본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%94%94%EC%8A%A4%ED%94%8C%EB%A0%88%EC%9D%B4
최신순
조회순
유기발광다이오드 고효율 제조기술 개발
- 용액으로 제조해 값싸며, 대기 중에서 제조할 수 있는 OLED 길 열려 차세대 디스플레이로 각광받는 유기발광다이오드(OLED)의 제조공정이 크게 개선된다. 우리학교 기계공학과 양민양 교수팀은 대기 중에서도 쉽게 제조할 수 있는 고분자 유기발광다이오드를 개발하는 데 성공했다. 연구팀은 음극이나 양극과 같은 금속 전극을 제외한 기능성 층(정공주입층, 발광층, 전자수송층, 전자주입층)을 모두 액상으로 제조할 수 있도록 했다. 이 액상물질은 인쇄기술과 같은 용액공정을 적용할 수 있어 매우 저렴한 비용으로 제조가 가능할 것으로 기대된다. 기존 유기발광다이오드에는 LiF, CsF, Cs2CO3 등과 같은 알칼리․알칼리토금속을 포함하는 물질들이 전자주입층으로 구성돼 있다. 이 전자주입물질들이 음극과 발광층 사이에서 전자가 극복해야 할 전자주입장벽을 낮추어 발광효율을 높이는 역할을 하기 때문이다. 그러나 이 물질들은 대기 중에서 불안정할 뿐만 아니라 1nm(나노미터)정도의 초박막을 진공에서 증착을 통해 막을 입혀야 하기 때문에 대면적으로 얇은 층을 구현하기 어렵다. 또한, 아래층의 표면품질에 소자의 효율이 큰 영향을 받는다는 문제가 있어 모든 층을 용액공정으로 소자를 제조하는 데 어려움이 있었다. 양 교수팀은 5nm의 크기를 갖는 산화아연 나노입자 용액과 암모늄 이온용액을 통해 용액공정의 적용이 가능한 전자수송․주입 복합구조를 제시했다. 이들 용액은 알칼리․알칼리토금속을 전혀 포함하고 있지 않아 대기 중에서 안정해 모든 층을 용액공정으로 제조가 가능해졌다. 특히, 산화아연 나노입자층과 암모늄이온 복합층에 존재하는 암모늄 이온은 일정 이상의 전계를 가하면 발광층과 음극 사이에서 이온들이 전계에 따라 정렬해 계면쌍극자(interface dipole)를 형성한다. 이를 효과적으로 발광층과 음극사이의 전자주입 장벽을 낮추어 알칼리․알칼리 토금속을 사용하지 않음에 의해 발생하는 효율이 저감되는 문제를 극복해 발광효율 10cd/A와 휘도 50000cd/m2의 고성능을 구현했다. 한편, KAIST 양민양 교수와 윤홍석 박사과정 학생이 주도한 이번 연구결과는 권위 있는 학술지인 "어플라이드 피직스 레터스(Applied Physics Letters)"지 12월 14일자 온라인 판에 게재됐고 현재 국내 및 국제 특허 출원 완료됐다. [그림1] 연구팀이 개발한 고휘도 고발광효율 유기발광다이오드
2011.01.25
조회수 15098
열팽창이 작은 플라스틱 필름 기판 개발
-‘어드밴스드 머티리얼스’표지논문 선정,“자유자재로 휘어지는 디스플레이와 태양전지 상용화 앞당겨”- 자유자재로 휘거나 구부릴 수 있는(flexible) 디스플레이와 태양전지 제작에 필요한 열팽창이 작은(13ppm/oC 이하) 투명한 유리섬유직물* 강화 플라스틱 필름 기판이 국내 연구진에 의해 개발되었다. * 유리섬유직물(glass cloth) : 실처럼 만든 유리섬유를 사용하여 옷감처럼 직조한 유리섬유 강화재로, 강력하고 열팽창이 적어 조선, 건축, 자동차 및 전자산업 등 폭넓게 사용됨 우리학교 배병수 교수가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 직무대행 김병국)이 추진하는 선도연구센터(ERC)의 지원을 받아 수행되었고, 연구결과는 재료분야 최고 권위의 학술지인 ‘어드밴스드 머티리얼스(Advanced Materials)’ 표지논문(10월 25일)에 선정되는 영예를 얻었다. 배 교수 연구팀은 유리섬유직물과 굴절률이 똑같은 하이브리드 소재 수지를 독자적으로 제작한 후, 이를 유리섬유직물에 함침시켜 열팽창이 작은 투명한 플라스틱 필름 기판을 개발하였다. 차세대 꿈의 디스플레이로 불리는 자유자재로 휘거나 구부릴 수 있는 디스플레이나 미래 생활형 태양전지를 개발하기 위해서, 지금까지 전 세계 연구자들은 투명한 플라스틱 필름 기판을 사용하였다. 그러나 플라스틱 필름은 유리에 비해 온도가 올라가면서 열팽창이 점점 커져 기판 위에 디스플레이나 태양전지를 제작하기 어려워, 열팽창이 작은 투명한 플라스틱 필름 기판 개발이 절실히 요구되었다. 플라스틱의 열팽창을 낮추는 가장 쉬운 방법은 유리섬유직물을 보강하는 것인데, 이것은 플라스틱 안에 유리직물이 들어가므로 불투명해진다. 배 교수팀은 이를 해결하기 위해서, 유리섬유직물과 굴절률이 똑같은 특수한 하이브리드소재 수지를 직접 제작하여, 이를 유리섬유직물에 함침시켜 투명한 플라스틱 필름 기판을 개발하였다. 