본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%AF%B8%EB%9E%98%EC%B0%BD%EC%A1%B0%EA%B3%BC%ED%95%99%EB%B6%80
최신순
조회순
북유럽 3개 연구대학과 청년연구자 연구교류 본격화
KAIST가 북유럽 3개 연구대학과 연구 분야 교류와 협력을 본격화한다. 우리 대학은 지난 2일 스웨덴 왕립공과대학 및 룬드(LUND) 대학과, 4일 핀란드 알토(Aalto University)대학과 각각 '상호 청년연구자 교류 확대 및 연구교류 증진 협력’을 위한 의향서를 교환했다. 이번 의향서 교환은 미래부창조과학부가 주관하는 한-스웨덴 및 한-핀란드 과학기술공동위원회의 협력사업의 일환으로 진행됐다. 이번 의향서에 따라 KAIST는 이들 대학들과 △ 양 대학 간 학생 및 연구자 연구 인턴십 프로그램 추진 △ 협력 연구 진행 △ 공동 워크숍 개최 △ 주요 연구정보 제공 등을 통한 공동연구사업을 추진하기로 했다. 이를 통해 KAIST는 이들 대학들과 인력의 교류를 확대하고 국제적인 공동연구로 협력을 강화해 나갈 계획이다. 맹성현 국제협력처장은 “이번 협력 의향서를 체결하면서 KAIST는 양국 정부관계자들에게 이들 대학들과의 청년 연구자간 교류 및 연구협력의 중요성을 확인시켰다”며 “이를 기점으로 양국 간의 기술혁신정책을 더욱 발전시키고 보다 다양한 방식으로의 글로벌화 및 연구 확대에 이바지 할 것”이라고 말했다. 스웨덴 왕립공대는 혁신적인 연구 플렛폼 운영을 통해 선도적인 연구를 진행하는 연구중심대학으로, 2014 QS 세계대학평가 공학 분야에서 27위 및 북유럽 지역 1위를 기록하였다. 룬드대학은 유럽에서 가장 역사가 오래된 대학교 중 하나로 스웨덴 국가 연구개발비를 가장 많이 지원받는 연구기관이다. THE 세계대학평가 생명과학 및 공학 분야는 60위권을 유지하는 전통 명문대학이다. 핀란드 알토대학은 헬싱키 예술 ․ 디자인대학, 헬싱키 경영대학, 헬싱키 공과대학이 통합된 대학이다. 다양한 전공 분야 학생들이 함께 일하는 ‘팩토리(Factory)’ 문화가 있어 산학연 공동연구를 주도하는 대학이다.끝. [KAIST-스웨덴 왕립공과대학 의향서 교환] [KAIST-LUND 대학 의향서 교환] [KAIST- 핀란드 Aalto University 의향서 교환]
2015.06.04
조회수 11113
한국 핀테크 산업의 과제를 주제로 컨퍼런스 개최
‘핀테크’ 열풍으로 국내․외 금융산업이 격변하고 있는 가운데 국내 핀테크 산업의 해외 진출 가능성을 살펴보는 자리가 마련된다. 우리 대학은 오는 21일(목) 오후 1시 서울 명동 은행회관 2층 컨퍼런스홀에서 권오규 前 경제부총리, 정지원 금융위원회 상임위원, 강성모 총장 등 관계자 200여명이 참석한 가운데‘세계 금융시장을 향한 한국 핀테크의 도전과 과제’를 주제로 핀테크 컨퍼런스를 개최한다. ‘핀테크(FinTech)’는 금융(Finance)과 기술(Technology)의 합성어로 정보기술을 바탕으로 한 새로운 형태의 금융기술을 말한다. 아직까지 핀테크의 실질적 정의가 모호하고 산업간 경계가 명확하지 않지만, 첨단 IT기술을 보유한 우리나라가 세계 금융산업의 선도자로 나설 수 있는 기회라는 평가다. 컨퍼런스는 국내 핀테크 기업이 세계 금융시장에서 어떻게 경쟁력을 갖출 것인가에 초점이 맞춰져 진행된다. 먼저 기조강연자로 나선 김동석 KAIST 경영대학장은‘한국 핀테크의 도전과 과제’란 주제발표에서, 핀테크 산업이 지급결제 또는 인터넷 전문은행이라는 고정관념에서 벗어나 산업간 경계를 허무는 창조적 파괴 산업이 될 것임을 강조 할 예정이다. 이어 금융계에서는 김종현 우리금융경영연구소 선임연구위원이‘국내 핀테크 생태계 구축을 위한 필요조건’을 주제로 발표한다. 우리 대학에서는 ▲권영선 기술경영학과 교수가‘한국경제와 핀테크의 역할’▲이윤준 전산학부 교수가‘ICT 분야에서 본 한국 핀테크’▲이병태 경영공학부 교수가‘한국에서 핀테크 현황과 가능성’▲김병천 경영공학부 교수가‘핀테크 산업 육성을 위한 도전과 과제’를 주제로 각각 발표한다. 이밖에 윤창현(前 금융연구원장) 서울시립대 경영학부 교수가‘국내 금융산업의 위기와 핀테크의 역할’을 주제로 발표한다. 이와 함께‘한국 핀테크 산업 육성 방안’을 주제로 열리는 토론회에는 미래창조과학부 송재성 인터넷 제도혁신과장, 금융위원회 김동환 전자금융과장, 삼성경제연구소 전진 박사, 8Persent 이효진 대표, 보험연구원 황인창 박사, 코스콤 이재규 미래사업단장이 토론자로 참여한다. 이번 행사를 주관한 김병천 KAIST 금융공학연구센터장은 “앞으로 핀테크 산업은 고객이 찾아오도록 하는 방식에서 고객의 생활패턴을 파악해 적재적소에 필요한 상품과 정보를 제공하는 방식으로 발전 할 것”이라고 말했다. 컨퍼런스 상세 정보는 홈페이지(http://business.kaist.ac.kr)에서 확인할 수 있다.
