기는 간단한 스마트폰 조작으로 뇌의 특정 회로를 빛과 약물을 이용해 반복적, 장기적으로 무선 제어가 가능해 뇌 기능을 밝혀내기 위한 연구나 향후 뇌 질환의 치료에도 유용하게 적용할 수 있을 것이다”라고 말했다. 연구팀은 이 기술을 인체에 적용하기 위해 두개골 내에 완전히 이식할 수 있고 반영구적 사용이 가능한 형태로 디자인을 발전시키는 확장 연구를 계획하고 있다. 이번 연구는 한국연구재단 신진연구자지원사업(완전 이식 가능한 무선 유연성 광유체 뉴럴 임플랜트 개발 및 뇌 연구를 위한 광유전학/광약물학에의 적용) 및 기초연구실 지원사업(유전자 및 신경회로 조절 기반 중독 행동 제어 기초연구실)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 디바이스가 이식된 쥐의 사진 그림2. 스마트폰앱을 이용한 마이크로 LED 컨트롤 그림3. 개발된 뇌 이식용 무선 디바이스
2019.08.08
조회수 15937
생명화학공학과 대학원생들, 시스템 대사공학 전략 발표
〈 양동수 박사과정, 박다현 석사과정, 최경록 박사과정, 조재성 박사과정, 장우대 박사과정 〉 우리 대학 생명화학공학과 대학원생 다섯 명이 대사공학과 시스템 생물학, 합성 생물학의 결합 시스템 등 대사공학 전반의 전략에 대한 논문을 발표했다. 생명화학공학과는 최근 박사학위를 마친 최경록 연구원과 장우대, 양동수, 조재성 박사과정, 박다현 석사과정이 친환경 화학물질 생산을 위해 필수적인 미생물 공장을 개발하는 전략을 총정리했다. 이 연구의 결과는 셀(Cell)지가 발행하는 생명공학 분야 권위 리뷰 저널인 ‘생명공학의 동향(Trends in Biotechnology)’ 8월호 표지논문 및 주 논문 (Feature review)에 게재됐다. (논문명 : Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering) 시스템 대사공학은 기존의 석유화학산업을 대체할 바이오산업의 핵심이 되는 미생물 균주를 보다 효과적으로 개발하기 위해 KAIST 생명화학공학과의 이상엽 특훈교수가 창시한 연구 분야다. 전통적 대사공학에 시스템 생물학, 합성 생물학 및 진화 공학 기법을 접목한 시스템 대사공학은 직관적 전략이나 무작위 돌연변이 유발에 의존하는 기존의 대사공학과 비교해 적은 비용과 인력, 짧은 시간 내에 산업에서 이용 가능한 고성능 균주 개발을 가능하게 만든다. 연구 기획 단계에서부터 실제 공장에서 균주의 발효 공정 및 발효를 통해 생산된 물질의 분리/정제 공정까지 고려함으로써 산업 균주 개발 도중 불필요한 시행착오를 최소화할 수 있다. 본 논문에서는 시스템 대사공학 전략을 연구의 흐름에 따라 ▲프로젝트 디자인 ▲균주 선정 ▲대사회로 재구성 ▲표적 화합물에 대한 내성 향상 ▲대사 흐름 최적화 ▲산업 수준으로의 생산 규모 확대 등 일곱 단계로 나누고, 각 단계에서 활용할 수 있는 최신 도구 및 전략들을 총망라했다. 더불어 바이오 기반 화합물 생산의 최신 동향과 함께 고성능 생산 균주를 보다 효과적으로 개발하기 위해 시스템 대사공학이 나아가야 할 방향도 함께 제시했다. 주저자인 최경록 연구원은 “기후 변화가 커지며 기존의 석유화학 산업을 친환경 바이오산업으로 대체하는 것이 불가피하다”라며 “시스템 대사공학은 산업에서 활용 가능한 고성능 생산 균주의 개발을 촉진해 바이오산업 시대의 도래를 앞당길 것이다”라고 말했다. 지도교수인 이상엽 특훈교수는 “그간 우리 연구실과 전 세계에서 수행한 수많은 대사공학연구를 우리가 제시한 시스템 대사공학 전략으로 통합해 체계적으로 분석 및 정리하고 앞으로의 전략을 제시했다는 점에서 큰 의미가 있다”라며 “권위 있는 학술지에 주 논문이자 표지논문으로 게재된 훌륭한 연구를 수행한 학생들이 자랑스럽다”라고 말했다. 이상엽 특훈교수 연구팀은 실제로 시스템 대사공학 전략을 이용해 천연물, 아미노산, 생분해성 플라스틱, 환경친화적 플라스틱 원료, 바이오 연료 등을 생산하는 고성능 균주들을 다수 개발한 바 있다. 이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 ‘바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제’ 및 한화케미칼이 지원하는 KAIST-한화 미래 기술 연구소의 지원을 받아 수행됐다.
