본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%B0%94%EC%9D%B4%EC%98%A4
최신순
조회순
KAIST-GS칼텍스 공동, 바이오부탄올 생산균주개발
- 대사공학적으로 개량된 균주 개발로 효율적 생산가능 - 바이오부탄올은 에너지량이 높고 수송편의 등 장점 많아 차세새 연로로 각광 우리학교와 GS칼텍스(대표 허동수회장)가 공동연구를 통해 차세대 바이오연료로 각광받고 있는 ‘바이오부탄올’을 생산하는 새로운 균주를 개발하는데 성공했다. 이상엽(李相燁, 44세) KAIST 생명화학공학과 및 바이오융합연구소 특훈교수(생명과학기술대학장)와 GS칼텍스 공동연구팀은 폐목재, 볏짚, 잉여 사탕수수 등 비식용 바이오매스를 이용, 많은 양의 ‘바이오부탄올’을 선택적으로 생산 가능케 하는 대사공학적으로 개량된 균주개발에 성공했으며, 특허를 출원했다고 밝혔다. 이번 KAIST와 GS칼텍스가 공동으로 개발, 특허 출원한 기술은 바이오매스 발효과정에 사용되는 균주를 대사공학적으로 개량, 아세톤의 생산을 억제하고 부탄올과 에탄올만 6:1의 비율로 생산되도록 한 것으로, 아세톤을 부탄올로부터 분리할 필요가 없어 공정비용을 절감할 수 있는 장점을 가지고 있다. 클로스트리디움 박테리아를 사용하여 부탄올을 생산하는 전통적인 발효방식에서는 발효시 대사특성으로 인해 부탄올과 아세톤, 그리고 에탄올을 6:3:1의 비율로 생산되는데, 이 때 생산되는 아세톤은 연료로는 사용이 곤란하다는 단점이 있다. ‘바이오부탄올’은 탄소가 4개로 구성된 알코올로서 1리터당 에너지량이 7,323kcal로 현재 널리 사용되고 있는 바이오에탄올의 에너지량 5,592kcal보다 단위 부피당 에너지량이 30% 이상 높으며, 가솔린의 7,656kcal와도 큰 차이가 없다. 또한, 바이오에탄올은 철도나 바지선, 트럭 등으로 운송하여야 하나, ‘바이오부탄올’은 흡수성이 적어 상(相)이 분리되는 문제나 부식성의 문제가 없어 기존의 연료수송 파이프라인을 통해 수송할 수 있다는 장점 때문에 차세대 바이오연료로 각광받고 있으며, 전 세계적으로 많은 연구기관과 기업들의 개발 노력이 치열하게 전개되고 있다. ‘바이오부탄올’은 1900년대 초부터 미생물 발효를 이용하여 생산되기 시작했으나, 1950년대 석유화학산업이 급속히 발달함에 따라 사양길로 접어들었으며, 당밀 등 원료가격이 싼 남아프리카공화국 등지에서만 1980년대까지 발효 생산되다가 중단된 바 있다. 하지만, 최근 고유가시대가 고착화되면서 석유를 일정부분 대체할 수 있는 연료로 다시 부각되고 있다. 이상엽 교수팀과 GS칼텍스는 현재 바이오부탄올 연속 생산공정 등의 조업 최적화 연구를 수행 중이며, 부탄올에 대한 내성 향상 및 생산성을 한층 높이는 균주 개발 연구를 계속하고 있다. GS칼텍스 중앙기술연구소 정광섭 소장은 “전 세계적으로 바이오부탄올 생산을 위한 개발 경쟁이 치열한 가운데 산학 공동연구를 통해 개량된 고성능 균주를 확보함으로써 차세대 바이오연료 개발에 유리한 고지를 차지할 수 있게 되었다.”고 이번 연구개발의 의미를 밝혔다. <용어 설명> - 바이오매스(Biomass) 바이오매스(biomass)는 에너지 전용의 작물과 나무, 농산품과 사료작물, 농작 폐기물과 찌꺼기, 임산 폐기물과 부스러기, 수초, 동물의 배설물, 도시 쓰레기, 그리고 여타의 폐기물에서 추출된 재생가능한 유기 물질 로 현재 에너지원으로 쓰이고 있는 목재, 식물, 농·임산 부산물, 도시 쓰레기와 산업 폐기물 내의 유기 성분 등을 일컫는다. - 선택성(Selectivity) 촉매나 미생물의 성능을 나타낼 수 있는 인자로써 전체 생성물(Total Product) 중에 우리가 원하는 생성물(Target Product)의 비율로 계산함. - 대사공학(Metabolic Engineering) 유전자 재조합기술과 관련 분자생물학 및 화학공학적 기술을 이용하여 미생물에 새로운 대사회로를 도입하거나 기존의 대사회로를 제거 증폭 변경시켜 세포나 균주의 대사특성을 우리가 원하는 방향으로 바꾸는 일 련의 기술을 뜻함. - 균주 우리가 원하는 물질을 생산해 내는 미생물을 포괄적으로 뜻함. - 에너지량 단위 질량의 연료를 연소하였을 때 발생하는 에너지 - 상(相): Phase 물리학·화학 용어로, 어떤 물질이 물리적·화학적으로 같은 성질을 나타 낼 때를 표현하는 것. 상은 기체상, 액체상, 고체상이 존재하고, 하나의 상으로 이루어지는 균일계와 2개 이상의 상으로 이루어지는 불균일계로 나뉜다.