2015.05.14
조회수 12810
IT와 패션을 결합한 ‘입는 컴퓨터’ 경진대회 개최
KAIST가 삼성전자의 후원을 받아 오는 11월 ‘2015 웨어러블 컴퓨터 경진대회(Wearable Computer Contest 2015)'를 개최한다. ‘웨어러블 컴퓨터'는 사용자가 이동 환경 중에도 자유롭게 사용할 수 있도록 신체 또는 의복에 착용할 수 있게 제작된 컴퓨터다. 최근 사물인터넷(Internet of Things, IoT) 시대를 맞아 웨어러블 컴퓨터가 창조경제 실현을 위한 미래 신성장 동력으로 떠오르고 있으며 KAIST가 개발한 케이 글래스 2(K-Glass 2)도 업계의 큰 관심을 받은 바 있다. ‘사물 인터넷을 위한 웨어러블 컴퓨터’를 주제로 열리는 이번 대회는 ‘지정 공모’와‘아이디어 공모’방식으로 나눠 진행된다. ‘지정 공모’는 IT와 패션을 결합해 입는 컴퓨터에 대한 아이디어를 시제품으로 제작하는 대회로 5월 30일까지 참가신청을 받는다. 서류 심사를 거쳐 본선에 진출한 10개 팀에게는 웨어러블 컴퓨터 플랫폼 및 HCI(Human-Computer Interaction) 교육과 100만원 상당의 시제품 제작비가 지원된다. 대상 수상자에게는 5백만 원의 상금과 미래창조과학부 장관상이 수여된다. ‘아이디어 공모’는 웨어러블 디바이스에 대한 아이디어를 포스터 형식으로 제출하는 대회로 8월 15일까지 참가신청을 받는다. 본선 진출팀에게는 실물 크기의 모형을 제작해 본선대회에 전시할 기회가 주어지며, 대상 수상자에게는 1백만 원의 상금과 미래창조과학부 장관상이 수여된다. 지정 공모에는 전국 대학(원)생이면 누구나 참가가 가능하고, 아이디어 공모에는 자격에 제한 없이 참가 할 수 있다. 대회 위원장인 유회준 전기 및 전자공학부 교수는“웨어러블 컴퓨터에 대한 산업계 관심이 갈수록 커지고 있다”며 “머지않아 웨어러블 컴퓨터가 헬스케어, 스마트홈 및 사물인터넷 등과 융합해 자연스럽게 사용되는 IT 세상이 열릴 것”이라고 말했다. 대회 상세정보는 홈페이지( http://www.ufcom.org )를 통해 확인이 가능하다. 한편, 지난해에는 전국의 대학에서 112개 팀(지정공모 64팀, 아이디어 공모 48팀)이 본 대회에 참여했다. 대구경북연합 자비스(JARVIS)팀이 제작한‘스마트 헬멧’이 대상을 차지해 미래창조과학부 장관상을 수상한 바 있다.끝.