2019.07.24
조회수 14841
이상엽 특훈교수, 김현욱 교수, 인공지능 이용한 효소기능 예측 기술 개발
우리 대학 생명화학공학과 이상엽 특훈교수와 김현욱 교수의 초세대 협업연구실 공동연구팀이 딥러닝(deep learning) 기술을 이용해 효소의 기능을 신속하고 정확하게 예측할 수 있는 컴퓨터 방법론 DeepEC를 개발했다. 공동연구팀의 류재용 박사가 1 저자로 참여한 이번 연구결과는 국제학술지 ‘미국 국립과학원 회보(PNAS)’ 6월 20일 자 온라인판에 게재됐다. (논문명 : Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers) 효소는 세포 내의 생화학반응들을 촉진하는 단백질 촉매로 이들의 기능을 정확히 이해하는 것은 세포의 대사(metabolism) 과정을 이해하는 데에 매우 중요하다. 특히 효소들은 다양한 질병 발생 원리 및 산업 생명공학과 밀접한 연관이 있어 방대한 게놈 정보에서 효소들의 기능을 빠르고 정확하게 예측하는 기술은 응용기술 측면에서도 중요하다. 효소의 기능을 표기하는 시스템 중 대표적인 것이 EC 번호(enzyme commission number)이다. EC 번호는 ‘EC 3.4.11.4’처럼 효소가 매개하는 생화학반응들의 종류에 따라 총 4개의 숫자로 구성돼 있다. 중요한 것은 특정 효소에 주어진 EC 번호를 통해서 해당 효소가 어떠한 종류의 생화학반응을 매개하는지 알 수 있다는 것이다. 따라서 게놈으로부터 얻을 수 있는 효소 단백질 서열의 EC 번호를 빠르고 정확하게 예측할 수 있는 기술은 효소 및 대사 관련 문제를 해결하는 데 중요한 역할을 한다. 작년까지 여러 해에 걸쳐 EC 번호를 예측해주는 컴퓨터 방법론들이 최소 10개 이상 개발됐다. 그러나 이들 모두 예측 속도, 예측 정확성 및 예측 가능 범위 측면에서 발전 필요성이 있었다. 특히 현대 생명과학 및 생명공학에서 이뤄지는 연구의 속도와 규모를 고려했을 때 이러한 방법론의 성능은 충분하지 않았다. 공동연구팀은 1,388,606개의 단백질 서열과 이들에게 신뢰성 있게 부여된 EC 번호를 담고 있는 바이오 빅데이터에 딥러닝 기술을 적용해 EC 번호를 빠르고 정확하게 예측할 수 있는 DeepEC를 개발했다. DeepEC는 주어진 단백질 서열의 EC 번호를 예측하기 위해서 3개의 합성곱 신경망(Convolutional neural network)을 주요 예측기술로 사용하며, 합성곱 신경망으로 EC 번호를 예측하지 못했을 경우 서열정렬(sequence alignment)을 통해서 EC 번호를 예측한다. 연구팀은 더 나아가 단백질 서열의 도메인(domain)과 기질 결합 부위 잔기(binding site residue)에 변이를 인위적으로 주었을 때, DeepEC가 가장 민감하게 해당 변이의 영향을 감지하는 것을 확인했다. 김현욱 교수는 “DeepEC의 성능을 평가하기 위해서 이전에 발표된 5개의 대표적인 EC 번호 예측 방법론과 비교해보니 DeepEC가 가장 빠르고 정확하게 주어진 단백질의 EC 번호를 예측하는 것으로 나타났다”라며 “효소 기능 연구에 크게 이바지할 것으로 기대한다”라고 말했다. 이상엽 특훈교수는 “이번에 개발한 DeepEC를 통해서 지속해서 재생되는 게놈 및 메타 게놈에 존재하는 방대한 효소 단백질 서열의 기능을 보다 효율적이고 정확하게 알아내는 것이 가능해졌다”라고 말했다. 이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제 및 바이오·의료기술 개발 Korea Bio Grand Challenge 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 인공지능 기반의 DeepEC를 이용한 효소 기능 EC 번호 예측
