본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%8B%A8%EB%B0%B1%EC%A7%88
최신순
조회순
김호민 교수, 뇌의 시냅스 구조 및 기능 조절 단백질 구조 규명
< 김 호 민 교수 〉 우리 대학 의과학대학원 김호민 교수와 DGIST 고재원 교수 공동 연구팀이 신경세포 연결을 조절하는 핵심단백질인 MDGA1의 3차원 구조를 최초로 규명해 시냅스 발달을 조절하는 원리를 제시했다. 이번 연구 내용은 신경생물학 분야 국제학술지 ‘뉴런(Neuron)’ 6월 21일자 Issue Highlight에 게재됐다. 뇌는 많은 신경세포로 이뤄져 있고 두 신경세포가 연접하면서 형성되는 시냅스라는 구조를 통해 신호를 전달하면서 그 기능을 수행한다. 대표적인 시냅스 접착 단백질로 알려진 뉴롤리진(Neuroligin)과 뉴렉신(Neurexin)은 상호작용을 통해 흥분성 시냅스(excitatory synapse)와 억제성 시냅스(inhibitory synapse)의 발달 및 기능을 유지한다. 연구팀은 뉴롤리진(Neuroligin)과 뉴렉신(Neurexin)의 결합을 조절하는 MDGA1의 3차원 구조와 억제성시냅스(inhibitory synapse)의 형성을 저해하는 원리를 최초로 규명했다. 김 교수는 “단백질 구조생물학과 신경생물학의 유기적인 협력 연구를 통해 시냅스 발달 조절에 핵심적인 MDGA1의 구조와 작용 메커니즘을 규명했다는데 의미가 있다”며 “시냅스 단백질들의 기능 이상으로 나타나는 다양한 뇌정신질환의 발병 메커니즘을 폭넓게 이해하는 밑거름이 될 것이다. 향후 뇌신경·뇌정신질환 치료제 개발에 활용될 수 있을 것으로 기대된다.”고 말했다. 이번 연구는 미래창조과학부 기초연구지원사업(개인연구)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 시냅스 조절하는 핵심단백질 구조 최초 규명 그림2. 시냅스 단백질 MDGA1에 의해 조절되는 억제성 시냅스 형성 분자 메커니즘
2017.07.11
조회수 17881
허원도 교수, 빛으로 단백질군집형성 속도 10배 높이는 새 광유전학 기술 개발
〈 허 원 도 교수 〉 우리 대학 생명과학과 허원도 교수 연구팀이 청색광 수용 단백질인 크립토크롬2(Cryptochrome2)를 변형한 크립토크롬2 클러스트(CRY2clust)를 개발했다. 이를 통해 기존에 비해 약 10배 더 빠른 반응속도로 단백질 군집을 형성하는 데 성공했다. 이번 연구결과는 네이처 자매지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 23일자에 게재됐다. 세포막 단백질이나 신호전달 단백질, 효소 등 많은 단백질은 자신들끼리 서로 군집을 이룰 때 제 기능이 활성화된다. 그 동안 화학물질을 이용해 단백질 군집 형성을 유도하려는 노력이 이뤄져왔으나 부작용과 시간적 제약 등 한계가 있었다. 광유전학 분야 연구자들은 화학물질을 사용하지 않는 대신 빛을 이용해 단백질 군집을 형성하고자 식물의 청색광 수용 단백질인 크립토크롬2를 활용했다. 허원도 교수 연구팀은 크립토크롬2의 일부 구조를 변형해 기존 크립토크롬2를 활용한 광유전학 기술보다 단백질 군집을 더 빠르게 만들 수 있는 방법을 찾았다. 크립토크롬2의 단백질 사슬 C말단(C-terminal)에 9개의 아미노산 잔기로 구성된 매우 짧은 펩티드(Peptide)를 부착하자 일반 크립토크롬2보다 빛에 10배 이상 더 빠르게 반응한다는 사실을 관찰한 것이다. 연구진은 이 기술을 CRY2clust라 이름 붙였다. 