2008.06.03
조회수 15405
이상엽칼럼 식량위기 주범 '바이오' 아니다
이상엽(생명화학공학과) 교수가 동아일보 2008년 5월26일자에 "식량위기 주범 "바이오" 아니다"라는 제목으로 칼럼을 기고했다. 제목 - [과학세상] 식량위기 주범 "바이오" 아니다 저자 - 이상엽 (생명화학공학과) 특훈교수, LG화학 석좌교수 매체 - 동아일보 일자 - 2008.05.26(월) 칼럼보기 http://www.donga.com/fbin/output?n=200805260168
2008.05.26
조회수 7495
이상엽교수, 한국생명공학특집호발간
- 바이오테크놀로지 저널, 우리나라 생명공학 특집호 발간- 공동 편집장인 KAIST 이상엽 교수가 한국 특집호 기획 발간- 우리나라 생명공학의 현황과 미래 관련 포럼, 논문 11편 수록독일 와일리(Wiley-VCH)社(1799년 설립, 209년 전통)가 발행하는 바이오테크놀로지 저널(Biotechnology Journal)이 5월호를 우리나라 생명공학에 관한 특집호로 발간했다. 이번 특집호는 이 학술지의 공동 편집장(Editors-in-Chief)을 맡고 있는 KAIST 생명화학공학과 및 바이오융합연구소 이상엽(李相燁, 44세) 특훈교수(LG화학 석좌교수)가 기획했다. 지난 2006년 1월에 창간된 국제학술지인 바이오테크놀로지 저널은 월간으로 발행되며, 각 호별로 특집 테마를 다루고 있다. 이번 특집호는 금년 5월부터 이 학술지의 공동편집장으로 활동하고 있는 이상엽 교수가 출판사 편집자인 바바라 젠슨(Barbara Janssens)의 협조하에 기획하게 되었으며, 우리나라 생명공학의 발전상 등 현황과 미래를 다룬 포럼과 한국학자 논문 11편을 수록했다. 실린 논문은 ▲한국생명공학연구원 생명공학정책연구센터 현병환 박사팀의 우리나라 생명공학의 로드맵인 바이오비전(BioVision) 2016 ▲미생물유전체 프론티어사업단의 김지현 박사팀의 우리나라의 미생물 게놈프로젝트에 대한 그간의 연구와 향후 전망 ▲KAIST 이상엽 교수팀의 시스템 생물학을 대사공학에 응용하는 전략 ▲조광현 교수팀의 칼슘신호전달 네트워크의 동적 분석 ▲광주과학기술원 김도한 교수팀의 심장병 모델에서의 전사체 분석 ▲KAIST 이균민 교수팀의 동물세포의 세포공학을 통한 치료용 단백질의 효율적인 생산 ▲한국생명공학연구원 강현아 박사팀의 메탄올 자화균에서의 단백질 당공학(glycoengineering) ▲KAIST 박태관 교수팀의 단백질 의약품의 인체내 전달 ▲포항공대 차형준 교수팀의 홍합유래의 접착단백질 생산과 응용 ▲서울대 김병기 교수팀의 다양한 생물 촉매반응을 가능케 하는 생촉매 개발 전략 ▲성균관대 심상준 교수팀의 환경으로부터 손쉬운 유해균 진단 등이다. 이번 특집호의 편집을 총괄한 이상엽 교수는 ‘대한민국의 생명공학-차세대 성장동력(Biotechnology in Korea - the next generation growth engine)’ 이라는 제하의 특집호 사설(editorial)에서 “휴대폰에서 HDTV, 자동차에서 유조선, 반도체칩에서 노트북 컴퓨터에 이르기까지 어느 나라를 가도 메이드인코리아를 찾는 것은 어렵지 않게 되었다. 그간 한국의 급속한 성장은 중공업과 전자정보통신 분야가 이끌어 왔다. 이제 한국은 생명공학을 차세대 국가 성장 동력으로 삼고자 한다.”고 의견을 밝혔다. 또한 우리나라의 반만년 역사 동안의 우수한 발효기술, 동의보감으로 대표되는 전통의학 등을 소개하였으며, 이제 한국의 생명공학은 바이오비전 2016으로 한 단계 더 도약을 시도한다고 기술했다. 李 교수는 “이번 특집호는 지면의 제약으로 인해 우리나라 생명공학 연구자들의 우수한 연구결과들을 많이 소개하지 못해 아쉽다. 빠른 시간 내에 우리나라 생명공학의 연구성과를 충분히 알릴 수 있는 ‘바이오텍-메이드인코리아’ 특집호 발간을 추진하겠다.”고 말했다.