2015.05.07
조회수 14014
와이파이만 자동 감지해 다운로드하는 기술 개발
해외출장이 잦은 김 모 씨는 스마트폰에 영화를 다운받아 기내에서의 무료함을 달랜다. 그는 아침 회의에 들어가기 전 오후 5시까지만 다운을 완료하면 된다는 데드라인을 설정하고, 여러 일정을 마친 후 시간이 되자 기내에 탑승했다. 스마트폰을 확인하니 다운이 완료됐고, 자동으로 와이파이만 인식해 다운로드 했기 때문에 LTE 데이터는 전혀 소비되지 않았다. 우리 대학 전기및전자공학과 박경수, 이융, 정송 교수 연구팀은 와이파이와 이동통신 망의 단절을 자동으로 감지해 모바일 콘텐츠를 전달하는 기술 및 시스템을 개발했다. 이동통신 망에서 와이파이 망으로 데이터를 분산시키고 이양하는 것을 와이파이 오프로딩이라 한다. 이는 스마트폰에서 쉽게 볼 수 있는 기능이다. 그런데 현재의 와이파이 오프로딩은 원활하지 않아 자동적 시스템이 아닌 개인의 선택에 의해 이뤄지고 있다. 와이파이 망을 벗어나 이동하는 경우 연결이 단절되고 버퍼링이 발생해, 사용자들은 한 곳에서만 와이파이를 사용하거나 아예 해제하고 이동통신망을 이용하는 것이다. 원활한 오프로딩을 위해 관련 미래 표준을 만들고 있지만 LTE 망 통합 등의 변화가 필요하고 추후 장비 업그레이드 비용이 문제가 된다. 연구팀은 이러한 네트워크 단절 문제를 자동으로 처리하면서 와이파이 망을 최대한 사용하게 만드는 모바일 네트워크 플랫폼을 구축했다. 우선 네트워크 단절을 트랜스포트 계층에서 직접 처리해 네트워크간 이동 시에도 연결의 끊김 없이 전송이 가능한 프로토콜을 개발했다. 더불어 연구팀은 지연 허용 와이파이 오프로딩 기법을 개발했다. 다운로드 완료 시간을 예약하면 잔여 시간과 용량 등의 정보를 계산한 뒤, LTE와 와이파이를 스스로 조절해 최소의 LTE 데이터로 원하는 시간대에 다운로드를 완료할 수 있는 알고리즘이다. 이 기술은 스트리밍 플레이어에도 적용 가능해 와이파이 망에 있는 동안 더 많은 트래픽을 전송해 구역을 벗어나도 버퍼링 없는 동영상 시청이 가능하다. 이 기술로 사용자는 적은 요금으로 질 높은 콘텐츠를 이용할 수 있고, 사업자는 기존 LTE망의 재투자 및 효율적인 와이파이 망 유도가 가능하다. 또한 모바일 동영상 콘텐츠 사업자에겐 더 많은 수요자를 확보할 수 있다. 이융 교수는 “와이파이 오프로딩과 LTE 망의 관계를 최소화함으로써 모바일 콘텐츠 사업자, 망 사업자, 사용자 모두가 윈윈할 수 있는 기술이 될 것이다”고 말했다. 이번 연구는 미래창조과학부 정보통신기술진흥센터 (IITP) 네트워크 CP실(임용재 CP)의 지원을 받아 수행됐고, 5월에 개최하는 모바일 시스템 분야 최고 권위의 국제 학회인 에이씨엠 모비시스(ACM MobiSys)에서 발표될 예정이다. □ 그림설명 그림 1. 지연 허용 와이파이 오프로딩 기법 개념도
2015.04.20
조회수 14084
광전환 효율 높인 고분자 태양전지 모델 개발
<김 범 준 교수> 국내 연구진이 차세대 에너지원으로 각광 받고 있는 플라스틱 태양전지의 광전환 효율을 크게 높이는데(5% 이상, 기존 대비 1%p 이상 증가) 성공하였다. 특히 기존의 태양전지를 대체할 수 있다는 점에서 의미가 크다. 우리 대학 김범준, 부산대 우한영 교수(공동 교신저자)가 주도하고, 우리 대학 강현범, 부산대 우딘 모하메드 아프사르 박사(공동 제1저자)가 참여한 이번 연구는 미래창조과학부와 한국연구재단에서 추진하는 기초연구사업(중견연구자), 글로벌프론티어사업 등의 지원으로 수행되었고, 화학분야의 권위지 JACS(Journal of the American Chemical Society) 2월 18일자에 게재되었다. 고분자-고분자 태양전지는 기존의 풀러렌 유기태양전지에 비해 상용화에 핵심요소인 기계적인 안정성뿐만 아니라 열에 대한 안정성도 크게 향상시킬 수 있다. 