연구팀은 과거 자체 개발한 광유전학 기술에 CRY2clust를 접목해 CRY2을 이용한 기존 시스템과의 단백질 활성 효율의 차이를 확인했다. CRY2clust를 사용하면 빛으로 세포막의 칼슘이온채널을 훨씬 빠르게 끄고 켜거나(광유도 칼슘이온채널 활성 시스템 ; OptoSTIM1) 신경세포의 분화를 더욱 효율적으로 조절(광유도 신경성장인자 수용체 활성 시스템 ; OptoTrkB)할 수 있었다. 연구진은 더 나아가 실험실에서 단백질 군집 형성에 주로 활용하는 여러 형광단백질(Fluorescent protein)과 크립토크롬2를 짝지어 결합해봄으로써 빛을 이용해 단백질 군집을 더 효율적으로 만들 수 있는 조합의 조건을 찾았다. 형광단백질이 하나보다는 여러 개가 결합한 형태일수록 빛을 비추었을 때 광유도 클러스트를 더욱 높은 비율로 형성했다. 또한 형광단백질을 크립토크롬2의 단백질 사슬 말단 중 N말단이 아닌 C말단에 붙이는 경우 광유도 클러스트 형성 효율이 더 높은 것으로 확인됐다. 단백질 군집이 잘 형성되는 조건을 찾았다는 점에서 연구자의 실험 선택의 폭을 넓혀준 데 의의가 있다. 허원도 교수 연구팀은 CRY2clust를 개발해 빛을 이용한 단백질의 활성을 훨씬 효율적으로 유도하는데 성공했다. 허원도 교수는 “이번 연구에서 개발한 CRY2clust는 향후 광유전학 분야의 실험에 유용한 도구가 될 것이다”며“다양한 형광단백질-CRY2 조합을 통해 찾은 단백질 군집 형성 성공 요인은 광유전학 시스템 개발에 길잡이 역할을 할 것이다”고 말했다. □ 그림 설명 그림1. 기존 크립토크롬2 대비 CRY2clust의 단백질 군집 형성 속도 그림2. CRY2clust 시스템을 적용한 광유도 단백질 기능 조절 그림3. 형광단백질을 이용한 다양한 단백질 군집 형성
2017.06.26
조회수 13112
2017 KAIST 리서치 데이, 23일 개최
‘2017 KAIST 리서치 데이(Research Day)’ 행사가 23일 오전 10시 30분부터 KI빌딩 1층 퓨전홀에서 열린다. 이 행사는 우리대학이 최근의 주요 연구 성과를 소개하는 한편 제4차 산업혁명 관련 R&D 분야에 대한 정보와 지식, 노하우 등을 공유함으로써 융합연구를 활성화한다는 취지로 2016년 5월 처음 마련했다. 작년에 이어 올해 두 번째를 맞는 이날 행사는 △연구부문 우수교원 및 우수 연구 성과 포상 △수상자 강연 △첸 쉐이(CHEN Shiyi) 중국 남방과학기술대(SUSTech, Southern University of Science and Technology) 총장 특별강연 등의 순으로 진행된다. 우선 2017년 연구대상은 건설및환경공학과 손훈 교수가, 연구상 수상자로는 기계공학과 오준호 삼성 지정석좌교수와 생명화학공학과 이상엽 특훈교수가 각각 선정됐다. 이노베이션상은 물리학과 박용근 교수, 융합연구상은 물리학과 이용희 교수와 신소재공학과 신종화 교수가 각각 수상한다. 대표 연구 성과로는 △3차원 홀로그래픽 현미경(박용근 교수·물리학과) △맞춤형 단백질 변형기술(박희성·화학과) △찔러도 피가 나지 않는 무출혈 주사바늘(이해신·화학과) △이동식 펄스에코 레이저 초음파 전파영상화 시스템(이정률·항공우주공학과) △복굴절을 이용한 3차원 깊이 측정기술(김민혁·전산학부) 등 자연과학분야 4건, 생명과학분야 1건, 공학분야 5건 등 모두 10건이 선정됐다. 우리대학은 이날 행사에서 이들 10선에 뽑힌 연구 성과물에 대해 시상하는 한편 동영상을 통해 참석자들에게 소개하는 시연회도 갖는다. 이와 함께 오후 2시부터는 첸 쉐이(CHEN Shiyi) 중국 남방과학기술대(SUSTech, Southern University of Science and Technology) 총장이 ‘4차 산업혁명과 사회적 가치창출을 위한 기업가 정신’이란 주제로 특별 강연회를 가질 예정이다. 교수와 학생 등 우리대학 구성원은 물론 일반시민들까지 누구든 사전신청 없이 이 행사에 참여할 수 있다.