2019.07.03
조회수 14456
2019 CHIP 해외 자문단 초청 워크숍 개최
〈 (왼쪽부터)데이빗 슈베르트(David Schubert) 라이프 사이언스 파트너스 최고운영책임자, 다니엘 김(Daniel Kim) 텍사스 대학 신경외과 전문의, 베른트 스토바쪄(Bernd Stowasser) 사노피 유럽 민관협력 담당 임원, 조지 맥랜든(George Mclendon) 엠엘바이오 이사 〉 우리 대학 바이오헬스케어 혁신정책센터(Center for Bio-Healthcare Innovation & Policy, 이하 CHIP)가 오는 7월 1일부터 이틀간 서울 강남쉐라톤팰리스 호텔에서 ‘2019 CHIP 해외 자문단 초청 워크숍’ 개최한다. 올해로 5회째를 맞는 이번 국제 워크숍은 ‘글로벌 오픈이노베이션 플랫폼 구축과 지속가능한 바이오투자 생태계 조성’을 주제로 열린다. 국내 제약사·벤처·벤처캐피털·의료기관·정부기관 전문가들이 모여 바이오헬스 산업 육성을 위한 미래전략을 도출하는 자리다. 글로벌 제약사 사노피의 유럽 민관협력 담당 임원인 베른트 스토바쪄(Bernd Stowasser) 박사, 미국의 혁신신약 전문 액셀러레이터 라이프 사이언스 파트너스(Life Science Partners)의 데이빗 슈베르트(David Schubert) 최고운영책임자, 전 캐롤라이나 헬스케어 시스템의 부회장이자 현재 신약개발 벤처 엠엘바이오(MLBio)의 이사인 조지 맥랜든(George Mclendon) 박사, 텍사스 대학 신경외과 전문의이자 의료로봇 전문가인 다니엘 김(Daniel Kim) 등이 자문단으로 참여한다. 7월 1일 오후 2시부터 진행되는 첫날 워크숍은 정호철 이화여대 약대 특임교수와 김태억 범부처신약사업단 사업개발본부장이 좌장을 맡는다. 총 2개의 세션에서 ▲글로벌 신약개발의 동향 및 미래 방향 ▲바이오헬스 산업에서 글로벌 연구개발 협력의 필요성과 글로벌 동향 ▲IMI(Innovative Medicines Initiative(혁신신약이니셔티브),이하 IMI) 3의 거버넌스 및 한국-EU 공동 R&D의 시너지 ▲IMI와 연구개발 협력이 필요한 분야 및 협력방향 등을 세부과제로 다뤄 신약 개발 분야에서의 국제 연구개발 협력을 통한 글로벌 오픈이노베이션 플랫폼 구축을 논의한다. 특히, 국내 신약개발 생태계의 고질적 약점으로 지적되는 중개연구역량·글로벌 수준의 신약개발 연구인력 부족·글로벌 제약기업 및 선진국 인허가 기관과 네트워크 부재에 관한 해법 모색에 나선다. 그동안 국내 신약개발 지원기관 및 관련 기업들이 세계 최대 민관협력 신약개발 네트워크인 EU-IMI에 참여하고 싶다는 의사를 개별적으로 전달했으나 한국이 비 EU국가라는 이유로 성사되지 못했다. KAIST 바이오헬스케어 혁신정책센터는 국내·외 자문위원들과 함께 IMI 및 유럽제약협회(EFPIA)와 지난 3년간의 논의해왔으며, 연구개발 비용의 자체 부담을 조건으로 한국의 IMI 참여 지지를 확보했다. 