그러나 풀러렌 유기태양전지(10%)에 비해 고분자-고분자 태양전지의 광전환 효율은 매우 낮다(4% 이하). 이것은 광 활성층을 형성하는 두 고분자가 잘 섞이지 않고 과도하게 분리되는 현상(상 분리)이 발생하기 때문이다. 이러한 상 분리 현상은 전자의 생성과 운반을 저해하고 태양전지의 광전환 효율을 감소시킨다. 연구팀은 전도성 고분자의 분자량과 구조를 조절함으로써 두 고분자의 상 분리 현상을 효과적으로 제어하여 5% 이상의 높은 광전환 효율을 가진 태양전지를 개발하였다. 연구팀은 현재 태양전지의 광전환 효율을 6%까지 끌어올렸는데, 이 수치는 지금까지 학계에 보고된 것 중에서 가장 높은 효율이다. 김범준 교수는 “이번 연구는 고분자 플라스틱 태양전지가 미래 에너지원, 특히 유연성이 필요한 휴대용 차세대 전자소자의 에너지원으로서 높은 응용가능성을 보여주는 사례”라고 밝혔다. □ 그림 설명 그림 1. 플렉서블 고분자 / 고분자 태양전지 샘플
2015.03.30
조회수 14166
약물로 조절되지 않는 뇌전증(간질) 원인 밝혀
<이정호 교수> 우리 대학 의과학대학원 이정호 교수팀이 약물로 조절되지 않는 난치성 뇌전증(간질 발작)의 원인을 밝히고 새로운 치료법의 발판을 마련했다. 세브란스 병원 김동석 교수 연구팀과 공동으로 진행한 이번 연구는 의과학 분야 학술지 ‘네이처 메디슨(Nature Medicine)’ 24일자 온라인 판에 게재됐다. 뇌전증은 세계적으로 5천만 명 이상에게 발생하는 주요 뇌질환이다. 이는 약물로 발작 조절이 가능하지만, 30% 가량의 환자는 어떠한 약물도 효과가 없는 난치성 뇌전증을 앓고 있다. 기존 뇌전증 치료제는 실험동물에게 특정 물질이나 전기 자극을 주고난 뒤, 약물을 투여해 증상이 완화되면 치료제로 승인받는 방식으로 개발됐다. 하지만 실험의 방향과 다른 원인의 뇌전증이 발병하면 약물 치료제가 전혀 반응하지 않는 문제가 있었다. 이에 연구팀은 약물 치료 효과가 없어 간질 수술을 받은 환자 77명의 뇌 유전체 정보와 임상 자료를 심층 분석했다. 그 결과 약 16%의 환자는 마치 백설기 안의 건포도처럼 뇌의 특정 부분에만 돌연변이가 존재하고 나머지 신체 부위는 정상인 것으로 밝혀졌다. 이 과정을 통해 뇌전증을 일으키는 변이 유전자를 발견해 약물로 조절되지 않는 난치성 뇌전증의 원인을 밝혔다. 또한 같은 형태의 돌연변이를 실험용 쥐에 주입한 후 유전 변이에 따른 맞춤형 치료법 개발에 성공했다. 연구팀의 핵심 성과는 기존에 발견되지 않던 난치성 뇌전증의 원인을 파악해 맞춤형 치료법을 개발할 수 있는 발판을 마련한 것이다. 연구팀은 함께 참여했던 병원 측과 임상을 계획 중이다. 이정호 교수는 “선천적으로 몸 전체에 돌연변이가 분포한다는 기존 학설을 뒤집고, 뇌에만 돌연변이가 발생해 난치성 뇌질환을 유발함을 증명한 최초의 연구”라고 말했다. 마크로젠 (대표: 정현용) 이환석 박사 팀과 공동 진행한 이번 연구는 보건복지부 질병중심 중개 중점연구와 세계선도 의생명과학자 육성 사업, 미래창조과학부 뇌과학 원천기술 개발사업, KAIST 미래형 시스템 헬스케어 연구개발 지원으로 수행됐다. □ 그림 설명 그림 1. 차세대 염기서열 분석법을 이용한 뇌특이적 질병유전변이의 발굴 국소 대뇌 피질 이형성증에 의한 난치성 뇌전증 환자의 뇌조직과 혈액샘플에서 얻은 DNA를 차세대 염기서열 분석법으로 비교분석해 뇌 특이적 질병 유전 변이를 발견. 그림 2. 난치성 뇌전증 실험용 쥐 제작 및 약물치료 대뇌 발달이 진행 중인 생쥐 배아에 질병유전변이를 주입. 성장 완료 후 뇌전도검사를 통해 뇌전증 발생 여부 및 빈도를 확인하고 약물 투여를 통해 치료여부를 확인. 그림 3. 맞춤형 약물 치료 효과 질병 유전변이를 발현하는 생쥐의 뇌조직 단면에서 환자와 같은 거대신경세포가 관찰되고 약물치료를 통해 거대신경세포가 정상세포로 변화하는 과정.