2017.05.18
조회수 20331
박희성 교수, 맞춤형 단백질 변형기술 동물 모델 적용에 성공
우리 대학 화학과 박희성 교수 연구팀이 아주대 의과대학 박찬배 교수와의 공동 연구를 통해 동물 모델에서 단백질의 아세틸화 변형을 조절할 수 있는 기술을 개발했다. 인간의 질병 연구에 대표적으로 쓰이는 쥐 모델에서 단백질 아세틸화를 조절할 수 있게 돼 다양한 질병의 원인을 밝힐 수 있을 것으로 기대된다. 이번 연구는 미래창조과학부의 글로벌프런티어사업(의약바이오컨버젼스연구단, 단장 김성훈)과 지능형 바이오시스템 설계 및 합성연구단(단장 김선창), 식약처의 미래 맞춤형 모델동물개발 연구사업단(단장 이한웅)의 지원을 받아 수행됐다. 이번 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 21일자 온라인 판에 게재됐다. 우리 몸의 세포에서 만들어지는 2만 여종의 단백질은 생합성 이후 인산화, 아세틸화, 당화 등 200여 종의 다양한 변형(post-translational modification)이 발생하게 된다. 세포 내 단백질들은 다양한 변형을 통해 기능과 활성이 조절되며 이러한 변형은 생체 내에서 세포 신호 전달 및 성장 등 우리 몸의 정상적인 신진대사 활동을 조절하는 매우 중요한 역할을 한다. 하지만 유전적 또는 환경적 요인으로 인해 단백질 변형이 비정상적으로 일어나면 세포의 신호 전달, 대사 활동 등이 손상돼 암, 치매, 당뇨를 포함한 다양한 중증 질환을 유발한다. 기존에는 이러한 비정상적 단백질 변형을 동물 모델에서 인위적으로 유발시키고 제어하는 기술이 존재하지 않아 질병의 원인 규명 및 신약 개발 연구에 어려움이 있었다. 박 교수팀은 2016년 9월 다양한 비정상 변형 단백질을 합성할 수 있는 맞춤형 단백질 변형 기술을 개발해 사이언스(Science)지에 발표한 바 있다. 연구팀은 기존 연구를 더 발전시켜 각종 암과 치매 등의 이유가 되는 퇴행성 신경질환의 원인인 비정상적인 단백질 아세틸화를 동물 모델에서 직접 구현하는 기술을 개발했다. 연구팀은 이 기술을 바탕으로 실험용 쥐의 특정한 발달 단계나 시기에 표적 단백질의 특정 위치에서 아세틸화 변형을 조절할 수 있음을 증명했다. 또한 다른 조직에 영향을 주지 않고 간이나 콩팥 등 특정 조직이나 기관에서만 표적 단백질의 아세틸화 변형 제어가 가능함을 확인했다. 연구팀은 “이 기술은 암과 치매 등 단백질의 비정상적 변형으로 발생하는 각종 질병의 바이오마커 발굴 등 질병 원인 규명 연구의 획기적인 전기를 마련할 것으로 기대된다”고 말했다. 박희성 교수는 “실용화 될 경우 지금까지 실현이 어려웠던 다양한 질병에 대한 실질적 동물 모델을 제조할 수 있을 것으로 전망된다”며 “향후 맞춤형 표적 항암제 및 뇌신경 치료제 개발 등 글로벌 신약 연구에 새 패러다임을 열 것이다”고 말했다. □ 그림 설명 그림1. 아세틸화 변형 조절 마우스 개발 및 아세틸화 제어 결과 그림2. 비정상적인 단백질 변형 및 각종 질병의 모식도
2017.03.06
조회수 18324
올해의 KAIST인 상, 화학과 박희성 교수