또한, 정부관계자와 함께 한국이 IMI에 참여해야 하는 필요성에 대해 논의하는 중이다. 이번 워크숍을 통해 한국-EU IMI 공동 신약연구 프로그램을 구축할 임시추진위원회를 구성하고 오송·대구 첨단의료복합단지를 글로벌 진출의 허브로 육성해 한국이 EU-IMI의 일원으로 활동하는 방안에 대해 본격적으로 논의할 예정이다. 세포·유전자 치료제 등 미래 정밀의료 의약품 개발과 민간 기업이 개발을 회피하거나 실패 위험이 높은 수퍼박테리아 항생제, 치매를 포함한 뇌질환 치료제 등의 국내 개발을 가속하기 위해서다. 7월 2일은 지속가능한 바이오투자 생태계 조성과 국내 신약·의료기기 스타트업의 글로벌 사업화 가능성을 전망해보는 자리로 마련된다. 조영국 글로벌밸류네트웍스 대표, 김종백 법무법인 지안 변호사, 이남구 워터스 코리아 대표가 좌장을 맡아 ▲바이오기업 가치 평가와 기업공개 ▲바이오텍 초기 투자의 다원화 ▲의료기기 혁신을 위한 투자 등의 세부 과제를 다룰 예정이다. 특히, 바이오 분야 창업부터 코스닥 상장까지 경험을 공유하기 위해 유진산 파맵신 대표와 윤원수 티앤알바이오팹 대표도 기업 사례 발표자로 나선다. 둘째 날 오후 행사에서는 신약개발 스타트업과 의료기기 스타트업의 글로벌 사업화 가능성을 탐색하는 기업 소개와 리뷰(Pre-IR) 시간이 마련된다. 작년에 이 세션에서 소개된 5개의 스타트업 중 2곳이 6개월 이내에 시리즈 A 투자 유치에 성공한 바 있다. 이번 행사는 KAIST 바이오헬스케어 혁신정책센터가 주최·주관하고 보건복지부와 보건산업진흥원, 한강서사이어티가 후원한다. 채수찬 KAIST 바이오헬스케어 혁신정책센터장은 “이번 워크숍을 통해 IMI와 같은 민관협력체 활용과 우리나라 바이오헬스 산업의 글로벌 진출 가속과 지속가능한 발전 방안이 마련되기를 기대한다”고 밝혔다. KAIST 2019 CHIP 해외 자문단 초청 워크숍은 홈페이지( http://chip.kaist.ac.kr )를 통해 참석 신청이 가능하다.(문의:02-3498-7558)
2019.06.27
조회수 9658
이상엽 교수, 지방산∙바이오디젤 생산 가능한 미생물 개발
〈 이상엽 특훈교수 〉 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 비식용 바이오매스 기반의 최고성능을 갖는 지방산과 지방산 유도체로 전환하는 미생물 균주 및 발효 공정을 개발했다. 김혜미, 채동언 연구원 등이 참여한 이번 연구결과는 국제학술지 ‘네이처 케미컬 바이올로지(Nature Chemical Biology)」 6월 17일 자 온라인판에 게재됐다. (논문명 : Engineering of an oleaginous bacterium for the production of fatty acids and fuels) 화석원료는 현대 산업의 기초 물질이자 우리 생활 전반에 광범위하게 이용되는 원료 및 에너지원으로 필수적인 물질이다. 그러나 원유 매장량 고갈에 대한 우려와 원유 산업으로 인한 온난화 등의 환경문제가 세계적으로 매우 심각한 상황이다. 특히 우리나라의 경우 석유를 전량 수입에 의존하기 때문에 국제 유가 변동에 매우 취약해 환경문제를 해결과 원유를 대체할 수 있는 지속 가능한 바이오 기반 재생에너지의 생산이 필수다. 