본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%AF%B8%EC%83%9D%EB%AC%BC
최신순
조회순
이상엽 특훈교수팀 학생들, 천연물 생산 미생물 개발 전략 총정리
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀 소속 대학원생 4명이 대장균 세포 공장을 개발해 생산된 대표 천연물들의 생합성 경로를 총망라해 최신의 연구 내용과 흐름을 한눈에 파악할 수 있도록 대사 회로를 정리한 `천연물 생산을 위한 대장균에서의 대사공학'을 주제로 논문을 발표했다. 학생들은 이번 논문에서 천연물 생산 대장균 세포 공장 개발을 위한 주요 시스템 대사공학 전략을 `효소 개량'과 `대사흐름 최적화', 그리고 `시스템 접근법' 등 3단계로 정리했으며 각 단계별로 활용이 가능한 최신 도구 및 전략을 대사공학이 나아가야 할 방향과 함께 제시했다. 양동수·박선영·은현민 박사과정과 박예슬 석사과정 학생이 참여한 이번 연구결과는 국제학술지인 셀(Cell)誌가 발행하는 생명공학 분야 권위 리뷰지인 `생명공학의 동향(Trends in Biotechnology)' 7월호(특별호: 대사공학) 표지논문 및 주 논문(Featured Article)으로 1일 게재됐다. 인류 역사에서 천연물은 식품과 의약품 등의 분야에 널리 사용되고 있는데 많은 천연물이 그 자체로 의약 물질로 쓰이거나 새로운 의약 물질 개발의 구조적인 근간이 되고 있다. 고부가가치 천연물에 대한 국제적인 수요와 시장규모는 지속적으로 증가하는 추세인 데 반해 천연자원으로부터 얻을 수 있는 양은 극히 제한적이며 완전한 화학합성은 대체로 효율이 낮고 유기 용매를 다량으로 이용하기 때문에 환경 오염과 인류 건강에 악영향을 초래할 수 있다. 따라서 전 세계적으로 천연물을 친환경적이며 고효율로 생산이 가능한 미생물 세포 공장을 개발하려는 노력이 이뤄지고 있다. 미생물 세포 공장 구축을 위한 핵심전략인 시스템 대사공학은 기존 석유화학산업을 대체할 바이오산업의 핵심이 되는 미생물 균주를 보다 효과적으로 개발하기 위해 KAIST 이상엽 특훈교수가 창시한 연구 분야다. 이상엽 특훈교수 연구팀은 실제 시스템 대사공학 전략을 이용, 천연물·아미노산·생분해성 플라스틱·환경친화적인 플라스틱 원료와 바이오 연료 등을 생산하는 고성능 균주들을 다수 개발한 성과를 거뒀다. 이들 4명의 학생을 지도한 이상엽 특훈교수는 "천연물 생산을 위한 대사공학 연구를 체계적으로 분석, 정리하고 또 향후 전략을 제시했다는 점에서 큰 의미가 있다ˮ면서 "권위가 있는 학술지에 주 논문이자 표지논문으로 게재된 이번 연구를 수행한 학생들이 자랑스럽다ˮ고 말했다. 공동 제1 저자인 양동수·박선영 박사과정 학생도 "고령화가 진행되는 사회에서 헬스케어 산업은 그 중요성이 더욱 대두되고 있다ˮ면서 "인류가 건강한 삶을 지속적으로 영위하기 위해서 필수적인 각종 천연물을 대사공학적으로 생산하는 연구 또한 갈수록 중요해질 것ˮ이라고 강조했다. 한편 이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 `바이오리파이너리를 위한 시스템 대사공학 원천기술개발 과제' 및 노보 노디스크 재단의 지원을 받아 수행됐다.