2008.05.19
조회수 20281
KAIST, 바이오에너지-바이오석유화학 물질 생산 대사공학 심포지움 개최
- 오는 20일 오후1시, 교내 정문술빌딩 드림홀에서- 바이오에너지와 바이오석유화학물질 생산을 위해 필수적 으로 요구되는 대사공학의 최신 전략과 방향 제시우리학교는 오는 20일, BK21 화학공학사업단(단장 박승빈 교수)과 바이오융합연구소(소장 김선창 교수, 공동소장 이상엽 특훈교수)에서 바이오에너지와 바이오석유화학물질의 효율적인 생산을 위한 핵심 대사공학 전략과 실사례 발표행사인 대사공학 심포지움를 개최한다고 밝혔다. 유가가 배럴당 125불을 상회하고, 환경문제, 그리고 바이오연료의 대량생산에 의한 곡물가 폭등 등이 국제적으로 이슈화가 되고 있는 지금 바이오매스로부터 화학물질을 생산하는 바이오리파이너리 프로그램과 바이오에너지를 생산하고자 하는 노력이 전 세계적으로 경주되고 있다. 한국생물공학회 대사공학분과위원회와 교육과학기술부 게놈정보 활용 통합 생물공정개발사업단이 주관하는 이번 심포지움에서는 재생 가능한 바이오매스로부터 에너지와 화학물질을 생산하는 바이오리파이너리 및 바이오에너지 연구 관련 전문가들의 발표가 있을 예정이다. 또한, 이러한 연구와 개발을 가능하게 하는 핵심 기술에 대한 강의도 준비 되었다. 특히, 게놈수준에서의 대사회로의 분석에 관한 세계적 전문가인 버나드 폴슨교수(캘리포니아대학, 샌디애고)의 주제 강연이 있다. 이어서 6명의 관련 국내 전문가들(아주대 박명준 교수, 울산대 홍순호 교수, 부산대 이선구 교수, 한국생명공학연구원 곽상수 박사, 경상대 김선원, 고려대 김경헌 교수)의 강의가 있다. 이번 심포지움은 바이오에너지와 바이오석유화학물질 생산을 위해 필수적으로 요구되는 대사공학의 최신 전략과 방향을 파악할 수 있는 좋은 기회가 될 것으로 보인다.
2008.05.15
조회수 17053
이상엽 교수, 국제생명공학학술지 공동 편집장에 선임
우리학교 생명화학공학과 이상엽(李相燁, 44세) 특훈교수(LG화학 석좌교수)가 독일 와일리社(Wiley-VCH)가 발간하는 국제생명공학학술지인 ‘바이오테크놀로지 저널(Biotechnology Journal)’의 공동 편집장(Editor-in-Chief)에 선임되었다. 지난 2006년 1월 창간된 이 학술지는 특집으로 생물공정, 식품생명공학, 뇌질환, 생물의약, 단백질 설계 및 응용 분야 등을 다뤄왔다. 오는 5월부터 편집장으로 활동하게 되는 李 교수는 공동 편집장인 오스트리아 알로이스 융바우어(Alois Jungbauer) 교수와 학술지 방향 설정, 편집업무 등을 총괄하게 된다. 李 교수는 2002년 세계경제포럼에서 아시아 차세대 리더로 선정됐고, 2006년 美미생물학술원 펠로우, 2007년 국내 최초로 사이언스誌를 발간하는 미국과학진흥협회(AAAS) 펠로우에 임명됐다. 현재 바이오테크놀로지 & 바이오엔지니어링誌 등 10여개 국제학술지에 편집인, 부편집인, 편집위원으로 활동하고 있다.
2008.04.16
조회수 15075
KAIST, 대사공학 심포지움 개최
- 바이오에너지-바이오석유화학물질 생산 핵심 대사공학 기술의 최근 연구 동향 발표 - 오는 14일(목) 오후 1시20분, KAIST 응용공학동 영상강의실우리 학교 바이오융합연구소와 BK21 화학공학사업단은 ‘대사공학 심포지움’을 오는 14일(목), KAIST 응용공학동 영상강의실에서 개최한다. 고유가와 지구온난화 등 환경문제가 심화되면서 바이오매스로부터 화학물질을 생산하는 바이오리파이너리 프로그램과 바이오에너지 생산에 대한 연구가 전 세계적으로 진행되고 있다. 이 심포지움에는 7명의 국내 전문가가 바이오에너지와 바이오석유화학물질의 효율적인 생산을 위한 핵심 대사공학 전략과 최근 연구 동향에 대해 발표한다. 심포지움 주제 발표 내용은 ▲바이오에너지와 바이오석유화학물질 생산을 위한 대사공학(생명화학공학과 이상엽 특훈교수) ▲탄소 4개로 이루어진 핵심 화학물질을 생산하기 위한 인공 대사회로의 설계와 검증(한국화학연구원 조광명 박사) ▲새로운 화학물질을 생산하기 위한 아이소프레노이드 대사경로의 이용과 대사공학 전략(아주대학교 이평천 교수) ▲시스템생물학을 접목한 대사공학과 바이오리파이너리에 적용 전략(성균관대학교 진용수 교수) ▲생명체의 조절네트워크를 분석 응용하여 대사공학에 접목시키는 전략(고려대학교 오민규 교수) ▲대사공학적으로 개량된 대장균을 이용하여 바이오에탄올을 생산하는 전략(서강대학교 이진원 교수) ▲미생물의 디자인을 위한 대사공학과 합성생물학 전략(포항공대 정규열 교수) 등이다. 이 심포지움은 원유에 의존하던 화학, 에너지, 물질 생산을 재생 가능한 바이오매스 자원으로부터 효율적으로 생산하는데 필수적인 대사공학 기술의 최신 연구 동향을 살펴볼 수 있는 좋은 기회다.