유리섬유직물과 함침된 하이브리드재료의 굴절률이 정확히 일치하면, 육안으로 전혀 차이를 느낄 수 없어 투명하게 되는 원리를 이용한 것이다. 배 교수팀이 개발한 투명 플라스틱 필름 기판은 유리섬유직물로 보강되었기 때문에 유리의 열팽창계수(9ppm/oC)에 가까운 낮은 열팽창계수(13ppm/oC)를 갖고, 내열성이 우수한 하이브리드소재를 이용하여 높은 온도(250oC 이상)에서도 디스플레이와 태양전지 등의 소자를 제작할 수 있는 장점이 있다. 배 교수팀의 투명 플라스틱 필름 기판은 휘어지는(flexible) 디스플레이와 태양전지의 기판 소재는 물론, 플라스틱의 특성(큰 열팽창과 낮은 내열성)으로 다양하게 사용되지 못하던 응용분야에 다각적으로 활용될 수 있을 것으로 전망된다. 연구팀은 이번에 개발한 투명 플라스틱 필름 기판을 이용하여 LCD나 아몰레드(AMOLED)에 사용되는 휘어지는(flexible) 산화물 박막 트랜지스터 (TFT)와 박막 태양전지를 직접 제작하여 응용 가능성을 높였다. 배병수 교수는 “이번에 개발한 투명 유리섬유직물 강화 플라스틱 기판은 성능도 우수하지만 가격도 저렴하면서 손쉽게 제작할 수 있어, 유리 기판을 대체하여 휘어지는 디스플레이나 태양전지의 상용화를 앞당길 수 있는 핵심기술이다. 앞으로 국내외 산업체, 연구소, 대학들과의 긴밀한 협력으로 다양한 소자들을 제작하여, 기술의 우수성을 검증 받고 활용성을 더욱 확대할 계획이다”라고 밝혔다.
2010.10.25
조회수 20093
플렉시블 디스플레이용 개스 배리어 기판기술 개발
- 나노 복합체 개스 배리어 기판 원천기술 확보 - - 투산소도와 투습도 낮아 식품 포장재에 바로 활용 가능 - 우리학교 물리학과 윤춘섭 교수팀이 금오공과대학 고분자공학과 장진해 교수와 공동으로 플라스틱 기판의 투산소도를 1/1,000로 낮춘 독창적 개념의 플렉시블 디스플레이용 개스 배리어(Gas Barrier) 기판을 개발했다. 이번 성과는 평판형 나노입자를 플라스틱 기판에 분산시킨 후 박리 및 배향시키는 나노 복합체 기판 원천기술 개발을 통해 가능해졌다고 공동연구팀은 밝혔다. 개발된 나노 복합체 기판 기술은 차세대 디스플레이인 플렉시블 유기발광 디스플레이(OLED)의 구현에 필수적인 기계적 고유연성, 저 투습도 및 저 투산소도, 높은 광투과도 조건을 모두 만족시킬 수 있는 획기적인 기판 기술로 평가받고 있다. 현존하는 세계최고 수준의 플렉시블 개스 배리어 기판 기술은 플라스틱 기판위에 유기 고분자 층과 무기물 층을 교차로 증착시킨 다층 박막 구조를 가진다. 이 구조로 인해 기판을 곡률반경이 작게 휘거나 접을 경우 무기층에 균열이 생겨 개스 배리어 기능을 상실한다. 이 때문에 기계적 유연성에 한계를 가질 뿐만 아니라 생산 단가가 높은 문제점을 가지고 있었다. 이번에 윤 교수팀이 개발한 나노 복합체 기판 기술은 기판의 골격을 형성하고 있는 유기 고분자가 유연성을 담당하고, 평판형 나노입자가 개스 배리어 기능을 담당한다. 그로 인해 높은 기계적 유연성과 개스 배리어 특성을 동시에 확보할 수 있고 롤투롤(Roll to Roll) 공정이 가능해 생산 단가를 낮출 수 있는 장점이 있다. 플렉시블 디스플레이는 차세대 디스플레이로 각광받고 있으며, 미국을 위시한 일본, 영국, 독일 등 IT 선진국에서는 플렉시블 디스플레이를 모바일 통신기기용 접는 디스플레이, 입는 디스플레이, 디지털 광고판, 스마트 카드, 군복 소매에 부착할 수 있는 작전용 디스플레이 등에 적용하기 위해 대학, 연구소, 기업 및 군이 연구개발 협력체를 구성해 플렉시블 OLED 디스플레이 기술개발을 활발하게 추진하고 있다. 플렉시블 디스플레이를 구현하기 위해서는 유연성이 좋은 플라스틱 기판을 사용해야 하는데, 플라스틱은 내부에 미세한 공간이 있어 개스 분자들이 쉽게 스며들 수 있다. OLED 디스플레이에 습기나 산소가 소자 내부로 침투하면 OLED 소자를 구성하는 유기물질의 분해가 일어나 소자의 기능이 상실되기 때문에 디스플레이의 수명을 단축시킨다. 지금까지 우수한 개스 배리어 특성을 갖는 고유연성 기판의 부재가 플렉시블 OLED 디스플레이의 구현을 막는 중요한 요인 중 하나가 되어 왔다. 이로 인해 현재 상용화되고 있는 소형 모바일 통신기기의 OLED 디스플레이에는 유연성이 없는 유리 기판을 사용하고 있다. 또한, 개발된 나노 복합체 개스 배리어 기판 기술은 플렉시블 디스플레이 뿐만 아니라 투습도 및 투산소도에 대한 요구 조건이 덜 엄격한 식품 포장재에 바로 활용이 가능하다. 식품의 장기 저장 시 산화와 부패를 방지하기 위해서는 투산소도와 투습도가 낮은 포장재의 사용이 필수적이다. 