〈 박 희 성 교수 〉 우리 대학은 2016년 올해의 KAIST인 상에 화학과 박희성(46) 교수를 선정하고 2일 오전 10시 교내 대강당에서 열리는 2017년도 시무식에서 시상했다. 16회째를 맞는 올해의 KAIST인 상은 한 해 동안 국내외에서 KAIST 발전을 위해 노력하고 교육, 연구 실적이 탁월한 인물에게 수여한다. 수상자인 박희성 교수는 암과 치매 등 각종 질병을 유발하는 것으로 알려진 단백질의 비정상적인 변형을 재현할 수 있는 맞춤형 단백질 변형 기술을 개발해 KAIST의 위상을 높인 공을 인정받았다. 박 교수는 지난 2011년 암을 일으키는 원인으로 알려진 비정상적인 단백질 인산화를 조절하는 기술을 개발해 저명 학술지인 ‘사이언스(Science)’지에 논문을 발표했다. 이후 박 교수는 선행 연구를 발전시켜 인산화 이외 200여 종의 다양한 단백질 변형을 구현할 수 있는 기술을 개발하는데 성공해 지난 9월 사이언스(Science)지에 논문을 발표했다. 박 교수의 맞춤형 단백질 변형 기술은 암을 포함한 각종 질병의 직접적인 원인을 밝히는데 유용하게 쓰일 것으로 기대된다. 또한 향후 표적항암제 개발 등 글로벌 신약개발 연구에 새로운 방향을 제시할 것으로 예상된다. 박 교수는 “KAIST를 대표하는 상을 수상하게 돼 커다란 영광이며 동시에 무거운 책임감을 느낀다” 며 “KAIST가 명실상부한 세계 최고의 교육 연구기관이 되는데 보탬이 되도록 최선을 다해 노력하겠다”고 말했다.
2017.01.02
조회수 12558
김호민 교수, 패혈증 원인 물질의 생체 내 메커니즘 최초 발견
우리 대학 의과학대학원 김호민 교수와 연세대학교 윤태영 교수 공동 연구팀이 우리 몸이 패혈증의 원인 물질인 박테리아 내독소를 어떻게 받아들이고 전달하는지 규명했다. 이를 통해 박테리아 내독소가 생체 내 단백질로 전달되는 분자 원리를 밝혀냄으로써 내독소가 전달되는 길목을 차단해 패혈증을 치료할 수 있는 새로운 가능성이 제시됐다. 패혈증은 감염에 의해서 과도하게 활성화된 면역반응에 따른 전신성 염증반응 증후군이다. 이 연구는 면역학 분야 국제 학술지이며, 셀(Cell) 자매지인‘이뮤니티 (Immunity)’12월 13일자에 게재되었다. 그람 음성균 세포외막에 존재하는 내독소는 생체 내 단백질을 통해 면역세포 표면의 세포수용체로 전달돼 선천성 면역 반응을 활성화시킨다. 감염에 의한 혈액 내 내독소 다량 유입은 고열, 혈압저하, 장기손상 등 과도한 염증반응의 결과인 패혈증으로 이어질 수 있지만, 내독소 인식 및 전달 관련 구체적인 분자 원리가 밝혀져 있지 않아 패혈증 치료제 개발에 한계가 있었다. 연구팀은 문제 해결을 위해 단분자 형광기법과 바이오 투과전자현미경을 활용했다. 마이셀(Micelle) 형태로 존재하는 내독소 표면에 막대 모양의 LBP가 결합하여 내독소를 인식하고, 여기에 CD14가 빠르게 결합해 내독소 한 분자를 가져간 후 면역세포 수용체인 TLR4-MD2와의 상호결합을 통해 건네주는 내독소 인식 및 전달 원리를 확인했다. 박테리아 내독소와 정제된 LBP 단백질을 혼합해 바이오투과전자현미경으로 사진을 찍은 후 각각의 분자의 모양을 컴퓨터를 활용한 이미지 프로세싱을 통해 분석함으로써 내독소와 결합한 LBP 단백질 구조를 최초로 규명했다. 특히 막대모양의 LBP 단백질이 그들의 N-도메인 끝을 통해 내독소 마이셀 표면에 결합함으로써 박테리아 내독소만을 특이적으로 인식하는 것을 발견했다. 