따라서 재생 가능한 자원 기반의 바이오 연료 개발이 활발히 이뤄지고 있는데, 그중 경유를 대체할 수 있는 환경친화적 연료인 바이오 디젤이 있다. 바이오 디젤은 주로 식물성 기름이나 동물성 지방의 에스터교환(transesterification) 반응을 통해 만들어지고 있다. 이 특훈교수 연구팀은 바이오 디젤 생산을 위해 폐목재, 잡초 등 지구상에서 가장 풍부한 바이오매스 주성분인 포도당으로부터 지방산 및 바이오 디젤로 이용할 수 있는 지방산 유도체를 생산하는 균주를 개발했다. 연구팀은 자연적으로 세포 내 기름을 축적하는 것으로 알려진 미생물인 로도코커스(Rhodococcus)를 시스템 대사공학을 통해 대사 회로를 체계적으로 조작해 최고성능으로 지방산 및 바이오 디젤을 생산하는 균주를 개발했다. 먼저 로도코커스의 배양 조건을 최적화한 뒤 포도당을 섭취해 세포 내 과량의 기름(트리아실글리세롤, triacylglycerol)을 축적하게 했다. 이후 선별한 외부 효소를 도입해 효과적으로 기름을 지방산으로 전환해 최고 농도의 지방산 생산 균주를 개발했다. 또한, 지방산을 두 가지 형태의 바이오 디젤 연료 물질로 효율적으로 전환하는 추가적인 유전자 조작을 통해 바이오 디젤을 최고성능으로 생산하는 데 성공했다. 연구팀은 이전에 대장균을 이용해 바이오 연료인 휘발유를 생산하는 미생물 세계 최초로 개발한 바 있다. (Nature 표지논문 게재) 그러나 해당 기술은 생산성이 리터당 약 0.58g 정도로 매우 낮다는 한계가 있었다. 이를 극복하기 위해 로도코커스 균주를 이용해 포도당으로부터 리터당 50.2 g의 지방산 및 리터당 21.3 g의 바이오 디젤 생산에 성공했다. 이러한 성과를 통해 향후 식물성이나 동물성 기름에 의존하지 않고 비식용 바이오매스로부터 미생물 기반 바이오 연료의 대량 생산까지 가능하게 할 것으로 기대된다. 이상엽 특훈교수는 “이번에 개발한 고효율 미생물 기반 지방산과 바이오 디젤 생산 연구는 앞으로 환경문제 해결과 더불어 원유, 가스 등 화석연료에 의존해온 기존 석유 화학 산업에서 지속할 수 있고 환경친화적인 바이오 기반산업으로의 재편에 큰 역할을 할 것이다”라고 말했다. 이번 연구는 과기정통부가 지원하는 기후변화대응기술개발사업의 바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제의 지원을 받아 수행됐다. □ 그림 설명 그림1. 미생물 내에 축적된 오일과 이를 기반으로 생산되는 지방산 및 바이오 디젤
2019.06.20
조회수 12305
이상엽 교수, 포도향 생산하는 미생물 개발
〈 이상엽 특훈교수 〉 〈 1저자 루오 쯔 웨(Zi Wei Luo) 박사후 연구원, 조재성 박사과정 〉 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 대사공학 기법을 이용해 재조합 미생물 기반의 포도향을 생산하는 공정을 개발했다. 연구팀의 기술은 재생 가능한 탄소 순환형 바이오매스를 통해 화학적 촉매 반응 없이 순수한 생물학적 공정만으로 메틸안트라닐산을 제조하는 기술이다. 생산 공정이 단순하고 친환경적이기 때문에 경제적인 방식으로 고부가가치 물질인 메틸안트라닐산을 생산할 수 있다는 의의가 있다. 