2008.02.12
조회수 15437
각계 최고 전문가 교수로 초빙
- 초빙특훈교수 조장희 박사, 박병준 회장, 초빙석좌교수 이인호 교수, 전문교수 김정화 대표 임용 - 각 분야 최고 전문가 초빙, 활용하는 다양한 교수임용제도 본격 시행 우리 학교는 이번 가을학기에 조장희(趙長熙, 71, 가천의과학대 뇌과학연구소장) 박사와 박병준(朴柄俊, 73, MTL 설립자) 회장을 초빙특훈교수로, 이인호(李仁浩, 71, 서울대 명예교수) 교수를 초빙석좌교수로, 김정화(金貞和, 51, 뮤지엄스 코리아 대표) 대표를 전문교수(Practice professor)로 임용했다. <조장희박사, 박병준회장, 이인호교수, 김정화대표>조장희 박사는 뇌과학전문가로 양전자방출단층촬영장치인 PET(Positron Emission Tomograph)를 세계 최초로 개발하고, 한국인 과학자 중에서 노벨상에 가장 근접한 과학자로 평가받고 있다. 현재 뇌영상장비인 PET-MRI 융합장비 개발과 뇌과학분야에서 활발한 연구활동을 하고 있다. 우리 학교 바이오뇌공학과의 뇌연구 공동 진행, 교육과정 자문, 논문지도 등을 수행할 계획이다. 박병준 회장은 1986년 美 산업제품안전성 시험평가연구소(MTL)를 설립하고 2001년 프랑스 국제품질검사기관인 뷰로 베리타스(Bureau Veritas)와 합병한 후 국제무역제품 품질 및 안전성 검사, 건축구조물 및 항공분야 안전성 검사 등에 세계적 공신력을 인정받고 있다. 박 회장의 경영철학과 국제적 경영 경험을 통해 KAIST 학생들의 글로벌 리더로의 능력을 향상시킬 계획이다. 이인호 교수는 한국 최초 여성 대사로 주 핀란드와 러시아 대사를 역임하고, 한국국제교류재단 이사장을 지냈다. 역사학자로서의 학문적 성과와 대사, 정부자문위원 등을 거친 풍부한 실무 경험을 두루 갖춘 석학이다. 이 교수의 교육과 연구, 다양한 실무경험을 바탕으로 창의적 학생 지도와 타 기관과의 네트워킹을 통한 활발한 교류를 기대하고 있다. 김정화 대표는 문화기획전문가로 최근 스페인 아르코 국제행사의 커미셔너를 역임하는 등 문화기획 분야에서 활발하게 활동하고 있다. 김 대표는 우리 학교 결과물을 총 집대성하여 ‘문화플랫폼’을 구축하고 문화와 기술을 융합하는 새로운 부가가치를 창출할 것이 기대된다. 우리 학교는 2011년까지 교수 300명 증원을 목표로 전임직 교수 초빙에 박차 가하는 한편, 다양한 교수임용제도를 통해 각 분야 최고의 전문가를 교수로 초빙, 교육과 연구의 질을 높일 계획이다. 올 한해 외국인 교수 3명을 포함한 전임직 교수 30명, 초빙특훈교수 3명, 초빙석좌교수 1명, 전문교수 3명을 초빙했다.