연구팀은 박테리아 내독소에 형광을 부착시킨 후 내독소 항체를 활용해 유리슬라이드 표면에 코팅시키고, LBP, CD14, TLR4-MD2 단백질들을 흘려주면서 박테리아 내독소, LBP, CD14, TLR4-MD2 분자 하나하나의 동적인 움직임을 실시간으로 관찰하는 단분자 형광 시스템을 최초로 구축했다. 이를 통해 박테리아 내독소 표면에 결합한 LBP 단백질로부터 CD14 단백질이 내독소 한 분자만을 반복적으로 가져간 후 빠르게 TLR4-MD2로 전달함으로써 선천성 면역의 세포신호전달을 활성화 시키는 분자메커니즘을 최초로 규명했다. 또한 마우스 면역세포인 수지상세포를 활용하여 첨단 생물물리학적인 기법을 통해 제시한 분자메커니즘이 생체 내에서 내독소를 인식하여 면역반응을 유발하는 핵심 메커니즘을 검증했다. 기존의 실험방법으로 접근이 어려웠던 LBP, CD14, TLR4-MD2 단백질들 간의 동적인 상호작용을 최신 첨단 실험기법을 통하여 분자수준에서 규명함으로써 생체 내 내독소 인식 및 전달메커니즘을 규명했다. 연구 방법 및 결과는 박테리아 감염에 의한 선천성 면역 연구에 새로운 방향을 제시할 것이며 특히 이 연구에서 규명한 분자적, 구조적 지식들은 패혈증 발병메커니즘 연구 및 치료제 개발에 적극 활용될 수 있을 것으로 기대된다. 김호민 교수는“박테리아 내독소가 생체 내 단백질들의 동적인 상호작용에 의해 면역세포로 전달되는 일련의 과정들을 분자수준에서 최초로 밝힌 것이다”며 “박테리아 내독소 인식 및 전달메커니즘 이해를 통하여 선천성 면역 유발 메커니즘 이해뿐만 아니라 패혈증 예방 및 치료제 개발에 기여할 것으로 기대된다”라고 말했다. 이번 연구는 미래창조과학부, 한국연구재단 기초연구사업(개인연구, 집단연구), IBS 나노의학연구단의 지원으로 수행됐다. □ 그림 설명 그림1. 생체 내 박테리아 내독소 전달 메커니즘
2016.12.27
조회수 17876
박희성, 이희윤 교수, 암, 치매 유발하는 '변형 단백질' 생산기술 개발
우리 대학 화학과 박희성 교수, 이희윤 교수 공동 연구팀이 암과 치매 등 각종 질병을 유발 원인으로 알려진 단백질의 비정상적인변형을 구현할 수 있는 맞춤형 단백질 변형기술을 개발했다. 양애린 박사가 1저자로 참여한 이번 연구 결과는 ‘사이언스(Science)’ 9월 29일자 온라인 판에 게재됐고 '가장 중요한 논문(First Release)'에 선정됐다.(논문명 : A chemical biology route to site-specific authentic protein modifications) 신체의 기본 단위인 세포는 2만여 종의 유전자를 가지고 있다. 여기서 만들어지는 단백질의 종류는 100만 종 이상으로 추정된다. 이는 단백질이 만들어진 후 다양한 단백질 변형(post-translational modification) 현상이 일어나기 때문이다. 이러한 단백질 변형의 원인으로는 인산화, 당화, 아세틸화, 메틸화 등 200여 종이 알려져 있으며, 정상적으로 변형된 단백질들은 생체 내에서 세포 신호 전달, 성장 등 정상적인 신진대사 활동에 중요한 역할을 한다. 그러나 유전적, 환경적 요인으로 인해 비정상적 단백질 변형이 일어나면 세포의 대사활동과 신호전달이 손상돼 세포의 무한 분열을 초래하기도 한다. 