개발된 나노 복합체 기판은 투산소도가 10-2~10-3cc/m2/day로서 현재 일반적으로 사용되고 있는 식품 포장재 투산소도의 1/10 이하이기 때문에 식품 보관 기간을 최소 5배 이상 늘릴 수 있어 식품 유통 구조에 대변혁을 가져올 수도 있다. 라면 봉지와 같은 기존의 식품 포장재는 투산소도와 투습도를 낮추기 위해 플라스틱 필름위에 알루미늄 코팅을 하는데, 인체에 해로운 알루미늄과 음식물의 직접적인 접촉을 피하기 위해 알루미늄 코팅위에 보호막 코팅을 다시 입혀야 되는 번거로운 공정을 거쳐야 한다. 그러나 나노 복합체 개스 배리어 기판 기술을 이용하면 알루미늄 코팅과 보호막 코팅이 필요 없기 때문에 생산 공정이 단순해져 생산 단가도 훨씬 저렴해 지고 친환경적인 장점이 있다. 한편, 윤 교수는 2008년부터 지경부 산업원천기술개발사업의 지원을 받아 ETRI와 공동연구과제로 연구를 수행하고 있으며, 개발된 개스 배리어 기판 기술의 특허 등록을 마치고 관련기업과 기술 이전을 협의 중이다. <용어설명> ○ 플렉시블 디스플레이 : 기존에 유리를 기판으로 사용한 평판형 디스플레이와 달리 유연한 플라스틱 기판을 사용하여 종이와 같이 말거나 접을 수 있는 디스플레이를 말하며, 휴대하거나 착용하기 쉬워 차세대 디스플레이로 각광받고 있다. ○ 유기발광 디스플레이(OLED) : 전기를 가하였을 때 유기물질에서 발생하는 자발광을 이용한 디스플레이로서 LCD에 비해 빠른 응답 속도, 높은 발광 효율, 넓은 시야각, 얇은 두께 등 우수한 특성을 가지고 있어 꿈의 디스플레이로 불린다. 아직 대면적 화면 구현에는 기술적인 난관이 있어 현재는 주로 소형 모바일 통신기기에 상용화되어 사용되고 있다. ○ 롤투롤(Roll-to-Roll) 공정 : 공정하고자 하는 재질을 두루마리 형태로 감아 한 두루마리에서 다른 두루마리로 감아 옮기면서 연속으로 진행하는 공정을 말한다. ○ 개스 배리어(Gas Barrier): 플라스틱 기판으로 스며드는 개스의 통과를 차단 시키는 역할을 하는 방어벽.
2010.09.06
조회수 21485
2010 플렉시블 디스플레이 국제 워크숍 개최
- 나노 기술이 결합된 차세대 디스플레이의 연구 기술 동향 및 미래 비전 모색 우리학교가 ‘2010, 플렉시블 사이니지 및 디스플레이 국제 워크숍(International Workshop on Flexible Signage and Displays)"을 오는 7월1일(목) KAIST정보전자공학동 제1공동강의실에서 개최한다. 최근 각광을 받고 있는 플렉시블 전자 소자 및 차세대 디스플레이에 관련된 연구 성과를 공유하고 미래비전을 모색하는 이번 워크숍에서는 "플렉시블 백플레인과 소재(Flexible Backplane and Materials)"라는 주제로 국내․외 석학들이 한자리에 모여 다양한 기술을 소개한다. 특히, 새롭게 전개되는 디스플레이 분야의 기술 동향 및 나노 기술을 접목할 수 있는 새로운 가능성의 디스플레이 기술에 대한 논의를 할 예정이다. 이번 워크숍은 KAIST WCU 플렉시블 사이니지 사업단(사업단장 전덕영 교수)과 KAIST 차세대 플렉시블 디스플레이 융합센터(소장 최경철 교수)가 주관하고 한국연구재단, KAIST BK 전자통신기술사업단, 한국 정보디스플레이 학회, 정보과학기술대학(KAIST ICC), LG디스플레이가 후원한다. 해외 석학으로서 일본 큐슈대학의 테쯔오 츠쯔이(Tetsuo Tsutsui) 교수, 미국 죠지아 공대 종린왕(Zhong Lin Wang)교수, 버클리대학의 페이동 양(Peidong Yang) 교수, 미국 콜롬비아 대학 제임스 임(James S. Im) 교수, 미국 콜롬비아대학 제임스 혼(James Hone) 교수, 미국 PARC(Palo Alto Research Center) 회사 아나 클로디아 애리라스(Ana Claudia Arias) 박사가참여한다. 국내 석학으로서, KAIST 최경철, 배병수, 전석우 교수, LG 디스플레이 윤수영 박사, 삼성전자 노남석 박사가 참여할 예정이다. 한국연구재단은 KAIST WCU 플렉시블 사이니지 사업단은 세계 수준의 연구중심대학(WCU)’ 프로그램으로 선정하고 KAIST 차세대 플렉시블 디스플레이 융합센터는 선도연구센터(ACE)로 지정한 바 있다. KAIST의 WCU 플렉시블 사이니지(Flexible Sinage) 사업단과 차세대 플렉시블 디스플레이 융합센터의 국제 워크숍은 디스플레이 산업 및 연구에 종사하는 이들에게 최근 플렉시블 전자 소자 및 차세대 디스플레이에 관련된 연구 성과를 공유하고 유익한 정보를 제공하기 위해 매년 개최될 예정이다.