루오 쯔 웨(Zi Wei Luo) 박사후연구원, 조재성 박사과정이 공동 1 저자로 참여한 이번 연구결과는 국제학술지 ‘미국 국립과학원회보(PNAS)’ 5월 13일 자 온라인판에 게재됐고 하이라이트 논문으로 소개됐다. (논문명 : Microbial production of methyl anthranilate, a grape flavor compound) 석유 자원의 고갈과 기후 변화 및 환경 문제 우려가 커지면서 여러 유용한 화학물질 생산을 위한 친환경적이고 지속 가능 공정의 중요성과 관심이 날로 커지고 있다. 특히 대사공학은 재생 가능한 비식용 바이오매스로부터 다양한 천연 및 비천연 화합물 생산을 가능하게 해 지속 가능한 발전을 위한 해결책을 제공해 왔다. 그러나 식물 유래의 천연화합물 생산을 위한 미생물 개발은 여전히 부족해 계속 도전해야 할 분야로 남아있다. 메틸안트라닐산은 콩코드 포도 특유의 향과 맛을 내는 주요 천연화합물로 여러 과일 및 식물에 함유돼 있다. 화장품이나 의약품 등에 향미 증진제로 광범위하게 사용되는 물질로 다방면으로 활용할 수 있다. 그러나 식물에서 메틸안트라닐산을 추출하는 방식은 경제성이 낮아 지난 100여 년간 유기용매를 사용하는 석유 화학적 방법으로 제조돼 인공착향료로 분류됐다. 이 특훈교수 연구팀은 대사공학 기법으로 미생물의 대사 회로를 설계해 포도당과 같이 재생 가능한 바이오매스로부터 100% 천연 메틸안트라닐산을 화학 촉매 없이 효율적으로 생산하는 공정을 최초로 개발했다. 연구팀은 이상(二相) 추출 발효 과정을 이용해 생산되는 메틸안트라닐산 메틸을 정제하는 방법도 개발했다. 이 특훈교수는 “지난 100년 동안 석유화학 기반으로만 생산된 메틸안트라닐산을 100% 바이오 기반의 친환경 방식으로 생산할 수 있게 된 기술이다”라며 “천연 메틸안트라닐산은 향후 식품, 의약품 및 화장품 산업에 다방면으로 이용할 수 있을 것이다”라고 밝혔다. 이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 ‘바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제’의 지원을 받아 수행됐다. □ 그림 설명 그림1. 메틸안트라닐산 생산 과정
2019.05.20
조회수 12078
제6회 연구실 안전의 날 개최
우리대학이 학생들의 안전 의식을 높이고 대학 내에 안전문화를 확산하기 위한 기념행사를 연다. 안전팀은 대학원총학생회와 공동으로 13일 오후 3시부터 대전 본원 학술문화관(E9) 2층 양승택 오디토리움에서 ‘제6회 연구실 안전의 날’ 행사를 개최한다. ‘연구실 안전의 날’은 지난 2003년 교내 풍동실험실 폭발 사고로 희생된 학생을 추모하고 사고 없는 안전한 대학 연구실을 만들어가자는 취지로 2014년 처음 열렸다. 올해로 6회째를 맞는 이번 행사에는 신성철 총장, 대학원생, 각 학과 안전관리 책임자 등 150여 명이 참석한다. 행사는 안전관리 우수학과 표창, 공모전 수상자 표창, 교내 춤 동아리 공연, 안전연극 공연 순으로 진행된다. ‘KAIST 연구실 안전관리 평가 기준’에 따라 교육, 점검, 위험성 평가, 위원회 운영 및 사고 발생 결과 등을 종합적으로 평가하는 안전관리 최우수학과에는 신소재공학과가, 우수학과에는 바이오및뇌공학과가 각각 선정됐다. 특히, 신소재공학과는 연구자의 안전교육 참여도가 높고 실험실 안전점검 결과에 대한 후속 조치 이행률(100%)이 매우 우수했다는 평가를 받았다. 