2020.07.02
조회수 22334
이상엽 특훈교수 연구팀, 미생물 기반 바이오 숙신산 대량 생산 기술 개발
국내 연구진이 플라스틱의 원료와 식품·의약품 합성에 사용되는 중요한 화학물질인 숙신산을 대량으로 생산할 수 있는 기술을 개발했다. 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀과 경북대학교(총장 김상동) 김경진 교수 연구팀이 시스템 대사공학을 이용해 미생물 기반의 바이오 숙신산 대량 생산을 가능케 하는 세계 최고의 효율을 지닌 숙신산 생산 균주를 개발하는데 성공했다고 6일 밝혔다. 이 교수와 김 교수가 이끄는 공동연구팀의 이번 연구 성과는 국제학술지 ‘네이쳐 커뮤니케이션 (Nature Communications)’ 4월 23일 字 온라인 판에 게재됐다. (논문명 : Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase) 기후변화 대응 기술 중 바이오리파이너리 기술은 화석연료에 의존하지 않고 바이오매스 원료로부터 생물공학적 ‧ 화학적 기술을 이용해 화학제품과 바이오연료 등 산업 화학물질을 친환경적으로 생산하는 분야이다. 이 중 특히 핵심 기술인 ‘시스템 대사공학’은 미생물의 복잡한 대사회로를 효과적으로 조작해 산업 화학물질의 생산 효율을 높일 수 있다. 현대 산업 전반은 화석연료를 바탕으로 하는 산업에 매우 의존적이며 숙신산의 생산 또한 화석연료를 기반으로 이뤄진다. 그러나 이는 화석연료의 고갈과 이에 따른 원류 가격의 지속적인 증가, 화석연료 기반 산업으로부터 발생되는 지구 온난화 등 매우 심각한 부작용을 낳는다. 또 급속도로 고갈돼 가는 화석연료를 대체할 수 있는 바이오 기반의 숙신산 생산은 필수적이다. 연구팀은 한우의 반추위에서 분리한 미생물인 맨하이미아(Mannheimia)의 대사회로를 조작해 숙신산을 생산하는 연구를 지속해 왔으며 이번에 세계 최고의 생산 효율을 지닌 숙신산을 생산할 수 있는 개량균주를 개발하는데 성공했다. 숙신산은 탄소 4개로 구성된 다이카복실산인데 대사과정에 있어 숙신산 한 분자를 생산할 때 이산화탄소 한 분자를 소모한다. 따라서 미생물 배양에 의한 숙신산 생산을 통해 이산화탄소의 저감에 기여한다. 연구팀은 이번 연구 과정에서 숙신산 전환에 핵심역할을 하는 효소의 구조를 밝히는 한편 단백질 공학을 통해 효소 성능을 개선했으며, 이를 전체 대사회로 최적화에 연계시키는 시스템 대사공학을 수행했다. 이를 통해 포도당, 글리세롤, 이산화탄소를 원료로 리터당 134g(그램)의 높은 농도로 숙신산을 생산하고 경제와 가장 밀접하게 연관되는 생산성이 시간당·리터당 21g(그램)에 달하는 등 매우 효율적인 공정을 개발했는데 이는 세계 최고의 효율성을 지닌 숙신산 생산 공정으로 평가를 받고 있다. 지금까지는 일반적으로 시간당·리터당 1~3g(그램)이 최고 수준이었다. 기후변화 등 환경 문제의 주범으로 꼽히는 화석연료에 대한 의존성을 대폭 낮추고 주요 산업 기반 화학물질인 숙신산을 효과적으로 생산할 수 있는 근간을 제시한 이번 연구 성과는 학계로부터 중요성을 인정받아, 국제학술지인 네이처 커뮤니케이션지에 게재됐다. KAIST 이상엽 특훈교수는 “이번에 개발한 미생물 기반 바이오 숙신산 대량 생산 기술은 화학산업의 플랫폼 화학물질로 사용될 수 있는 숙신산을 보다 더 효율적으로 생산할 수 있기 때문에 환경친화적인 바이오화학 산업으로의 전환에 기여할 것”이라고 설명했다. 한편 이번 연구는 과학기술정보통신부가 지원하는 ‘C1 가스 리파이너리 사업’ 및 ‘바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제’의 지원을 받아 수행됐다.
2020.05.06
조회수 13234
미생물의 새로운 C1 가스 흡수 대사회로 규명
생명과학과 조병관 교수 연구팀이 미생물이 C1 가스(이산화탄소, 일산화탄소 등 단일 탄소로 이뤄진 가스)를 활용하는 새로운 대사 회로 메커니즘을 규명했다. 연구팀이 규명한 새 대사회로는 현재까지 알려진 관련 대사회로 중 가장 우수한 효율을 갖고 있어 향후 C1 가스를 고부가가치 생화학물질로 전환하는 산업적 응용에 활용 가능할 것으로 기대된다. 조병관 교수와 UNIST 김동혁 교수 공동 연구팀이 수행하고 KAIST 송요셉 박사가 1 저자로 참여한 이번 연구결과는 국제 학술지 미국국립과학원회보(PNAS) 3월 13일 자 온라인판에 게재됐다.(논문명 : Functional cooperation of the glycine synthase-reductase and Wood-Ljungdahl pathways for autotrophic growth of Clostridium drakei) 현재까지 자연계에 알려진 C1 가스를 유기물로 전환하는 대사회로는 총 6개이며, 대표적인 예로 식물의 광합성을 들 수 있다. 그중 미생물인 아세토젠 내에서 발견되는 우드-융달 대사회로는 C1 가스의 흡수 대사회로 중 가장 효율적인 회로로 알려져 있다. 특히 아세토젠은 다양한 환경에서 서식할 수 있어 1년에 1천억kg의 아세틸산(아세토젠의 생산물)을 생산하며 지구 탄소 순환에 큰 영향을 끼친다. 그러나 아세토젠 미생물은 대장균과 같은 산업 미생물과 비교했을 때 생장 속도가 10배 이상 느리다. 