2010.06.28
조회수 18664
이제 T-페이퍼로 신문보세요
우리학교 과학도서관 신문열람대에 새로운 구경거리가 생겼다. 최근 학술정보처 학술정보운영팀은 과학도서관 1층 로비 신문열람대에 T페이퍼(T-Paper) 1대를 설치하고 새로운 신문열람 서비스에 나섰다. Full HD급 디스플레이로 1920x1080해상도를 자랑하는 신문크기 화면의 T페이퍼는 신문 열람은 물론 검색도 할 수 있어, 지난 날짜의 신문기사도 찾아볼 수 있다. 옵티컬 방식의 터치패널로 손가락을 살짝 갖다대도 신문을 앞뒤로 쉽게 넘겨볼 수 있도록 작동되며 선명한 이미지로 생생한 사진기사를 감상할 수 있다. 현재는 경향신문, 서울신문, 한국일보, 한겨레 등의 중앙일간지와 경제일간지 파이낸셜 뉴스, 영어일간지 THE Korea Herald, 스포츠신문인 스포츠서울과 스포츠칸, 대전지역 일간지인 대전일보와 충청투데이 등을 서비스 중이다. 학술정보운영팀의 양기홍 사서는 “종이신문보다 더욱 실감나는 기사를 제공한다"는 점에서 의미가 있다고 밝히면서, "수십명이 열람해도 신문 훼손이나 분실걱정이 없고, 매일 아침 자동 업데이트가 되는 방식으로, 디지털도서관 조성의 시각적 효과가 크다"고 그 의미를 밝혔다.
2009.12.28
조회수 13820
김봉수 교수 연구팀, 그래핀을 이용한 플렉서블 전계방출 디스플레이(FED)용 이미터 전극 개발
-『Advanced Materials』온라인판 11월 5일자 게재 - 우리대학 화학과 김봉수 교수 연구팀이 新소재 그래핀 위에 코발트 게르마늄 나노선을 성장시켜 ‘차세대 플렉서블 전계방출 디스플레이’용 이미터 전극을 개발했다. ‘차세대 플렉서블 전계방출 디스플레이(FED)"용 고효율 · 고내구성 이미터(Emitter) 전극 기술이 개발되어, 향후 초박형(超薄形) 두루마리 컴퓨터 · TV, 3차원 디스플레이 등 다양한 분야에 응용될 것으로 기대된다. ‘꿈의 디스플레이로’로 불리는 전계방출 디스플레이(Field Emission display, FED)는 LCD보다 얇게, 브라운관 화질보다 선명하게 화면을 구현할 수 있고, 전력소모가 LCD의 1/4, PDP의 1/6밖에 안 들며 내부에 수은 등 공해 물질이 전혀 없는 친환경 디스플레이다. 특히 휘도가 아주 높아서 차세대 3차원 디스플레이를 구현할 수 있다. FED는 상하 기판 사이에 진공으로 채워진 구조로 되어있으며, 상판(양극판)에는 형광체가 도포되어 있고, 하판(음극판)에는 미세한 마이크론 크기의 전자발사체(Emitter) 들이 무수히 형성되어 있다. 우수한 FED를 만들기 위해서는 고효율․안정한 구조의 이미터가 무엇보다 중요한 데, 지금까지 이미터 재료로서 주로 연구되던 탄소나노튜브(CNT)는 깜빡거림 및 내구성 등의 문제점을 가지고 있었다. 김봉수 교수 연구팀은 새로운 이미터 재료로 최근 新소재로 각광받고 있는 그래핀과 단결정 코발트 게르마늄 합금을 활용하여, ‘플렉서블’하면서 ‘효율적인’ 전계 방출 디스플레이 개발의 새로운 전기(轉機)를 마련했다. 그래핀은 흑연에서 얇은 한 층을 떼어낸 것으로 투명하고 수 nm이하의 초박형 제작이 가능하며, 뛰어난 전기전도성과 열전도성을 지니고 있어 고성능 투명전극으로 적합하다. 금번 연구팀은 큰 종횡비를 가지고 화학적 및 열적 내구성이 매우 우수한 단결정 코발트 게르마늄 합금 나노선을 최초로 개발했고, 이를 다층 그래핀 위에 수직으로 성장시키는 데 성공했다. 이 구조는 탄소나노튜브(CNT)에 필적하는 뛰어난 전계방출 특성을 보이면서 보다 우수한 내구성을 가지는 것으로 나타났다. 김봉수 교수는 "투명하고 구부릴 수 있는 그래핀 전극 위에 코발트 게르마늄 합금 나노선을 결합시켜 개발된 고효율 전계 방출 이미터는, 초박형 두루마리 컴퓨터·TV 및 3차원 디스플레이 등의 다양한 응용이 가능하여 차세대 디스플레이 시장을 선도할 수 있는 핵심 원천기술이 될 것이다.“라고 밝혔다. 한편, 이번 연구결과는 신소재 분야의 세계적 학술지인 "어드밴스드 머티리얼즈 (Advanced Materials)"지 온라인판 11월 5일자에 게재되었고, 현재 국·내외 특허 출원 중이다.