2007.09.06
조회수 18674
김학성 교수, 연구논문 독일화학誌 인터넷판 게재
- 비 표지방식에 의한 단백질 활성의 고감도 측정기술 개발- 세포 내에서 단백질 수식(Post-translational modification) 및 신호전달 연구와 신약 후보 물질의 스크리닝 등 생명공학 분야에서 광범위하게 활용될 수 있는 기반 기술 우리 학교 생명과학과 김학성(金學成) 교수 / 김영필(金英必, 박사과정) 연구팀은 독일의 권위 있는 학술지인 안게반테 케미(Angewandte Chemie)誌에 이차이온 질량분석기를 이용한 단백질 활성 분석방법을 8월 1일자 인터넷 판에 발표했다. 이 연구는 한국표준과학연구원 나노바이오융합연구단 이태걸 박사팀과 공동으로 진행됐다. 생체 내에서 단백질의 수식(post-translational modification)에 관련된 다양한 단백질 및 효소는 세포내 신호전달에 핵심적인 역할을 담당하며 세포의 분열, 성장, 사멸과정을 정교하게 조절하고 있다. 단백질 키나제(protein kinase)는 단백질의 특정아미노산을 인산화 시켜 세포 내 다양한 신호전달 및 질병 메카니즘과 밀접하게 연관되어 있다. 따라서, 이러한 단백질의 수식에 관련된 단백질의 활성을 고감도로 정확하게 측정할 수 있는 방법은 세포내 신호전달 기작은 물론 신약개발에 광범위하게 활용될 수 있다. 최근에 개발된 백혈병 치료제인 글리벡은 세포의 증식 (proliferation)에 관련된 단백질 키나제의 활성 저해제다. 기존에는 주로 항체에 다양한 표지물질 (형광 혹은 효소)을 부착하여 측정하는 방법을 사용하였기 때문에 시간이 많이 소요되고 다양한 단백질 키나아제의 활성을 정확하고 빠르게 측정하기가 어려웠다. 金 교수팀은 금 나노입자(gold nanoparticle)와 이차이온 질량분석기 (secondary ion mass spectrometry)를 활용하여 고감도로 단백질 키나제의 활성을 측정하고 동시에 단백질 저해제를 분석할 수 있는 방법을 개발했다. 다양한 칩 표면에 금 나노입자를 부착하고 생체물질을 결합한 후 이온 빔을 조사하게 되면 생체물질의 질량신호를 얻을 수가 있다. 단백질 키나아제의 기질로서 사용되는 펩타이드의 질량신호가 금 나노입자에 의해 수 십배 증폭되는 점에 착안했다. 기존 질량분석기 중 매트릭스 보조된 레이저 탈착/이온화 질량분석기 (MALDI-MS)의 경우는 첨가된 매트릭스(matrix)의 불균일한 분포로 인해 정량분석에 큰 한계가 있었다. 연구팀에서는 매트릭스가 필요 없는 이차이온 질량분석기와 균일한 표면의 금 나노 입자층을 사용하여 신호를 증폭함으로써 고감도의 정량분석이 가능하게 했다. 이 측정방법은 다른 측정방법에 비해 표면 감도가 매우 우수하여 단위면적당(mm2) 수십 펨토몰(fmol) 수준의 생체물질을 검출할 수 있다. 또한 해상력이 뛰어나 표면 생체물질의 질량분포를 이미징을 통해 손쉽게 스크리닝 할 수 있다. 칩 표면에 서로 다른 기질을 사용할 경우 다양한 단백질 키나아제의 활성을 동시에 분석할 수 있음을 확인했다. 金 교수팀이 개발한 기술은 키나아제 이외에도 포스포타제 (phosphotase), 프로티아제 (protease), 아세틸라아제 (acetylase), 메틸전이효소 (methyltransferase) 등을 포함한 단백질 수식에 적용할 수 있기 때문에 생명과학 및 생명공학 분야에 다양하게 활용할 수 있다. 다양한 단백질 활성 저해제 (inhibitor)를 손쉽게 탐색할 수 있어 신약개발에 광범위하게 활용될 수 있을 것으로 기대된다. 현재 미국특허 출원 중이며 국내특허 등록을 완료했다. < 용어 설명 >비 표지방식 (label-free method) : 단백질 존재의 유무를 판별하기 위해서는 표지물질로서 단백질과 강하게 결합하는 항체에 흡광물질, 형광물질, 화학발광체 등의 표지자를 부착시킨 것을 사용하게 되는데 비 표지방식은 이와 같은 표지물질을 사용하지 않고 측정할 수 있는 것을 의미한다. 단백질 번역 후 수식과정 (post-translational modification): 합성된 단백질에 "기능"을 부여하는 과정이다. 즉, 세포 내에서 단백질이 합성 (번역과정이라고 함)된 이후 단백질의 특정 아미노산 부위에 인산기, 아세트산기, 메틸기, 혹은 탄수화물 등과 같은 다양한 기능기가 수식화 되는데 이는 단백질의 기능을 활성화하거나 억제하는 데 직접적으로 관여한다. 이 과정은 생체 내에 있는 다양한 효소에 의해 수행된다. 키나아제(kinase) : 다양한 단백질에 인산기를 붙여주는 효소로서 인체 내에는 약 500 종류 이상의 키나아제가 존재한다. 펨토몰 (fmol) : 1몰 (6.02x1023에 해당되는 분자수)의 10‒15에 해당되는 크기
2007.08.02
조회수 18899
김봉수교수, 은나노선 합성법 개발