2015.03.24
조회수 20100
휘어지는 10나노미터 고분자 절연막 개발
10나노미터 이하의 얇고, 유연하게 휘어지면서도 균일한 두께를 유지하는 고분자 절연막의 개발로 사물인터넷의 실현을 앞당길 수 있을 것으로 보인다. 우리 대학 생명화학공학과 임성갑 교수, 전기 및 전자공학과 유승협, 조병진 교수 공동 연구팀은 ‘개시제를 이용한 화학 기상 증착법(initiated chemical vapor deposition, 이하 iCVD)’을 이용한 고분자 절연막을 개발했다고 밝혔다. 이번 연구는 재료분야 국제 학술지인 ‘네이처 머티리얼스(Nature Materials)’ 3월 10일자 온라인 속보판에 게재됐다. 사물인터넷 시대의 핵심인 웨어러블, 플렉서블 기술 촉진을 위해서는 가볍고 전력 소모가 적으면서도 유연성을 가진 소자 제작 기술이 필수적이다. 하지만 무기물 소재를 기반으로 한 절연막을 포함한 전자소자 재료들은 유연성이 부족하고, 고온에서만 공정이 가능해 열에 약한 다른 재료들과의 조합이 좋지 않다. 또한 용액을 이용해 만든 기존 고분자 소재 절연막은 표면장력에 의한 뭉침 현상으로 균일도에 한계가 있었고, 잔류 불순물로 인해 절연 특성도 좋지 못한 경우가 많았다. 공동 연구팀은 이러한 문제점을 해결할 수 있도록 기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법인 iCVD를 사용했다. 액체 대신 기체 상태의 반응물을 이용해 균일도를 높이고 불순물을 최소화함으로써, 10nm 이하의 매우 얇은 두께에서도 무기물 기반 소재에 필적하는 절연성을 가지게 됐다. 공동 연구팀은 개발한 절연막을 유기반도체, 그래핀, 산화물반도체와 같은 차세대 반도체를 기반으로 한 트랜지스터에도 적용해 우수한 이동도를 갖는 저전압 트랜지스터를 개발했다. 그 외에도 우수한 유연성을 바탕으로 스티커 필름 형태의 전자 소자를 시연했고, 동국대 노용영 교수 연구팀과 협력해 iCVD 고분자 절연막이 대면적 유연 전자소자 기술에 적용할 수 있음을 확인했다. 이 기술은 향후 다양한 미래형 전자기기 제작에 핵심 요소소재로 활용되고, 이 분야의 기술경쟁력 우위 확보에도 역할을 할 것으로 기대된다. 임성갑 교수는 “이번에 iCVD로 구현된 박막의 절연특성은 고분자 박막으로는 구현할 수 없었던 매우 높은 수준”이며 “이번에 개발된 iCVD 고분자 절연막은 플렉서블 전자 소자 등 차세대 전자 기술에 핵심적인 역할을 할 수 있을 것”이라고 말했다. 문한얼, 신우철 박사(전기 및 전자공학과), 성혜정 학생(생명화학공학과)이 참여한 이번 연구는 미래창조과학부의 한국연구재단 신진연구자 지원사업 및 중견연구자 지원사업, 글로벌프론티어사업 나노기반 소프트일렉스토닉스 연구단의 지원을 받아 수행됐다. □ 그림 설명 그림 1. iCVD 공정의 모식도 (i) 재료물질 (initiator, monomer) 주입, (ii) 개시제의 활성화, (iii), (iv): 활성화된 개시제에 의한 고분자(polymer) 합성 그림 2. 연구진이 개발한 고분자 절연막을 이용하여 제작한 대면적, 고유연성 전자소자 그림 3. 스티커처럼 붙이고 뗄 수 있는 전자소자 이미지
2015.03.10
조회수 18984
유회준 교수, 시선 추적 스마트 안경 ‘케이-글래스 2’ 개발
<유회준 교수> 우리 대학 전기 및 전자공학과 유회준 교수 연구팀이 사용자의 시선을 인식해 증강현실을 구현할 수 있는 저전력 스마트안경 ‘케이-글래스2(K-Glass 2)’를 개발했다. 이번 연구는 지난 2월 미국 샌프란시스코에서 열린 세계 반도체 올림픽이라 불리는 국제고체회로설계학회(ISSCC)에서 발표돼 주목을 받았다. 케이-글래스 2의 핵심 기술인 시선 추적 이미지 센서 ‘아이-마우스(i-Mouse)’는 사용자의 시선에 따라 마우스 포인터를 움직이고, 눈 깜빡임으로 아이콘을 클릭할 수 있다. 더불어 안경 너머의 물체를 쳐다보면 관련 증강 현실 정보를 얻을 수 있다. 케이-글래스 2는 음성 인식 기능을 주로 사용하는 구글 글래스에 비해 주변 소음이 많은 야외에서도 방해받지 않고 쉽게 조작이 가능하다. 기존 시선 추적 시스템은 눈을 촬영하는 이미지 센서와 시선추적 알고리즘을 가속하는 멀티코어 프로세서로 구성된다. 이는 평균 200mW 이상의 전력을 필요로 해 스마트폰 배터리의 20%가량인 스마트 안경 시스템에서는 부적합했다. 