2009.11.13
조회수 22224
세계 최초 차량용 투명안테나 개발
- KAIST, (주)현대기아자동차, (주)위너콤, 경희대 공동개발 - 차량 유리에 매립할 수 있는 제 3세대 투명안테나의 기술 미래 다가올 투명전자시대에 대비하여 우리대학 전기및전자공학과 박재우 초빙교수팀은 ㈜현대기아자동차, ㈜위너콤, 경희대 디스플레이재료공학과 김한기 교수팀과 공동기술개발을 통해 차세대 차량용 투명안테나 개발에 최근 성공했다. 현대기아자동차의 지원으로 이번에 개발된 차세대 차량용 투명안테나는 향후 차량 내에서 인터넷과 같은 데이터 통신 주파수(HSDPA)용 안테나와 차량의 위급상황 발생시 자동으로 현재 위치를 알려주는 긴급전화(Emergency Call)용 주파수에 맞는 안테나 등을 투명하게 제작, 차량 유리에 장착할 수 있도록 했다. 투명안테나의 재질로는 기본적으로 투명성과 전도성을 동시에 나타내는 금속산화물 박막 또는 유전체/금속/유전체 박막적층구조등과 같은 투명전도막 기술을 응용하였고 안테나 최적화 설계를 통해 투명성을 유지하면서 차량용 안테나 성능기준에 맞게 제작되었다. 또한 투명안테나의 제조 온도가 낮기 때문에 일반 투명 플라스틱기판에도 투명전도막을 성막하여 플렉시블하고 투명한 안테나도 구현 가능하도록 설계됐다. 차량용 안테나의 발전은 긴 폴대 형태의 1세대 외장 안테나, 차량뒷유리 열선과 안테나를 동시에 사용할 수 있는 내장형 글래스 안테나 또는 상어지느러미형태의 샤크핀 2세대 안테나 기술을 넘어서 앞으로는 차량 유리에 매립할 수 있는 제 3세대 투명안테나의 기술이 예상이 된다. 현대기아자동차 선행연구팀장인 김성우 박사는 “이번 차량용 투명안테나 개발성공은 차세대 자동차 전자기술의 첨단화를 통해 향후 세계 자동차 기술을 선도할 수 있는 또 하나의 기술 축적이라 할 수 있다”고 밝혔다. 이번 투명안테나 개발 프로젝트는 앞으로 다가올 투명전자시대에 대비하여 여러 투명 응용 가능기술들의 특허를 우선적으로 확보하고자 하는 학계의 생각과 산업체의 미래지향적 기술개발 로드맵이 잘 맞아떨어진 산학협력의 대표적인 성공사례라 할 수 있다. 이번 투명안테나 개발 책임자인 박재우 교수는 2008년 투명디스플레이 구동용 투명박막트랜지스터 원천기술과 투명 저항변화 메모리기술 등을 세계 최초로 개발한 바 있다.
2009.08.17
조회수 21650
최경철 교수연구팀, 세계 최초의 저비용 상온 공정이 가능한 표면 플라즈몬 OLED 원천기술 개발
- 응용물리와 광학 분야 세계적 권위 학술지에 논문발표 및 네이쳐 포토닉스(Nature Photonics)의 8월의 연구 하이라이트로 소개 예정 전기 및 전자공학과 최경철 교수(차세대 플렉시블 디스플레이 융합센터 소장, 45세)연구팀이 OLED의 효율을 획기적으로 향상시키는 원천기술을 세계 최초로 개발해 주목을 끌고 있다. 최 교수팀은 나노 크기의 은(Ag)을 표면 플라즈몬(plasmon)을 일으키는 물질로 사용하여, OLED에서 발생하는 빛과 결합할 경우 발광 재결합 속도가 빨라짐으로써 OLED 밝기가 크게 증가할 수 있다는 사실을 밝혔다. 또한 진공 열증착법을 이용해 나노 크기의 은(Ag)을 OLED 내부의 활성층과 매우 가까운 곳에 삽입하는 기술을 개발함으로써 세계 최초로 표면 플라즈몬을 이용한 OLED의 저비용 상온 공정이 가능하도록 했으며 최대 75%이상의 OLED 발광효율을 향상시켰다. 이 연구는 차세대 디스플레이인 OLED에 저비용의 나노입자를 이용한 표면 플라즈몬 기술을 접목한 새로운 디스플레이 소자 연구로 주목받고 있다. 최 교수는 “표면 플라즈몬을 이용해 개발된 기술은 OLED의 광효율을 향상시킬 수 있는 새로운 기술로서, 원천기술 확보 및 국제경쟁력을 갖는 OLED 및 플렉시블 디스플레이 기술개발에 크게 기여할 수 있을 것”이라고 강조했다. 또한 “이번에 개발된 기술은 디스플레이뿐만 아니라 유기 태양광 전지에서도 적용 가능한 저온 저가의 공정으로 에너지 변환 효율의 향상을 기대할 수 있다.”고 밝혔다. 이 연구는 양기열(22세) 연구원이 주도했으며, 연구결과는 응용물리분야의 세계적 권위지인 ‘Applied Physics Letters’ 4월호, 광학분야 세계 최고의 저널인 ‘Optics Express’ 인터넷판 6월 25일자에 발표됐다. 특히, 이 연구 결과는 네이쳐 포토닉스(Nature Photonics)의 8월의 연구 하이라이트에도 소개될 예정이며, 그 밖에도 응용 물리학 분야의 우수 연구 결과만을 선정하여 발표하는 "울트라패스트 가상 저널(Virtual Journal of Ultrafast Science)" 에 소개됐다. 이 연구는 한국연구재단의 ‘선도연구센터 사업’ 및 ‘KAIST 고위험 고수익 사업’의 지원을 받아 나노종합팹센터와 공동 수행했다.