이는 C1 가스를 유용한 생화학물질로 변환하기 위한 산업적 미생물로 이용되기에 한계점으로 작용한다. 이에 C1 가스 고정을 더욱 효율적으로 할 수 있는 새로운 대사경로 연구가 활발히 이뤄지고 있다. 연구팀은 문제 해결을 위해 아세토젠 미생물 중 하나인 클로스트리디움 드라케이(Clostridium drakei)가 이산화탄소 흡수 시 다른 미생물에 비해 빠른 성장 속도를 나타내는 점에 주목해, C1 가스 전환효율을 높일 실마리를 찾아낼 수 있을 것으로 예측했다. 연구팀은 차세대시퀀싱 기술을 이용한 게놈서열 및 유전자 분석을 통해 디지털 가상 세포를 구축하고 C1 가스의 흡수 대사경로 효율을 예측했다. 이 결과 현재까지 보고되지 않은 새로운 7번째 대사회로의 존재를 발견했다. 우드-융달 대사 회로와 글리신 생합성 대사회로가 결합돼 C1 가스 고정과 동시에 세포 생장에 필요한 에너지를 획득하는 새로운 형태의 대사회로의 존재를 규명했다. 연구팀은 대사 회로를 구성하는 유전자의 발현량, 동위원소를 이용한 대사경로 흐름 추적, 유전자가위 기술 등을 통해 클로스트리디움 드라케이 미생물이 실제로 새로운 대사 회로를 사용해 C1 가스를 흡수하는 것을 증명했다. 더불어 관련 유전자들을 세포 생장 속도가 느린 다른 아세토젠 미생물에 도입한 결과 빠른 속도로 C1 가스를 사용하여 생장함을 확인했다. 조 교수는 “연구팀이 발굴한 신규 C1 가스 고정 대사 회로를 이용해 아세토젠 미생물의 느린 생장 속도로 인한 고부가가치 생화학물질 생합성 한계를 극복할 수 있기를 기대한다”라고 말했다. 이번 연구결과는 과학기술정보통신부와 한국연구재단이 추진하는 C1 가스 리파이너리 사업 및 지능형바이오시스템 설계 및 합성 연구단(글로벌프론티어사업)의 지원과 KAIST 초세대 협력연구실 사업(바이오디자인 연구실)의 지원을 받아 수행됐다.
2020.03.26
조회수 14657
생명화학공학과 대학원생들, 시스템 대사공학 전략 발표
〈 양동수 박사과정, 박다현 석사과정, 최경록 박사과정, 조재성 박사과정, 장우대 박사과정 〉 우리 대학 생명화학공학과 대학원생 다섯 명이 대사공학과 시스템 생물학, 합성 생물학의 결합 시스템 등 대사공학 전반의 전략에 대한 논문을 발표했다. 생명화학공학과는 최근 박사학위를 마친 최경록 연구원과 장우대, 양동수, 조재성 박사과정, 박다현 석사과정이 친환경 화학물질 생산을 위해 필수적인 미생물 공장을 개발하는 전략을 총정리했다. 이 연구의 결과는 셀(Cell)지가 발행하는 생명공학 분야 권위 리뷰 저널인 ‘생명공학의 동향(Trends in Biotechnology)’ 8월호 표지논문 및 주 논문 (Feature review)에 게재됐다. (논문명 : Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering) 시스템 대사공학은 기존의 석유화학산업을 대체할 바이오산업의 핵심이 되는 미생물 균주를 보다 효과적으로 개발하기 위해 KAIST 생명화학공학과의 이상엽 특훈교수가 창시한 연구 분야다. 전통적 대사공학에 시스템 생물학, 합성 생물학 및 진화 공학 기법을 접목한 시스템 대사공학은 직관적 전략이나 무작위 돌연변이 유발에 의존하는 기존의 대사공학과 비교해 적은 비용과 인력, 짧은 시간 내에 산업에서 이용 가능한 고성능 균주 개발을 가능하게 만든다. 연구 기획 단계에서부터 실제 공장에서 균주의 발효 공정 및 발효를 통해 생산된 물질의 분리/정제 공정까지 고려함으로써 산업 균주 개발 도중 불필요한 시행착오를 최소화할 수 있다. 본 논문에서는 시스템 대사공학 전략을 연구의 흐름에 따라 ▲프로젝트 디자인 ▲균주 선정 ▲대사회로 재구성 ▲표적 화합물에 대한 내성 향상 ▲대사 흐름 최적화 ▲산업 수준으로의 생산 규모 확대 등 일곱 단계로 나누고, 각 단계에서 활용할 수 있는 최신 도구 및 전략들을 총망라했다. 더불어 바이오 기반 화합물 생산의 최신 동향과 함께 고성능 생산 균주를 보다 효과적으로 개발하기 위해 시스템 대사공학이 나아가야 할 방향도 함께 제시했다. 주저자인 최경록 연구원은 “기후 변화가 커지며 기존의 석유화학 산업을 친환경 바이오산업으로 대체하는 것이 불가피하다”라며 “시스템 대사공학은 산업에서 활용 가능한 고성능 생산 균주의 개발을 촉진해 바이오산업 시대의 도래를 앞당길 것이다”라고 말했다. 지도교수인 이상엽 특훈교수는 “그간 우리 연구실과 전 세계에서 수행한 수많은 대사공학연구를 우리가 제시한 시스템 대사공학 전략으로 통합해 체계적으로 분석 및 정리하고 앞으로의 전략을 제시했다는 점에서 큰 의미가 있다”라며 “권위 있는 학술지에 주 논문이자 표지논문으로 게재된 훌륭한 연구를 수행한 학생들이 자랑스럽다”라고 말했다. 이상엽 특훈교수 연구팀은 실제로 시스템 대사공학 전략을 이용해 천연물, 아미노산, 생분해성 플라스틱, 환경친화적 플라스틱 원료, 바이오 연료 등을 생산하는 고성능 균주들을 다수 개발한 바 있다. 이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 ‘바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제’ 및 한화케미칼이 지원하는 KAIST-한화 미래 기술 연구소의 지원을 받아 수행됐다.