하지만 케이-글래스 2의 시선 추적 이미지 센서는 복잡한 시선 추적 알고리즘을 센서 내에서 모두 처리하기 때문에 10mW의 평균 전력으로도 24시간 이상 동작이 가능하다. 이 기술은 유 교수 팀이 시선 추적 및 시선 속 물체를 인식할 수 있는 저전력의 전자 칩을 개발함으로써 가능해졌다. 또한 전압과 동작 주파수를 동적 조절이 가능한 멀티코어 프로세서에 함께 집적했기 때문에 복잡한 증강현실 알고리즘을 저전력으로 가속할 수 있다. 유 교수는 “스마트 안경 분야에서 주도권을 잡기 위해선 소형화·저전력화는 물론 사용자 인터페이스(UI)와 사용자 경험(UX)에 대한 개발이 필수”라며, “케이-글래스 2는 복잡한 증강현실을 초저전력으로 구현해 차세대 스마트 IT분야의 견인차 역할을 할 것”이라고 밝혔다. 유회준 교수 지도하에 홍인준 박사과정 학생이 주도해 개발한 케이-글래스 2는 미래창조과학부 국책과제인 뇌모방 지능형 메니코아 프로세서 연구사업의 일환으로 진행됐다. 사진1. 케이-글래스 2 후면 사진 및 기능 설명 사진2. 케이-글래스 2 착용 사진
2015.03.09
조회수 14624
2015학년도 학사과정 입학식 개최
우리 대학은 2일(월) 오전 10시 본교 대강당에서 신입생 ‧ 학부모 등 1600여명이 참석한 가운데‘2015학년도 학사과정 입학식’을 가졌다. 입학식은 신입생 대표 류자영(19‧한국과학영재학교 卒)양과 송윤민(18‧창원과학고 卒)군의 신입생 선서에 이어 최재유 미래창조과학부 제2차관 축사, 강성모 총장 입학 식사, 재학생 동아리 공연 순으로 진행됐다. 최재유 미래창조과학부 차관은 축사에서“과학도들이 실패를 두려워하지 않는 도전정신을 가질 것”을 주문하면서“정부도 학생들이 상상력과 끼를 마음껏 발산 할 수 있는 교육여건과 연구환경을 제공하는데 지원을 아끼지 않겠다”라고 말했다. 강성모 총장은 입학 식사에서 ▲ 타인을 존중하고 감사할 줄 아는 마음을 가질 것 ▲ 전문분야에 깊이 있는 지식을 연마 할 것 ▲ KAIST인의 사회적 책무를 다할 것 ▲ 국제적인 소통능력을 키울 것 등을 당부했다. 이어“최고의 지성인들이 모인 KAIST는 고교시절 보다 훨씬 더 도전적인 환경이 될 것”이라며“힘든 길을 가다 넘어져도 좌절하지 말고 다시 일어서는 마음자세를 가져달라 ”고 말했다.
2015.03.02
조회수 9684
박인규 교수, 공기오염 측정 센서 원천기술 개발
<박인규 교수> 우리 대학 기계공학과 박인규(38) 교수팀이 스마트폰 등 모바일 기기에 탑재 가능한 초소형, 초절전 공기오염 측정 센서의 원천기술 개발에 성공했다고 밝혔다. 연구 결과는 네이처(Nature)의 자매지인 사이언티픽 리포트(Scientific Reports) 1월 30일 자 온라인 판에 게재됐다. 각종 공기오염 물질이 증가하고 사람들의 건강관리에 대한 관심이 높아지면서 개인의 주변 공기오염도에 대한 측정 기술의 필요성이 커지고 있다. 하지만 기존의 공기오염 측정 센서는 소모 전력과 부피가 크고, 여러 유해가스를 동시에 측정할 때의 정확도가 낮았다. 이는 기존에 개발된 반도체 제작공정을 사용해도 해결이 쉽지 않았다. 박인규 교수팀은 수백 마이크로미터 폭의 미세유동과 초소형 가열장치로 수 마이크로미터만을 국소적으로 가열하는 극소영역 온도장 제어기술을 이용해 여러 종류의 기능성 나노소재를 하나의 전자칩에 쉽고 빠르게 집적하는 기술을 개발했다. 대표적으로 공기오염 측정에 사용되는 센서 소재인 반도체성 금속산화물 나노소재 기반의 전자칩을 제작하였다. 박 교수팀의 기술은 다종의 센서용 나노소재를 적은 양으로도 동시제작 할 수 있어 모바일 기기에 탑재할 초소형, 초절전 가스 센서를 만들 수 있다. 이 기술은 고밀도 전자회로, 바이오센서, 에너지 발전소자 등 다양한 분야에 응용이 가능하고, 특히 소형화 및 소비전력 감소에 어려움을 겪는 휴대용 가스센서 분야에 혁신을 가져올 것으로 예상된다. 박 교수는 “모바일 기기용 공기오염 센서 뿐 아니라 바이오센서, 전자소자, 디스플레이 등의 다양한 융합기술 발전에 크게 기여할 수 있을 것”이라고 말했다. 이번 연구는 교육부의 글로벌프론티어 사업, 미래창조과학부의 나노소재 기술개발사업, BK21 사업의 지원을 받아 수행됐다. 이번 연구에는 박인규 교수를 비롯해 기계공학과 양대종 박사후 연구원, 강경남 박사과정 연구원, 한국전력공사 김동환 연구원, 미국 휴렛 팩커드(Hewlett Packard) 사의 지용 리 (Zhiyong Li) 박사가 참여했다. □ 그림설명 그림1. 다종 나노소재 제작 원리 및 미세 유동 컴퓨터 시뮬레이션 결과 그림2. 초미세 영역에서 동시에 제작된 다종의 나노소재