단결정 銀 나노선 합성법 최초 개발 - 질병진단센서, 바이오센서, 차세대 자성소자 등 광범위한 활용- 화학분야 최고 권위지인 미국화학회지에 지난 18일자 속보로 게재 KAIST(총장 서남표) 화학과 김봉수(金峯秀, 48) 교수 연구팀은 촉매를 전혀 사용하지 않는 새로운 합성법 개발로 ‘단결정 은 나노선 합성’에 최초로 성공했다. 이 연구 결과는 화학분야 최고 권위지인 미국화학회지(Journal of the American Chemical Society)에 지난 18일(수) 속보로 게재됐다. 은(Ag)은 높은 항균효과를 지니며, 전자 및 광학 재료로도 중요하게 사용된다. 은을 완벽한 단결정 나노선으로 만들면 탄소가 다이아몬드로 변하듯 물질의 특성이 변하면서 가치가 크게 높아진다. 보통의 물질은 촉매 등을 사용하면 단결정 나노선 합성이 가능한데 은과 같은 금속의 경우에는 적절한 촉매를 찾아내지 못해서 합성이 불가능했다. 金 교수는 촉매를 사용하지 않고 산화은을 출발물질로 적절한 응결조건을 맞추어줌으로써 은 입자들이 가장 에너지가 낮은 상태를 스스로 찾아가서 저절로 은 나노선이 생긴다는 사실을 발견했다. 이 기술을 이용하면 금속 및 금속화합물 대부분을 단결정 나노선으로 만들 수 있다. 특히 자성물질 나노선 및 열전소자 나노선 개발로 차세대 자성 소자 및 신에너지 핵심 물질을 개발할 수 있는 가능성이 열렸다. 합성된 은 나노섬유는 소독이 필요 없는 의료용 제품 개발, 바이오센서 및 자성메모리 제작 등에 중요한 소재가 될 수 있다. 은에 분자가 흡착되면 빛을 쪼였을 때 산란되는 빛의 세기가 1조배 이상 커진다. 이를 “표면증강 라만 효과”라 하며, 단 하나의 분자만 존재하더라도 검출이 가능하다. 이 효과는 은이 나노입자 크기로 작아지면 더욱 높아지므로 이를 이용한 질병 진단기 개발 연구가 활발하게 진행되고 있다. 특히, 은 나노선은 진단 능력이 보다 뛰어나 질병진단센서로 개발 전망이 높다. 이 연구는 과학기술부「21세기 프론티어연구개발사업」나노소재기술개발사업단에서 지원했으며, 연구 결과는 현재 세계 각국에 특허 출원중이다. <붙임1. 용어해설> ■ 단결정 은 나노선나노선은 직경이 수 나노미터에서 수백 나노미터 사이에 있는 아주 가늘고 긴 선을 말한다. 단결정은 물질을 이루고 있는 모든 구성원소가 규칙적으로 배열되어 있는 순수하고 독특한 구조인데 다이아몬드 같은 것이 대표적 예다. 은과 같은 금속의 경우에는 적절한 촉매를 찾아내지 못해서 합성이 불가능한데, 이번에 촉매를 사용하지 않고 은이 스스로 단결정 나노선을 이루는 새로운 합성법을 개발했다. ■ 은 나노섬유의 의료분야 응용 은 나노섬유를 이용하여 상처를 보호하기 위해 사용하는 의료용 붕대 등을 제작하면 병균 등의 침투를 근본적으로 방지할 수 있으므로 강력한 의료용 소재가 될 것으로 전망된다. ■ 미국 화학회지(Journal of the American Chemical Society)미국화학회(American Chemical Society)에서 발행하는 대표 학회지로서 가장 역사가 오래되고 권위가 높은 학술지이다. 여기서 특히 긴급하며 중요성이 높은 연구결과는 속보(Communication)로 신속하게 발표된다. <붙임2. 관련 사진 및 설명> 1. 연구팀이 합성에 성공한 단결정 은 나노선의 전자현미경 사진 2. 하나하나의 원자까지 보여주며 완벽한 은 단결정임을 증명하는 초고전압 전자현미경 사진
2007.07.23
조회수 18796
KAIST-퀸스랜드 대학 협약
- 한-호주간 재생 자원의 바이오 화학물 및 재료 공동 개발 수행 - 양 대학 교수 및 학생 상호 방문 연구 지원, 인력 교류 확대 - 5월 3일(목) 그랜드 인터컨티넨탈 호텔에서 협약식 KAIST(총장 서남표)는 5월 3일(목) 오전, 서울 삼성동 그랜드 인터컨티넨탈 호텔에서 호주 퀸스랜드 대학(총장 존헤이 John Hay)과 공동 연구 개발 및 인력 교류를 위한 협약 체결식을 가졌다. ▲사진은 왼쪽부터 허동수 GS칼텍스회장, 서남표 KAIST총장, 폴 그린필드 호주 퀸스랜드대학 수석부총장, 피터 비티 호주 퀸스랜드 주 수상 양 대학은 이날 ‘재생자원의 바이오 기반 화학물질 및 재료의 공동개발’을 주내용으로한 협약서에 서명하고 ▲사탕수수에서 바이오 기반 화학물질과 재료 생산을 위한 플랫폼 대사공학 및 시스템 생물공학적 전략 수립 ▲화학물질과 재료를 생산하는 독점적 미생물 개발 ▲화학물질 및 재료의 생산을 위한 통합 응용생물학적 제조법 등을 공동 개발하게 된다. 또한, 공동연구를 위해 교수와 학생의 상호교류를 확대하고, 실험시설과 장비, 사무실을 공동으로 활용하게 되며, 외부 연구기금 유치 등에도 공동으로 협력하게 된다. 협약식에는 폴 그린필드(Paul Greenfield) 퀸스랜드대학 수석부총장, 피터 비티(Peter Beattie) 퀸스랜드 주지사, 피터 로우(Perter Rowe) 주한 호주대사, 서남표 KAIST 총장, 허동수 GS 칼텍스 회장, 김상수 KAIST 연구원장 등이 참석했다.