2009.07.09
조회수 23788
2009 KAIST CAFDC 플렉시블 디스플레이 국제 워크숍 개최
- 오는 6월25일(목) 우리대학 전기전자공학동에서 개최 우리대학 차세대 플렉시블 디스플레이 융합센터(소장 최경철교수, 45세, Center for Advanced Flexible Display Convergence)가 ‘2009 KAIST CAFDC 플렉시블 디스플레이 국제 워크숍’을 오는 25일 교내 전기전자공학동에서 개최한다. 이번 워크숍에서는 국내· 외 석학들이 모여 차세대 디스플레이 개발을 위한 중요 기술의 하나인 ‘플렉시블 및 투명 플라즈마 디스플레이(Flexible and Transparent Plasma Displays)’의 최근 연구 현황과 미래 비전을 모색한다. 특히 최근 차세대 디스플레이로 각광받고 있으며, 미래 디스플레이 소자로 기대되는 대형 플렉시블 및 투명 디스플레이 구현하기 위한 미래기술을 논의한다. 국내·외 관련분야 최고 전문가인 최경철, 문건우 KAIST 교수, 황기웅 서울대 교수, 쿠니히데 다치바나 에히메대 교수, 게리 이든(Gary Eden) 일리노이대 교수, 캐롤 웨딩(Carol Wedding) IST(Imaging Systems Tech.)사 사장 등이 연사로 참여한다. 崔 소장은 “이번 워크숍에서 새로운 연구 분야인 플렉시블 및 투명 플라즈마 디스플레이 기술을 한자리에서 확인 할 수 있으며, 꿈의 디스플레이로 불리는 차세대 대형 플렉시블 및 투명 디스플레이 구현을 위한 다양한 기술적 관점에서 재조명하는 중요한 자리가 될 것” 이라고 말했다. 이번 국제 워크숍은 한국 과학 재단의 선도연구센터(ACE) 육성사업인 KAIST 차세대 플렉시블 디스플레이 융합센터가 주관하고 한국과학재단, BK21 KAIST 정보기술사업단, 한국 정보디스플레이 학회, 차세대 정보디스플레이 기술개발사업단이 후원한다.
2009.06.23
조회수 18748
신소재공학과 박찬범 교수, 자기조립기술 이용 다양한 색상 가진 바이오 나노튜브 개발
- 재료분야 저명 국제학술지 어드밴스드 머티리얼스지 최근호 게재 신소재공학과 박찬범(朴燦範, 40세, 바이오신소재 국가지정연구실) 교수 연구팀이 자연계의 자기조립기술을 이용, 빨강(R), 녹색(G), 파랑(B) 등 ‘다양한 형광 색상을 구현할 수 있는’ 나노튜브 소재를 세계최초로 개발했다. 관련 논문은 재료분야 저명 국제학술지인 어드밴스드 머티리얼스(Advanced Materials)지 최근호(4월 27일자)에 게재됐으며, 나노기술과 생명과학분야의 창의적인 융합을 통하여 새로운 나노소재를 개발하는데 크게 기여했다는 평가를 받았다. 특히, 이 학술지는 朴 교수 연구팀 연구결과의 중요성과 응용성에 주목하여 “Advances in Advance”에 저널 대표논문들(상위 10%이내) 중 하나로 선정하였다. 朴 교수 연구팀은 두 개의 아미노산으로 구성된 매우 단순한 펩타이드 (peptide)를 수만 개 이상 스스로 조립시켜 머리카락의 약 천분의 일 정도 두께를 가진 긴 나노튜브 구조를 형성하였는데, 이러한 자기조립 과정에서 다양한 광감응현상(photosensitization)을 크게 증폭할 수 있음을 밝혔다. 이를 통해 각종 디스플레이기기 등에서 사용하는 RGB의 모든 색상을 구현할 수 있는 바이오기술 기반의 나노소재를 개발하였다(아래 그림). 화학물질들이 레고(Lego) 장난감처럼 스스로 조립하여 3차원 구조체를 만드는 것은 모든 생명현상의 근간이 될 뿐만 아니라, 최근 들어서는 나노소재를 개발하는 주요기술들 중의 하나로 각광받고 있다. 특히 朴 교수팀의 연구에서 사용한 펩타이드는 알츠하이머병과 밀접한 관계가 있는 아밀로이드(amyloid)라는 단백질 플라크(plaque)로부터 유래했기 때문에 퇴행성 신경질환 현상을 응용하여 새로운 기능성 나노소재를 개발하였다는 점에서 과학기술계의 주목을 받고 있다. 이번에 개발된 자기조립형 형광 나노소재는 바이오센서/칩, 각종 약물의 세포전달체, 의료용 하이드로젤, 차세대 디스플레이기기 등에 응용이 가능할 것으로 예상되며, 향후 나노-바이오 융합분야에서 국가 과학기술 경쟁력 제고에 기여할 것으로 기대된다. 