2019.07.24
조회수 18136
이상엽 교수, 지방산∙바이오디젤 생산 가능한 미생물 개발
〈 이상엽 특훈교수 〉 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 비식용 바이오매스 기반의 최고성능을 갖는 지방산과 지방산 유도체로 전환하는 미생물 균주 및 발효 공정을 개발했다. 김혜미, 채동언 연구원 등이 참여한 이번 연구결과는 국제학술지 ‘네이처 케미컬 바이올로지(Nature Chemical Biology)」 6월 17일 자 온라인판에 게재됐다. (논문명 : Engineering of an oleaginous bacterium for the production of fatty acids and fuels) 화석원료는 현대 산업의 기초 물질이자 우리 생활 전반에 광범위하게 이용되는 원료 및 에너지원으로 필수적인 물질이다. 그러나 원유 매장량 고갈에 대한 우려와 원유 산업으로 인한 온난화 등의 환경문제가 세계적으로 매우 심각한 상황이다. 특히 우리나라의 경우 석유를 전량 수입에 의존하기 때문에 국제 유가 변동에 매우 취약해 환경문제를 해결과 원유를 대체할 수 있는 지속 가능한 바이오 기반 재생에너지의 생산이 필수다. 따라서 재생 가능한 자원 기반의 바이오 연료 개발이 활발히 이뤄지고 있는데, 그중 경유를 대체할 수 있는 환경친화적 연료인 바이오 디젤이 있다. 바이오 디젤은 주로 식물성 기름이나 동물성 지방의 에스터교환(transesterification) 반응을 통해 만들어지고 있다. 이 특훈교수 연구팀은 바이오 디젤 생산을 위해 폐목재, 잡초 등 지구상에서 가장 풍부한 바이오매스 주성분인 포도당으로부터 지방산 및 바이오 디젤로 이용할 수 있는 지방산 유도체를 생산하는 균주를 개발했다. 연구팀은 자연적으로 세포 내 기름을 축적하는 것으로 알려진 미생물인 로도코커스(Rhodococcus)를 시스템 대사공학을 통해 대사 회로를 체계적으로 조작해 최고성능으로 지방산 및 바이오 디젤을 생산하는 균주를 개발했다. 먼저 로도코커스의 배양 조건을 최적화한 뒤 포도당을 섭취해 세포 내 과량의 기름(트리아실글리세롤, triacylglycerol)을 축적하게 했다. 이후 선별한 외부 효소를 도입해 효과적으로 기름을 지방산으로 전환해 최고 농도의 지방산 생산 균주를 개발했다. 또한, 지방산을 두 가지 형태의 바이오 디젤 연료 물질로 효율적으로 전환하는 추가적인 유전자 조작을 통해 바이오 디젤을 최고성능으로 생산하는 데 성공했다. 연구팀은 이전에 대장균을 이용해 바이오 연료인 휘발유를 생산하는 미생물 세계 최초로 개발한 바 있다. (Nature 표지논문 게재) 그러나 해당 기술은 생산성이 리터당 약 0.58g 정도로 매우 낮다는 한계가 있었다. 이를 극복하기 위해 로도코커스 균주를 이용해 포도당으로부터 리터당 50.2 g의 지방산 및 리터당 21.3 g의 바이오 디젤 생산에 성공했다. 이러한 성과를 통해 향후 식물성이나 동물성 기름에 의존하지 않고 비식용 바이오매스로부터 미생물 기반 바이오 연료의 대량 생산까지 가능하게 할 것으로 기대된다. 이상엽 특훈교수는 “이번에 개발한 고효율 미생물 기반 지방산과 바이오 디젤 생산 연구는 앞으로 환경문제 해결과 더불어 원유, 가스 등 화석연료에 의존해온 기존 석유 화학 산업에서 지속할 수 있고 환경친화적인 바이오 기반산업으로의 재편에 큰 역할을 할 것이다”라고 말했다. 이번 연구는 과기정통부가 지원하는 기후변화대응기술개발사업의 바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제의 지원을 받아 수행됐다. □ 그림 설명 그림1. 미생물 내에 축적된 오일과 이를 기반으로 생산되는 지방산 및 바이오 디젤
2019.06.20
조회수 15119
이상엽 교수, 포도향 생산하는 미생물 개발