또한, 연구실 안전문화 캠페인의 일환으로 4월 1일부터 30일까지 58편의 응모작을 접수한 안전 관련 창작물 공모전에서는 총 9개의 수상 작품이 선정됐다. 표어 및 포스터 부문에서는 ‘안전한지 실험말고 안전하게 실험하자(신소재공학과 전성현)’, ‘연구실 안전 황금룰(산업디자인학과 박근용)’이 각각 최우수상 수상작으로 결정됐으며, 그 외 4편이 우수상을 받는다. ‘연구실 안전 토크(Lab Safety Talk)’를 주제로 공모한 카드뉴스와 UCC 영상 부분에서는 최우수 수상작 없이 박지혜(원자력 및 양자공학과)·김창현(생명화학공학과) 학생팀과 박형준(정보전자 연구소) 학생, 카이누리(단체출품)가 각각 우수상을 받는다. 이와 함께 우리 대학 연구실에서 발생한 실제 사고를 배경으로 연출된 안전연극 ‘얼렁뚱땅’과 KAIST 춤 동아리‘루나틱’의 공연도 열린다. 신성철 총장은 이날 축사를 통해 “연구의 시작은 안전의식을 먼저 갖추는 것”이라며 “이번 행사가 연구실 안전문화를 확산시키는 계기가 될 것”이라고 강조할 방침이다. 한편, 지난달 1일부터 ‘제12회 연구실 안전문화 캠페인’도 진행 중인데 SNS 공유 이벤트, 실험 가운과 보안경을 무상으로 지급하는 개인 보호구 무상지급 이벤트, 개인 보호구 전시 및 착용 체험활동, ‘내가 겪은 연구실 사고 이야기’ 강연 등 다양한 프로그램을 운영했다. 우리 대학은 쾌적하고 안전한 연구실 구축을 위해 연구실 정밀안전진단 ․ 실험실 위험성 평가 ․ 분야별 안전교육 등 다양한 예방 안전프로그램을 매년 운영 중이다.작년 6월에는 10년 이상 경력의 현장 전문가들이 3년여에 걸쳐 집필한 연구실 안전 백과사전인 ‘안전 바인더(SAFETY Binder)’를 제작해 900여 개 교내 연구실을 대상으로 배포한 바 있다.
2019.05.13
조회수 9638
조광현 교수, 대장암 항암제 내성 극복할 병용 치료타겟 발굴
〈 조광현 교수 연구팀 〉 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 대장암의 항암제 내성을 극복할 수 있는 새로운 병용치료 타겟을 발굴하는 데 성공했다. 연구팀은 암세포의 복잡한 생체데이터를 분자 네트워크 관점에서 분석하는 시스템생물학 접근법의 중요성을 제시했다. 이 방법을 통해 암세포가 가지는 약제 내성의 원리를 시스템 차원에서 파악하고, 새로운 약물 타겟을 체계적으로 발굴할 수 있을 것으로 기대된다. 박상민 박사과정, 황채영 박사 등이 참여한 이번 연구결과는 국제학술지 ‘유럽생화학회저널(FEBS Journal)’의 4월호 표지논문으로 게재됐다. (논문명 : Systems analysis identifies potential target genes to overcome cetuximab resistance in colorectal cancer cells) 암은 흔하게 발생하는 대표적인 난치병으로 특히 대장암은 전 세계적으로 환자 수가 100만 명을 넘어섰고, 국내의 경우 서구화된 식습관과 비만 등으로 인해 발병률 증가 속도가 10년간 가장 높게 나타났다. 최근 급격한 고령화에 따라 대장암 환자의 발생률 및 사망률이 가파르게 증가할 것으로 예상되고 있다. 