朴 교수팀은 2008년도부터 교육과학기술부의 ‘국가지정연구실사업’으로부터 지원을 받아 새로운 바이오소재를 개발하기 위한 연구를 수행해 왔으며, 해외 저명학술지들로부터 크게 주목받는 연구 성과를 발표하고 있다. <용어설명> 자기조립(self-assembly): 구성물질 간의 약한 비공유결합성 상호작용에 의해 스스로 일정한 구조나 패턴을 형성하는 현상을 가리키는 용어로 최근 전 세계적으로 가장 널리 연구되고 있는 분야 중 하나다. <박찬범 교수 프로필> ■ 학 력 1987-1999: 포스텍 화학공학과 학사(1기), 석사, 박사 1999-2002: UC Berkeley, 박사후연구원 ■ 주요경력 2008-현재: 교육과학기술부 국가지정연구실 Director 2006-현재: KAIST 신소재공학과 부교수 2002-2006: 미국 애리조나주립대학교 조교수 ■ 주요 연구분야 - 자기조립형 바이오소재(Self-Assembled Biomaterials) - 유기/무기 하이브리드 소재(Organic and Inorganic Hybrid Materials) - 인공광합성 소재(Materials for Artificial Photosynthesis)
2009.04.29
조회수 23192
플렉시블 디스플레이 국제 워크샵 개최
차세대 플렉시블 디스플레이 개발의 주요기술 중 하나인 ‘유기 디스플레이(Organic Display)’에 대한 최근 연구현황 공유와 미래비전 모색을 위한 ‘2008 KAIST CAFDC 플렉시블 디스플레이 국제 워크샵’이 오는 21일과 22일 이틀 동안 교내 전기전자공학동에서 개최된다. KAIST 차세대 플렉시블 디스플레이 융합센터(소장 최경철/崔景喆, 44세, 전기및전자공학과 교수, CAFDC, Center for Advanced Flexible Display Convergence)가 주관하고 한국과학재단, BK21 KAIST 정보기술사업단, 한국정보디스플레이 학회 등이 후원하는 이번 워크샵에서는 ‘유기 디스플레이’를 주제로 국내․외의 학계와 산업계 전문가들이 유기발광소자(OLED, Organic Light Emitting Diode)에 기반한 유기 디스플레이의 최근 연구 현황을 공유하고, 플렉시블 디스플레이의 구현 관점에서 미래 비전을 논의한다. 특히 ‘인광을 이용한 고효율 유기발광소자와 투명 유기발광소자 분야 등에서 선도적인 연구’를 수행하고 있는 美 미시간대 스티븐 포레스트(Stephen R. Forrest) 교수, ‘고분자를 이용한 실시간 홀로그래픽 이미징 등 유기전자 및 광소자 분야에서 독창적 연구’를 수행 중인 美 조지아공대의 버나드 키펠렌(Bernard Kippelen) 교수, ‘플렉시블 유기 전자소자를 이용한 전자피부(E-Skin), 무선 전력공급 시트 등의 창의성 있는 아이디어’로 유명한 일본 동경대의 타카오 소메야(Takao Someya) 교수 등 해외 저명 석학들이 주제 발표자로 나선다. 崔 소장은 “이번 워크샵은 유기발광 및 전자소자를 이용한 각종 디스플레이 기술들의 최근 연구 성과를 정리․토론하고, 이들을 꿈의 디스플레이로 불리우는 차세대 플렉시블 디스플레이 관점에서 재조명하는 중요한 자리가 될 것” 이라고 말했다. <행사일정> ○ 일 시: 2008. 8. 21(목)~ 8. 22(금) ○ 장 소: 대전 KAIST 정보전자공학동(E3-1) 제1공동강의실 (Rm 1501) ○ 주 관: KAIST 차세대 플렉시블 디스플레이 융합센터 ○ 후 원: 한국과학재단, BK21 KAIST 정보기술사업단, 한국정보디스플레이학회, 솔-젤 응용기 술연구센터 ○ 참가인원: 200명
2008.08.19
조회수 22445
박재우.유승협교수 산화티타늄 투명박막트랜지스터 독자기술 세계최초 개발
- 미국, 일본, 유럽에 특허출원, 관련 국제학회 발표예정 2002년에 개봉된 스티븐 스필버그 감독의 "마이너리티 리포트”(톰 크루즈 주연) 장면들 중에 보았던 투명디스플레이 구현이 꿈이 아니라 현실로 다가오고 있다. ‘꿈의 디스플레이’라 불리는 투명디스플레이, 에이엠올레드(AMOLED, 능동형 유기발광 다이오드) 디스플레이 및 플렉서블 디스플레이 등의 구동회로용으로 사용되는 투명박막트랜지스터(Transparent Thin Film Transistor) 기술이 국내 연구진에 의해 개발됐다. 전기전자공학과 박재우(朴在佑, 44) 교수와 유승협교수는 ㈜테크노세미켐, 삼성전자LCD총괄과 공동연구를 통해 미국, 일본 등이 원천특허를 보유하고 있는 산화아연(ZnO)기반 투명박막트랜지스터 기술에서 벗어나, 세계최초로 산화티타늄(TiO2)물질을 이용한 투명박막트랜지스터의 원천기술을 확보하는데 성공했다. 朴 교수팀은 미국, 일본 등과 기술특허분쟁이 일어나지 않을 뿐만 아니라 기존특허로 잡혀진 산화아연(ZnO) 물질에 포함된 In(인듐) 또는 Ga(갈륨)과 같은 희소성 금속을 사용하지 않고 지구상에 풍부한 금속자원을 이용한다는 원칙과 기존 반도체/디스플레이 산업용 대형 양산 장비로 검증 받은 화학기상증착(CVD, Chemical Vapor Deposition)법을 이용하여 낮은 온도에서 TiO2박막의 성막이 가능하게 함으로써 차세대 디스플레이의 대형화 가능성뿐만 아니라, 소다라임글래스(Soda-lime Glass)와 같은 저가 글라스기판 및 플렉서블 기판위에도 성막할 수 있는 원천 기술을 확보하는데 성공했다. 