〈 이상엽 특훈교수 〉 〈 1저자 루오 쯔 웨(Zi Wei Luo) 박사후 연구원, 조재성 박사과정 〉 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 대사공학 기법을 이용해 재조합 미생물 기반의 포도향을 생산하는 공정을 개발했다. 연구팀의 기술은 재생 가능한 탄소 순환형 바이오매스를 통해 화학적 촉매 반응 없이 순수한 생물학적 공정만으로 메틸안트라닐산을 제조하는 기술이다. 생산 공정이 단순하고 친환경적이기 때문에 경제적인 방식으로 고부가가치 물질인 메틸안트라닐산을 생산할 수 있다는 의의가 있다. 루오 쯔 웨(Zi Wei Luo) 박사후연구원, 조재성 박사과정이 공동 1 저자로 참여한 이번 연구결과는 국제학술지 ‘미국 국립과학원회보(PNAS)’ 5월 13일 자 온라인판에 게재됐고 하이라이트 논문으로 소개됐다. (논문명 : Microbial production of methyl anthranilate, a grape flavor compound) 석유 자원의 고갈과 기후 변화 및 환경 문제 우려가 커지면서 여러 유용한 화학물질 생산을 위한 친환경적이고 지속 가능 공정의 중요성과 관심이 날로 커지고 있다. 특히 대사공학은 재생 가능한 비식용 바이오매스로부터 다양한 천연 및 비천연 화합물 생산을 가능하게 해 지속 가능한 발전을 위한 해결책을 제공해 왔다. 그러나 식물 유래의 천연화합물 생산을 위한 미생물 개발은 여전히 부족해 계속 도전해야 할 분야로 남아있다. 메틸안트라닐산은 콩코드 포도 특유의 향과 맛을 내는 주요 천연화합물로 여러 과일 및 식물에 함유돼 있다. 화장품이나 의약품 등에 향미 증진제로 광범위하게 사용되는 물질로 다방면으로 활용할 수 있다. 그러나 식물에서 메틸안트라닐산을 추출하는 방식은 경제성이 낮아 지난 100여 년간 유기용매를 사용하는 석유 화학적 방법으로 제조돼 인공착향료로 분류됐다. 이 특훈교수 연구팀은 대사공학 기법으로 미생물의 대사 회로를 설계해 포도당과 같이 재생 가능한 바이오매스로부터 100% 천연 메틸안트라닐산을 화학 촉매 없이 효율적으로 생산하는 공정을 최초로 개발했다. 연구팀은 이상(二相) 추출 발효 과정을 이용해 생산되는 메틸안트라닐산 메틸을 정제하는 방법도 개발했다. 이 특훈교수는 “지난 100년 동안 석유화학 기반으로만 생산된 메틸안트라닐산을 100% 바이오 기반의 친환경 방식으로 생산할 수 있게 된 기술이다”라며 “천연 메틸안트라닐산은 향후 식품, 의약품 및 화장품 산업에 다방면으로 이용할 수 있을 것이다”라고 밝혔다. 이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 ‘바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제’의 지원을 받아 수행됐다. □ 그림 설명 그림1. 메틸안트라닐산 생산 과정
2019.05.20
조회수 14780
이상엽 교수, 미생물 발효한 친환경 기술로 햄(haem) 생산 기술 개발
〈 이 상 엽 특훈교수 〉 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 대장균을 발효시켜 바이오매스로부터 헴(haem)을 생산하고 세포 밖으로 분비할 수 있는 기술을 개발했다. 이는 대사공학 전략을 통해 헴의 생산량을 대폭 높이고 생산된 헴을 효과적으로 세포 바깥에 분비하는 데 성공한 친환경적, 효율적 원천기술로 생산한 헴을 이용해 각종 산업의 확장에 기여할 수 있을 것으로 기대된다. 자오신루이, 최경록 연구원이 참여한 이번 연구는 국제 학술지 ‘네이처 카탈리시스(Nature Catalysis)’ 8월 28일자 온라인 판에 게재됐다. 헴은 생명 유지에 필수적인 철분으로 혈액에서 산소를 운반하는 헤모글로빈이나 세포 호흡에 필수적인 사이토크롬을 비롯한 여러 중요한 단백질 기능에 핵심적 역할을 한다. 특히 인체 흡수율이 높기 때문에 고급 철분제나 약물로 이용된다. 무분별한 가축의 사육이 여러 사회 이슈를 불러일으키는 상황에서 최근 헴이 고기 맛을 내는 핵심 요소로 밝혀지며 콩고기에 미생물이나 식물에서 추출한 헴을 넣어 맛과 영양, 환경 등을 고려한 콩고기 조리법이 주목받기도 했다. 그러나 기존의 헴 생산 방식은 유기 용매를 이용한 동물의 혈액과 일부 식물 조직으로부터의 추출에 의존하고 있기 때문에 비효율적일 뿐 아니라 친환경적이지 않다는 한계가 있다. 