최근 암세포의 특정 분자만을 표적으로 하는 표적항암제가 개발돼 부작용을 크게 줄이고 효과를 높일 수 있지만, 여전히 약물에 반응하는 환자가 매우 제한적이며 그나마 반응을 보이더라도 표적 항암치료 후 약물에 대한 내성이 생겨 암이 재발하는 문제를 안고 있다. 또한, 환자별로 항암제에 대한 반응이 매우 달라 환자의 암 조직 내 유전자 변이의 특징에 따라 적합한 치료를 선택하는 정밀의학의 필요성이 커지고 있다. 대장암 역시 약물의 효과를 예측할 수 있는 유전자 바이오마커의 여부에 따라 적합한 표적항암제를 처방하는 시도가 이뤄지고 있다. FDA 승인을 받은 대표적인 대장암 치료제인 세툭시맙(cetuximab)의 경우 약물 반응성을 예측하는 바이오마커로 KRAS 유전자 돌연변이의 유무가 활용되고 있는데 이 유전자 돌연변이가 없는 환자에게 처방을 권고하고 있다. 그러나 KRAS 돌연변이가 없는 환자도 세툭시맙 반응률은 절반 정도에 불과하고 기존 항암 화학요법 단독시행과 비교해도 평균 5개월의 수명을 연장하는 데 그치고 있다. 오히려 KRAS 돌연변이가 있는 환자에게서 반응성이 있는 경우가 보고되고 있다. 따라서 KRAS 돌연변이 유무 이외의 새 바이오마커가 요구되고 있으며 KRAS 돌연변이가 존재해도 내성을 극복할 수 있는 병용치료 타겟의 발굴이 필요하다. 조 교수 연구팀은 유전체 데이터 분석, 수학 모델링, 컴퓨터 시뮬레이션 분석과 암 세포주 실험을 융합한 시스템생물학 연구를 통해 세툭시맙 반응성에 대한 바이오마커로 다섯 개의 새로운 유전자(DUSP4, ETV5, GNB5, NT5E, PHLDA1)를 찾아냈다. 그리고 대장암세포에서 각 유전자를 실험적으로 억제한 결과 KRAS 정상 세포에서 발생하는 세툭시맙 내성을 모두 극복할 수 있었다. 특히 GNB5를 억제하면 KRAS 돌연변이가 있는 세포주에서도 세툭시맙 처리에 따른 약물내성을 극복할 수 있음을 밝혔다. 따라서 GNB5의 억제를 통해 대장암 환자의 KRAS 돌연변이 유무와 관계없이 세툭시맙에 대한 내성을 극복할 수 있어 GNB5가 효과적인 병용치료 분자 타겟이 될 수 있음을 증명했다. 연구팀이 제시한 유전자를 바이오마커로 활용하면 세툭시맙에 잘 반응할 수 있는 민감 환자군을 미리 선별해 치료할 수 있는 정밀의학의 실현을 앞당길 수 있다. 또한, 발굴된 유전자들을 표적화하는 신약개발을 통해 내성을 가지는 환자군에 대해서도 새로운 치료전략을 제시할 수 있다. 특히 세툭시맙 치료 대상에서 제외됐던 KRAS 돌연변이가 있는 환자군에 대해서도 GNB5의 억제를 통해 치료 효과를 가져올 수 있을 것으로 기대된다. 조 교수는 “지금껏 GNB5 유전자 조절을 대장암의 조합치료에 활용한 예는 없었다”라며 “시스템생물학으로 암세포가 가지는 약제 내성의 원리를 밝히고, 내성 환자군에 대한 바이오마커 동정 및 내성 극복을 위한 병행치료 타겟 발굴을 통해 정밀의학을 실현할 수 있는 새로운 가능성을 제시했다”라고 말했다. 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업과 바이오의료기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 유럽생화학회저널 4월 표지
2019.05.07
조회수 14047
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 19