朴 교수팀은 미국, 일본이 보유한 원천기술이 스퍼터링 방식을 주로 사용하고 있으나 스퍼터링의 연속작업에 따른 물질 조성의 변화로 트랜지스터 특성의 재현성, 신뢰성에 문제점을 가지고 있다는 것에 착안, 재현성과 대형화가 검증된 CVD법을 이용하여 투명박막 트랜지스터 기술을 개발하게 되었다. 향후 2~3년을 목표로 지속적인 공동연구개발을 통해 신뢰성 검증 및 대형 CVD장비에서의 양산가능한 기술이 확보되면, 국내 디스플레이 산업체에서 생산하는 AMOLED 및 AMLCD 디스플레이 양산에도 곧바로 적용될 수 있도록 기술 이전 계획도 갖고 있다. 연구팀 관계자는 “이번 새로운 물질 기반 투명박막트랜지스터의 기술 개발 성공은 기존 외국기업의 기술 사용에 따른 로열티 지급으로부터 벗어날 수 있는 기술 독립선언이며, 앞으로도 세계디스플레이산업을 선도하는 종주국의 면모를 이어갈 수 있는 디딤돌 역할을 할 것으로 본다” 고 말했다. 이번 기술 개발과 관련하여 TiO2박막트랜지스터의 원천특허는 KAIST 소유로 돼 있는데, 2007년 3월 국내특허를 출원하여 오는 10~11월 중에 등록될 예정이다. 지난 3월에는 지식경제부 해외특허 지원프로그램으로 채택되어 미국, 일본, 유럽에 관련기술 특허 등이 출원 중에 있다. 지난 7월 이 기술과 관련한 기술적 내용의 일부는 미국 IEEE 전자소자誌(IEEE Electron Device Letters)에 발표되었고, 오는 12월 5일, 일본 니가타에서 열리는 국제디스플레이학회(IDW 2008, International Display Workshop 2008)에서도 발표될 예정이다. 신물질 TiO2기반 투명박막트랜지스터 기술개발팀 연구책임자인 朴 교수는 미국 미시간대학교 전자공학과에서 박사학위를 받았으며, 한국, 미국, 일본 등 여러 나라의 산업체에서 근무한 경력을 갖고 있다. <보충설명> ■ 기술의 배경 현재 국내 대기업(삼성 LCD, SDI, LG디스플레이등) 과 일본업체(소니, 마츠시타, 샤프)들 중심으로 가까운 미래 다가올 AMOLED 및 미래 투명디스플레이의 구동회로용 TFT(Thin Film Transistor) 기술개발에 대한 관심이 뜨겁다. 불행히도 기존 a-Si이나 Poly-Si기술의 한계(신뢰성, 면적제한문제)로 향후 디스플레이 backplane용 TFT는 산화물반도체로 구현되어야 한다는 사실은 이미 산학연에서 공감하고 있으나, 지금까지 산화물반도체TFT는 주로 ZnO계열 중심으로 3원계(ZTO) 또는 4원계(IGZO)를 이용하여 개발되었고 관련 해외특허도 3,000건이상 출원되었거나 등록되어 있다. 또한 In이나 Ga을 포함한 ZnO TFT의 성능은 우수하나 희소성금속으로 높은 국제시장가격과 급작스런 수요 증가시 shortage의 불안감을 항상 가지고 있어 새로운 대체 산화물을 이용한 TFT개발이 필요한 시점이다. ■ 기술의 특징 TiO2(산화티타늄) 물질은 ZnO(산화아연)와 Optical Energy bandgap이 거의 같고(3.4eV) 전자이동도도 ZnO 못지 않게 높으며, 무엇보다도 성막시 재료비가 저렴하다는 장점을 가지고 있다. 최근 KAIST 전기전자과 박재우 교수팀과 ㈜테크노세미켐, 삼성LCD총괄이 공동연구를 통해 세계 최초로 TiO2 박막을 active channel(활성층)로 채택하여 투명 산화물 TFT를 구현하는 데 성공했다. 연구팀은 TiO2박막을 향후 디스플레이 산업에서 양산화와 대형화를 고려하여 기존 반도체/디스플레이 산업용 양산장비로 널리 알려진 CVD(Chemical Vapor Deposition: 화학기상증착)법으로 낮은 온도(250C)에서 성막하여 박막형 트랜지스터를 구현하는데 성공했다. 낮은 온도에서 CVD장치로 투명박막트랜지스터를 구현할 수 있다는 의미는 디스플레이의 대형화(현재 10, 11세대 규격 디스플레이기술 개발 중)가 가능하며, Soda-lime glass와 같은 저렴한 기판을 사용할 수 있기 때문에 재료비 절감효과를 가져올 수 있으며, 향후 투명 및 플렉시블 전자/디스플레이 응용에도 가능하다는 것이다.
2008.08.06
조회수 29212
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
>
다음 페이지
>>
마지막 페이지 7