대장균을 이용한 헴 생산 기술이 개발된 바 있지만 생산량이 수 밀리그램(mg)에 그치고 생산된 헴이 세포 내에 축적되기 때문에 헴 추출 등의 문제를 해결하지 못했다. 따라서 고농도로 헴을 생산하면서도 세포 바깥으로 헴을 분비해 정제를 용이하게 하는 친환경 생산 시스템 개발이 필요했다. 연구팀은 바이오매스를 이용한 고효율 헴 생산 미생물을 제작하기 위해 대장균 고유의 헴 생합성 회로를 구성했다. 또한 기존에 사용되지 않았던 C5 대사회로를 사용해 헴 생산의 전구체인 5-아미노레불린산을 생합성했다. 이를 통해 원가가 비싸고 세포 독성을 일으키는 물질인 글리신을 사용하지 않고도 헴 생산량을 대폭 높였다. 이 과정에서 연구팀은 헴 생산량이 향상됨에 따라 생산된 헴이 상당 비율로 세포 바깥으로 분비되는 것을 발견했다. 연구팀은 구성한 대장균의 헴 분비량을 더욱 높이기 위해 사이토크롬 생합성에 관여한다고 알려진 단백질인 헴 엑스포터를 과발현함으로써 헴 생산량과 세포외 분비량 모두가 향상된 헴 분비생산 균주를 개발했다. 이를 통해 헴 엑스포터와 헴의 세포외 분비 사이의 연관성을 밝혔다. 이번 연구를 통해 개발된 기술을 활용하면 환경, 위생, 윤리적 문제없이 재생 가능한 자원을 통해 헴 생산을 할 수 있다. 향후 의료 및 식품 산업 등 헴을 이용하는 다양한 분야에 중요한 역할을 할 것으로 예상된다. 이 특훈교수는 “건강 보조제, 의약품, 식품 첨가물 등 다양한 활용이 가능한 헴을 미생물발효를 통해 고효율로 생산했다”며 “생산된 헴의 3분의 2 가량을 세포 바깥으로 분비하는 시스템을 개발함으로써 산업적 활용을 위한 헴의 생산 및 정제를 용이하게 했다는 의의를 갖는다”고 말했다. 이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 ‘바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제’ 지원을 받아 수행됐다. □ 그림 설명 그림1. 대장균을 이용한 헴 생산 및 세포외 분비 전체 개념도
2018.09.06
조회수 13294
이상엽 교수, 미국 국립발명학술원 펠로우로 선정돼
〈 이상협 특훈교수 〉 우리대학 이상엽 특훈교수(생명화학공학과)가 미국 국립발명학술원(National Academy of Inventors, NAI)의 펠로우로 선정됐다. 수여식은 내년 4월 5일 워싱턴DC의 메이플라워 호텔에서 개최된다. 국내 학자 중에서 미국 국립발명학술원 펠로우에 선정된 것은 이 교수가 처음이다. 미국 국립발명학술원은 미국 특허청에 등록된 특허 발명자와 삶의 질 및 경제 발전, 사회 복지 발전에 영향을 끼치는 혁신적인 개발에 성공한 학계 과학자를 대상으로 매년 펠로우를 선정한다. 현재까지 세계적으로 권위 높은 229개 대학, 정부 및 비영리 연구소를 대표하는 757명의 펠로우가 선정됐다. 이 교수는 1994년 KAIST 부임 이래 미생물대사공학 연구를 수행하며 시스템대사공학이라는 새 분야를 개척했으며 상대적으로 기초과학분야에 비해 피인용 수가 적은 생명화학공학분야임에도 불구하고 3만 4000회 이상의 피인용 횟수를 자랑한다. 이 교수는 11년간 등록된 13만 건 이상의 논문 중 각 분야에서 가장 많이 인용된 상위 1퍼센트 논문 연구자에게 주어지는 2017년 ‘세계에서 가장 영향력 있는 연구자(Highly Cited Researcher, HCR)에 선정되기도 했다. 이 교수는 그간 미국 화학회의 마빈존슨 상, 미국생물공학회의 제임스베일리 상 등을 아시아인 최초로 수상했고 포스코청암상, 호암상, 대한민국최고과학기술인 상 등을 수상했다. 또한 2010년 미국 공학한림원외국회원에 이어 2017년 미국국립과학원 외국회원에 선임돼 세계 최고의 양대 학술원에 동시 외국회원으로 선임된 전 세계 13인 중 1인이다. 미국 국립발명학술원은 미국 및 세계 대학, 정부 및 비영리 연구소로 구성된 비영리 단체 조직으로, 미국 특허청으로부터 발행된 특허에 대해 특허 지적 재산권의 공개를 장려하고 학계 기술 및 발명의 가시성을 높이기 위해 설립됐다.