2007.05.04
조회수 12916
이상엽 교수, 네이처 바이오테크놀로지 초청논문 게재
“바이오플라스틱 상용화 시대 도래” 네이처 바이오테크놀로지 10월호 초청논문에서 전문가로서의 의견 밝혀.. 독일의 훔볼트 베를린대 프리드리히 교수와 뮌스터대학의 스타인뷔헬 교수팀은 바이오플라스틱 생산의 대표 미생물인 랄스토니아 유트로파 (Ralstonia eutropha)균의 전체 게놈서열을 밝히고, 네이처 바이오테크놀로지 10월호에 논문을 발표했다. 플라스틱 생산 대표 미생물의 전체 게놈 서열이 밝혀짐에 따라 보다 체계적인 시스템 수준에서의 균주개량을 통해 바이오플라스틱의 효율적인 생산이 가능해 질 것으로 예측된다. 네이처 바이오테크놀로지社는 이 논문에 대해 해당분야의 세계적 전문가인 KAIST 생명화학공학과 이상엽(李相燁, 42세) LG화학 석좌교수에게 게놈 서열 해독에 따른 앞으로의 바이오플라스틱 생산에 관한 전문가 분석논문을 의뢰했으며, 李 교수는 지난 10일 발간된 네이처 바이오테크놀로지 10월호 ‘뉴스와 전망(News and Views)’에서 “랄스토니아균의 게놈 해독은 다양한 오믹스와 가상세포를 통한 시뮬레이션, 그리고 게놈 수준에서의 엔지니어링을 결합하여 시스템 수준에서 균주를 개량할 수 있는 토대가 마련되었음을 의미한다”라며, “앞으로 플라스틱을 구성하는 물질을 자유자재로 바꿔 우리가 원하는 물성을 가진 플라스틱의 생산이 가능할 것이며, 대사 흐름의 최적화를 통해 이제까지 보고된 것보다도 훨씬 효율적이고 경제적인 바이오플라스틱의 생산이 가능해 질 것이다”라고 밝혔다. 李 교수는 그간 바이오플라스틱 관련 SCI논문만도 70여편을 발표한 이 분야의 세계적 전문가다. 1996년 트렌즈 인 바이오테크놀로지 (Trends in Biotechnology)에 “플라스틱 박테리아 (Plastic Bacteria)”라는 신조어를 발표했으며, 1997년에도 네이처 바이오테크놀로지에 대장균 플라스틱에 관한 전문가 논문을 게재한 바 있다. 현재, 과학기술부의 시스템생물학연구개발 사업에서 시스템 기법을 동원한 연구의 응용 예로서 바이오플라스틱 생산 균주 개량 연구를 수행 중이다. 네이처 바이오테크놀로지 10월호 ‘뉴스와 전망(News and Views)’난에 게재된 미생물 플라스틱 관련 이상엽 교수 논문 내용 - 폴리하이드록시알카노에이트(polyhydroxyalkanoate, PHA)는 자연계에 존재하는 수많은 미생물들이 탄소원은 풍부하지만 다른 성장인자가 부족할 경우 자신의 세포내부에 에너지 저장물질로 축적하는 고분자이다. 이 PHA고분자는 그 고분자를 구성하고 있는 단량체(단위 화학물질)가 에스터 결합을 하고 있는 폴리에스터로서 20여년 전부터 전 세계적으로 많은 연구가 되어왔다. 하지만, PHA는 물성이 석유화학 유래의 플라스틱보다 좋지 않고, 생산 단가가 매우 높아 상용화는 되지 못했던 실정이다. 1980년대 PHA의 생산 가격은 kg당 15불 정도로서 그 당시 폴리프로필렌 가격의 20배나 되었기 때문이다. KAIST 생명화학공학과 BK21사업단 이상엽 LG화학석좌교수는 과학기술부의 지원으로 대사공학과 발효공정의 결합을 통한 미생물 플라스틱의 효율적인 생산에 관한 연구를 수행하여 왔으며, PHA생산 단가를 kg당 2-3불 정도로 낮추는 공정을 개발한 바 있다. 플라스틱을 꽉 채울 정도로 효율적인 PHA 생산 박테리아를 개발하여 “플라스틱 박테리아”라고 명명한 바 있다. - 지난 2년여 동안 유가가 유래 없이 고공행진을 함에 따라 전 세계적으로 바이오기반 에너지 및 화학물질의 생산에 관한 연구가 활발히 진행 중이다. PHA도 그간 경제성과 물성의 취약점 때문에 연구가 시들해 졌다가, 최근 다시 각광을 받고 있다. 