2015.02.24
조회수 17339
도장 찍듯이 자유롭게 그래핀 옮기는 기술 개발
우리 학교 전기및전자공학과 최성율 교수 연구팀이 단원자층 그래핀을 금속촉매기판에서 직접 떼어내는 동시에 원하는 기판에 도장을 찍듯 자유롭게 옮길 수 있는 기술을 개발하는데 성공했다. 이 기술을 활용하면 기존의 직접박리 기반 전사공정으로 달성하기 어려웠던 그래핀 박막 적층, 구조물 표면이나 유연한 기판으로 전사, 4인치 웨이퍼 크기의 대면적 전사 등이 가능해진다. 향후 웨어러블 스마트기기 등 다양한 분야에 사용되는 그래핀 전자소자 상용화에 활용될 전망이다. 그래핀을 원하는 기판으로 옮기기 위해 현재 가장 널리 사용하는 방법인 습식전사법은 전사과정 중에 그래핀이 물리적으로 손상되고 표면이 오염 될 수 있어 전사된 그래핀의 전기적 특성이 심각하게 훼손될 수 있다는 단점이 있다. 최 교수 연구팀은 금속촉매기판 위에 성장된 그래핀을 수용성 고분자 용액으로 처리한 후 동일한 수용성 고분자 지지층을 그 위에 형성시켰다. 이 과정을 통해 지지층과 그래핀 사이에 강한 결합력이 형성되고 그 후 지지층을 탄성체 스탬프로 떼어내면 지지층과 함께 그래핀이 금속촉매기판으로부터 분리된다. 이렇게 분리된 그래핀은 탄성체 스탬프에 고립상태로 존재하기 때문에 원하는 기판 어디에든 도장 찍어내듯 자유롭게 옮길 수 있다. 또 금속촉매기판을 재활용 할 수 있고 유해한 화학물질을 전혀 사용하지 않기 때문에 친환경적인 전사법 이라는 장점도 가지고 있다. 최 교수는 이번 연구에 대해 “개발된 그래핀 전사방법은 그 공정이 범용적이고 대면적 전사도 가능하므로 그래핀 전자소자 상용화에 기여할 수 있을 것”이라며 “이 방법이 가지고 있는 높은 전사 자유도로 인해 향후 그래핀과 2차원 소재 접합 나노소자 구현에도 다양하게 활용될 것으로 기대된다”고 연구의의를 밝혔다. 이번 연구는 KAIST 전기및전자공학과 최성율 교수와 양상윤 연구교수가 주도하고 같은 과 조병진 교수, 한국전자통신연구원 최춘기 박사가 참여했으며, 미래창조과학부가 추진하는 글로벌 프론티어 사업인 ‘나노기반 소프트일렉트로닉스 연구단’의 지원으로 수행됐다. 연구 결과는 나노 및 마이크로 과학 분야의 국제 학술지 스몰(small) 1월 14일자 표지논문으로 게재됐다. 끝. 그림1. 본 연구결과를 설명하는 Small紙의 2015년 1월 14일자 표지 사진 그림2. 본 연구에서 개발된 ‘높은 자유도를 갖는 그래핀 직접박리/전사법’ 그림3. 개발된 전사법으로 전사된 그래핀: (좌) 단원자층 그래핀을 3번 반복 전사하여 얻은 3층 그래핀 (3-layerd graphene), (우) 그래핀 트랜지스터 제작을 위해 금속 전극 구조물 표면에 전사한 그래핀 그림4. 대면적 전사된 그래핀: (좌) 4인치 실리콘 웨이퍼에 전사된 그래핀, (우) 플라스틱 (polyethersulfone, PES) 유연기판에 전사된 그래핀 (크기 7cm x 7cm)
2015.01.19
조회수 16719
심장세포의 핵심 신호전달경로 스위치 규명
심장근육세포내 베타수용체 신호전달경로의 자극 세기에 따라 세포의 생존과 사멸이라는 상반된 운명이 어떻게 결정되는지 그 근본원리가 우리 학교 연구진에 의해 규명되었다. 향후 심부전을 비롯한 다양한 심장질환의 치료에 활용될 것으로 기대된다. 우리 학교 바이오및뇌공학과 조광현 석좌교수(교신저자)가 주도하고 신성영 박사(제1저자), 이호성 박사과정학생, 강준혁 박사과정학생이 참여하였으며, 광주과학기술원 생명과학부 김도한 교수팀이 공동으로 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업(도약/전략연구)과 바이오·의료기술개발사업 및 KAIST 미래형 시스템헬스케어사업의 지원으로 수행되었고, 연구결과는 네이처(Nature) 자매지인 네이처 커뮤니케이션스(Nature Communications)지에 12월 17일자로 게재되었다. * (논문명) The switching role of β-adrenergic receptor signalling in cell survival or death decision of cardiomyocytes 베타수용체 신호전달경로는 심장근육세포의 생존을 촉진(베타2수용체 매개)하지만 동시에 심장근육세포의 사멸을 유도하기도 하여 심장독성을 유발(베타1수용체 매개)함으로써 심부전 등 다양한 심장질환을 일으킨다. 