2017.12.13
조회수 11529
이상엽 교수, 미생물로부터 친환경 바이오플라스틱 생산기술 개발
〈 이 상 엽 교수 〉 우리 대학 생명화학공학과 이상엽 교수 연구팀이 세계 최초로 미생물을 이용해 대표적 의료용 고분자인 폴리락테이트-co-글라이클레이트(poly(lactate-co-glycolate), PLGA)를 생산해냈다고 밝혔다. 이번 연구는 생명공학 분야의 최고 권위지인 '네이처 바이오테크놀로지(Nature Bio-technology) 온라인 판에 8일 게재되었다. 기존 폴리락테이트-co-글라이콜레이트의 화학적 생산 공정은 여러 단계의 화학적 전환, 정제 등 복잡한 공정이 필요해 비효율적이었을 뿐만 아니라 유독성 금속 촉매가 사용되어 친환경적이지 못한 단점을 가지고 있었다. 폐목재, 볏짚 등 재생가능한 자원인 바이오매스를 기반으로 폴리락테이트-co-글라이콜레이트를 생산하는 미생물(균주)을 개발하여, 기존 화학공정 대비 친환경적이면서 단순화된 공정이 가능해졌다. 또한 이번 연구에서 개발한 폴리락테이트-co-글라이콜레이트 생산 균주를 기반으로 한 응용 기술로 다양한 목적성 고분자* 생산이 가능해져 신규 바이오플라스틱 생산에 새로운 지평을 열었다. 이번 연구 결과는 자원고갈, 기후변화 등의 문제를 안고 있는 기존 석유 의존형 화학산업을 재생가능한 자원을 통해 지속성장이 가능한 바이오 의존형 화학산업으로 바꾸기 위한 바이오 리파이너리 분야의 의미있는 성과이다. 이상엽 교수는 “이번 연구는 의료용 고분자의 대표적 물질인 폴리락테이트-co-글라이콜레이트를 만드는 미생물을 개발한 세계 최초의 연구“라며 “인공고분자를 생물학적 방법으로 생산할 수 있는 시스템을 구축했다는 점에서 큰 의미를 가진다.”고 말했다. □ 그림 설명 그림1. 대사공학적으로 개량된 대장균이 바이오매스로부터 PLGA 및 다양한 PLGA 공중합체를 생산하는 전체 개념도
2016.03.08
조회수 10605
항생제 남용이 바이러스 방어능력을 약화시킨다
〈 이 흥 규 교수 〉 □ 미래창조과학부(장관 최양희)는 항생제 남용에 의한 체내 공생미생물의 불균형이 헤르페스 바이러스 방어 면역에 끼치는 영향에 대한 기전을 국내 연구진이 처음 규명하였다”고 밝혔다. □ 우리 대학 이흥규 교수 연구팀은 미래창조과학부와 한국연구재단의 기초연구실지원사업의 지원을 받아 연구를 수행하였으며, 연구결과는 자연과학분야의 세계적인 국제학술지「미국국립과학원회보(PNAS)」온라인판 1월 25일자에 게재되었다. o 논문명과 저자 정보는 다음과 같다. - <논문명> Dysbiosis-induced IL-33 contributes to impaired antiviral immunity in the genital mucosa - <저자 정보> 교신저자: 이흥규교수 (KAIST), 제 1저자: 오지은박사 (KAIST), 공동저자: 김병찬박사 (한국생명공학연구원), 강덕진박사 (한국표준과학연구원), 김진영박사 (한국기초과학지원연구원), 유제욱교수 (연세대) 등 □ 논문의 주요 내용은 다음과 같다. 1. 연구의 필요성 ○ 공생미생물은 우리 몸에 상재하는 다양한 미생물의 군집으로, 우리몸의 건강유지에 필수적인 다양한 역할을 수행하는 것이 알려져 왔다. 특히 공생미생물의 불균형이 염증성 장질환을 비롯하여 다양한 질환 (ex. 알레르기, 비만, 당뇨, 암 등)의 발병에 기여한다는 것이 밝혀지면서 공생미생물이 우리몸의 건강과 질환 발병에 끼치는 영향에 대한 연구의 필요성이 대두되고 있다. 2. 발견 원리 ○ 이흥규 교수 연구팀은 헤르페스 바이러스 감염을 비롯한 다양한 바이러스 감염 시 체내 면역시스템의 방어기작에 대한 연구를 지속해 왔다. 