이번 10월호 네이처 바이오테크놀로지에 독일의 연구팀이 발표한 플라스틱 생산 미생물의 대표주자 랄스토니아 유트로파(Ralstonia eutropha)의 게놈 해독 결과는 시사하는 바가 크다. 즉, 그 박테리아의 대사 활동에 관한 청사진을 얻게 됨으로서 보다 체계적인 균주개량이 가능해 지는 것을 의미한다. - 네이처 바이오테크놀로지는 바로 이 점을 주목하여 이상엽 교수에게 전문가의 분석 논문을 의뢰하였고, 이 교수는 현재 KAIST에서 활발하게 수행하고 있는 시스템생명공학 기법의 적용을 통해 미생물 플라스틱 생산의 획기적인 발전이 있을 것이라고 분석했다. 본 논문에서 李 교수는 “게놈 서열이 밝혀짐에 따라, 게놈수준에서의 대사회로 네트워크 구축이 가능해 졌고, 시뮬레이션을 행할 수 있어, 수많은 시행착오와 실험을 가상의 실험으로 빠르게 대체할 수 있게 되었으며, 이러한 결과를 실제 다양한 전사체, 단백체, 대사체 등 오믹스 결과와 융합 해석함으로서 보다 효율적인 균주의 개발이 가능하다”고 밝혔다. 또한, 플라스틱의 효율적인 생산 뿐 아니라 우리가 사용하고자 하는 용도에 맞는 물성을 가지는 “주문제작(tailor-made) PHA”의 생산도 대사공학을 통해 가능해 질 것으로 예측하였다. 그 외에도 李 교수가 전 세계 특허를 보유하고 있는 광학적으로 순수한 하이드록시카르복실산 생산연구도 탄력을 받게 되었으며, 그 외 이 균주의 특징을 살려 생물학적 수소생산, 방향족 화합물의 생산, 분해 및 응용 등에서도 기술적 발전이 빠르게 일어날 것으로 전망하였다. - 세계적으로는 최근 미국의 메타볼릭스사와 ADM사가 손을 잡고 PHA의 상용화 수준 생산에 돌입하였고, 풍부한 천연자원의 브라질에서도 바이오에탄올에 이어 PHA를 상용화하고 있다. 그 외 전통적으로 이 분야 연구를 많이 해온 일본과 독일, 그리고 풍부한 바이오매스를 가진 호주에서도 지속적인 상용화 연구를 수행 중이다. 李 교수는 “대표적인 바이오플라스틱 생산 미생물의 게놈 서열이 밝혀짐으로서 효율적인 생산 시스템의 개발을 통한 각국의 상용화 경쟁이 더욱 치열해 질 것”으로 전망했다. - 李 교수는 이렇게 효율적으로 PHA를 생산할 수 있는 것이 가능해 짐에 따라, 다양한 재생가능한 원료(셀룰로우즈, 전분, 설탕 등)로부터 미생물 발효에 의한 플라스틱의 생산이 보다 본격적으로 진행될 것으로 전망하고, 기존 화학물질의 바이오 기반 생산 기술(white biotechnology)가 보다 더 탄력을 받을 것으로 전망하며, 이에 따라 “우리나라도 일부 시스템 대사공학 기술의 우위를 바탕으로 자원 강대국들과의 전략적 제휴 등을 통해 바이오기반 화학물질 생산 기술과 산업의 확보에 박차를 가해야 할 것”이라고 말했다. - 네이처 바이오테크놀로지의 ‘뉴스와 전망(News and Views)’은 그 해당 호에 게재되는 논문들 중 영향력이 큰 몇 편의 논문에 대하여 그 분야 세계 최고의 전문가에게 분석을 의뢰하여 초청 논문을 게재하는 섹션으로, KAIST 이상엽 교수는 바이오플라스틱과 관련하여 1997년 1월호에 “대장균이 플라스틱 시대로 접어들다”에 이어 이번 2006년 10월호에 “바이오플라스틱 생산을 해독하다”라는 전문가 분석 논문을 게재하였다.
2006.10.18
조회수 18989
민지연 학생 미스코리아 서울선발대회 美 수상
KAIST 바이오시스템학과 학사과정에 재학중인 민지연 학생이 지난 26일 사이판에서 열린 미스코리아 미스서울선발대회에서 美를 수상했다.
2006.06.28
조회수 13544
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
19
>
다음 페이지
>>
마지막 페이지 19