지금까지 베타수용체 신호전달경로에 의해 조절되는 심장근육세포의 상반된 운명결정과정(생존 혹은 사멸)에 대한 근본 원리를 밝히고자 하는 많은 시도가 있어왔으나 아직 밝혀지지 않았다. ※ 베타수용체(β-adrenergic receptor): 심장근육세포의 세포막에 존재하는 단백질로서 에피네프린이나 노르에피네프린 등의 신경호르몬에 의해 자극받으면 심장근육세포가 더 강하고 빠르게 수축하도록 촉진하는 신호를 전달한다. 연구팀은 대규모 컴퓨터시뮬레이션 분석과 세포생물학 실험의 융합연구인 시스템생물학 연구를 통하여 ERK* 신호전달경로와 ICER** 신호전달경로가 매개하는 피드포워드회로가 심장근육세포의 생존과 사멸을 결정하는 핵심 분자스위치임을 밝혀냈다. * ERK(Extracellular signal-regulated kinases): 세포생존에 관여하는 신호전달분자 ** ICER(Inducible cAMP early repressor): 세포사멸에 관여하는 신호전달분자 약한 베타수용체의 자극에 대해서는 ERK 신호전달경로가 활성화되고 이로 인하여 Bcl-2*** 단백질의 발현량이 증가되어 심장근육세포의 생존이 촉진되지만, 강한 베타수용체의 자극에 대해서는 ICER 신호전달경로가 활성화되고 Bcl-2 단백질의 발현량이 감소하게 되어 심장근육세포의 사멸이 유발되는 것이다. *** Bcl-2(B-cell lymphoma 2): 세포생존 촉진에 핵심적인 역할을 하는 신호전달분자 또한 연구팀은 시스템생물학적 접근을 통해 실제 심부전 환자에게 널리 사용되는 약물인 베타차단제(β-blocker)****의 작동원리를 밝혀내었다. 심장근육세포에 베타1차단제를 처리하였을 때 강한 베타수용체 자극에서의 Bcl-2 발현량이 증가하고 이로 인하여 심장근육세포의 생존율이 향상되어 세포보호효과가 일어난다는 것을 발견함으로써, 베타차단제의 근본약리기전을 신호전달경로 수준에서 규명하였다. **** 베타차단제(β-blocker): 베타수용체의 활성화를 저해하는 약물이며, 심부전의 진행을 억제시키는 효과가 있어서 임상에서 가장 널리 처방되는 심부전 치료약물이다. 조광현 교수는 “정보기술(IT)과 생명과학(BT)의 융합연구인 시스템생물학 연구를 통해 지금껏 밝혀지지 않았던 베타수용체 신호전달경로에 의해 조절되는 심장근육세포의 상반된 운명결정과정에 대한 핵심 원리를 성공적으로 규명한 것으로 향후 심장근육세포운명의 제어 및 이를 통한 심부전 등의 다양한 심장질환 치료에 널리 활용될 것으로 기대된다.”고 밝혔다. 조광현 교수 연구팀은 IT와 BT가 융합된 시스템생물학 분야를 세계 최초로 개척해왔으며 특히 인체의 복잡한 질병과 관련된 신호전달네트워크의 모델링과 시뮬레이션 분석, 실험적 증명에 관한 혁신적인 연구를 수행해오고 있다. 지금까지 140여편의 국제저널논문을 게재하였으며, 2014년에는 Cell, Science, Nature 자매지에 연이어 연구성과를 게재하였다. 심장근육세포의 상반된 운명결정과정을 조절하는 핵심회로의 규명 및 제어기술 개발: 수학모델링과 대규모 컴퓨터시뮬레이션 분석을 통해 규명된 심장근육세포의 상반된 운명결정과정을 조절하는 핵심회로의 규명. ERK 신호전달경로와 ICER 신호전달경로가 매개하는 피드포워드회로는 심장근육세포의 생존과 사멸을 결정하는 핵심 분자스위치이다. 약한 베타수용체의 자극에 대해서는 ERK 신호전달경로(파란색 화살표)가 활성화되고 이로 인하여 Bcl-2의 발현량이 증가되어 결과적으로 심장근육세포의 생존이 촉진된다. 반면 강한 베타수용체의 자극에 대해서는 ICER 신호전달경로(빨간색 화살표)가 활성화되고, 이로 인해 Bcl-2의 발현량이 감소하게 되어 심장근육세포의 사멸이 유발된다. 이로서 심장근육세포의 사멸을 방지하면서 심장박동의 기능을 유지시킬 수 있는 원천제어기술의 토대가 마련되었다.
2014.12.26
조회수 19471
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
>
다음 페이지
>>
마지막 페이지 9