본 연구에서는 항생제 남용으로 인한 여성생식기의 공생미생물의 불균형이 질점막을 통한 헤르페스 바이러스 감염에 대한 호스트의 방어능력을 현저히 약화시키며 그 기전이 무엇인지를 규명하였다. ○ 특히 본 연구에서는 항생제로 인한 유익한 미생물의 감소와 해로운 미생물의 증가가 마우스의 질점막에서 IL-33의 대량생산을 유도하여, 항바이러스 면역에 필수적인 인터페론 감마 (IFN-γ)를 생산하는 T세포가 감염부위로 적절하게 이동하는 것을 억제함으로써 헤르페스 바이러스 감염에 대한 방어능력을 약화시킨다는 것을 세계 최초로 보여주었다. ○ 또한 항생제를 투여한 마우스의 질세척액에서 다양한 조직손상 및 염증반응에 관계된 물질이 증가한 것을 발견하였으며, 항생제 투여로 인해 증가한 해로운 미생물이 질 내에서 단백질 분해효소를 분비하여 질 상피세포의 손상을 유도함으로써 조직손상을 반영하는 물질 중 하나인 IL-33 의 분비를 촉진시켰을 가능성을 제시하였다. 3. 연구 성과 ○ 본 연구는 항생제 남용이 초래하는 공생미생물의 불균형이 바이러스 감염에 대한 방어능력을 현저히 약화시키는 것을 직접적으로 증명함으로써, 항생제 남용에 대한 경각심을 일깨울 수 있을 것이라 기대된다. ○ 또한 공생미생물의 불균형에 의해 질점막에서 분비되는 IL-33과 같은 물질이 감염에 대한 방어능력을 평가할 수 있는 지표로 활용될 수 있을 것으로 기대된다. ○ 체내 공생미생물을 우리 몸에 유익하도록 조절함으로써 방어능력이 향상된 바이러스 치료제 및 백신 개발에 기여할 수 있을 것으로 기대된다. □ 이흥규 교수는 “항생제 남용이 인체에 해로운 영향을 준다는 것이 막연하게 알려져 있었는데, 어떻게 해로운지 명확하게 규명되지는 않았다”며, “이번 연구는 체내 공생미생물의 불균형으로 인해 여러 바이러스 감염이 악화될 수 있음을 밝혀냄으로써 앞으로 백신 및 치료제 개발에 도움을 줄 것으로 기대된다.”고 연구의 의의를 설명했다. □ 그림 설명 그림1. 항생제의 남용으로 질내 유익한 공생미생물이 감소하고 해로운 미생물이 증가함으로써 질점막을 통한 헤르페스 바이러스 감염에 더 취약하게 되는 기전이 밝혀짐 .
2016.02.26
조회수 10844
정기준 교수, 2015 담연학술상 수상
〈정 기 준 교수〉 우리 대학 생명화학공학과 정기준 교수가 한국생물공학회에서 주관하는 ‘2015 담연학술상’ 수상자로 선정됐다. 올해로 11회째를 맞는 담연학술상은 한국생물공학회가 45세 이하 생물공학분야 연구자를 대상으로 선정해 시상한다. 최근 5년간 단일 주제 관련 연구업적 중 국제학술지 및 생물공학회지에 게재된 논문과 특허 및 기술이전 등의 우수성에 대한 업적을 기준으로 선정한다. 정기준 교수는 항체를 비롯한 의약 단백질 개량 및 고효율 생산을 위한 미생물 개량 연구 분야에서 세계적 업적을 수행한 점을 인정받아 이번 수상자로 선정됐다. 시상식은 10월 13일 인천 송도컨벤시아에서 개최된 생물공학회 창립 30주년 기념 국제학술대회 정기총회에서 진행됐다.
2015.10.19
조회수 8886
이상엽 특훈교수, 중국 우한대 명예교수 추대
우리 학교 생명화학공학과 이상엽 특훈교수가 중국 TOP 5 명문대인 우한대학교 명예교수로 추대됐다. 우한대학교는 이 교수가 친환경 화학 산업에 필수적인 미생물대사공학 등의 연구 분야에서 혁신적인 성과로 전세계를 선도한 것은 물론 탁월한 리더십을 발휘한 업적을 인정해 명예교수로 위촉했다. 이 교수는 세계 최고효율의 숙신산과 엔지니어링 플라스틱 원료 생산기술을 개발했다. 또 최근에는 젖산함유 고분자와 가솔린과 같은 비천연 화학물질을 생산할 수 있는 기술을 세계 최초로 개발한 성과를 인정받아 지난 5월 호암공학상을 받기도 했다. 한편, 이 교수는 2012년에는 중국과학원 명예교수, 그리고 2013년에는 중국 상하이 자오퉁대학교 자문교수로 추대된 바 있다.
2014.10.16
조회수 9016
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
>
다음 페이지
>>
마지막 페이지 5