각종 암은 물론 치매를 일으키는 퇴행성신경질환 및 당뇨를 포함한 각종 만성질환을 유발한다. 이전에는 이러한 비정상적인 단백질 변형을 구현한 맞춤형 변형 단백질 개발기술이 존재하지 않아 각종 질병의 원인 규명과 맞춤형 신약 개발 연구에 많은 어려움이 있었다. 연구팀은 2011년 암을 일으키는 직접적인 원인으로 알려진 비정상적인 단백질 번역 후 인산화를 구현하기 위한 맞춤형 인산화 변형 단백질 생산기술을 개발해 사이언스지에 논문을 발표했었다. 이번 연구는 지난 2011년의 선행연구 결과를 더욱 발전시켜 인산화 이외에 당화, 아세틸화 등과 같은 다른 200여종의 단백질 변형을 직접 구현해 원하는 변형 단백질을 합성할 수 있는 기술이다. 박 교수는 “이 기술을 활용하면 원하는 위치에서 원하는 종류의 맞춤형 변형 단백질 생산이 가능해져 암과 치매 등 단백질 변형으로 인해 발생하는 질병의 직접적인 원인을 밝힐 수 있다”며 “신약 및 치료제 개발 속도를 높이고 발생할 수 있는 부작용을 최소화할 수 있는 획기적인 기술이다”고 말했다. 이번 연구는 글로벌프론티어 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 맞춤형 단백질 변형 기술 개발 그림2. 맞춤형 단백질 변형 기술의 활용
2016.10.03
조회수 10898
허원도 교수, 세포의 이동 방향 결정하는 방향타 단백질 발견
〈 허 원 도 교수 〉 우리 몸의 세포는 가만히 멈춰있는 것이 아니라 이동한다. 세포가 특정 방향으로 이동하는 과정은 배아 발달, 상처 치유, 면역 반응 등에 필수적이다. 우리 몸 여러 기관에 암이 전이되는 현상도 암 세포의 이동 때문에 발생한다고 볼 수 있는데 이처럼 세포의 이동은 다양한 생리 및 병리적 조건에서 중요한 역할을 담당한다. 세포 이동에는 여러 종류의 소형 GTP 결합 단백질과 이 단백질의 활성을 조절하는 GEF 단백질들이 관여한다. 세포는 진행 방향 부위의 소형 GTP 결합 단백질(Rac1, Cdc42)이 활성화되면서, 동력을 내는 액틴 섬유를 중합(polymerization)해 지느러미 같은 돌출부를 만들어 앞으로 나아갈 수 있다. 그러나 기존 연구에서는 세포 이동을 관장하는 여러 종류의 GEF 단백질을 세포에 발현시켜도 세포의 이동이 크게 증가하지 않는 한계가 있었고, 세포 이동의 구체적인 작동원리를 밝히지 못했다. 우리 대학 생명과학과 허원도 교수 연구진은 GEF 단백질 중 하나인 ‘PLEKHG3’ 단백질이 세포의 이동 방향을 결정하는 ‘방향타’ 역할을 담당한다는 사실을 처음으로 발견했다. 또한, 독자적으로 개발한 광유전학 기술(광유도 분자 올가미, LARIAT)을 접목, 빛으로 ‘방향타 단백질(PLEKHG3)’ 의 활성을 조절해 세포의 이동을 실시간으로 제어하는 데 성공했다. 연구진은 바이오이미징 기술로 세포 내 63개 GEF 단백질들의 분포양상을 분석해, 세포가 이동하는 동안 세포이동을 조절할 가능성이 높은 GEF 단백질들을 선별했다. 그 중 PLEKHG3가 세포의 진행 방향 부위로 빠르게 이동하는 현상을 확인했다. 방향타 역할을 하는 이 단백질은 해당 부위에서 소형 GTP 결합 단백질을 활성화해 세포 골격을 이루는 액틴 섬유를 형성한다. 액틴 섬유는 그물망을 이루며 지느러미 같은 돌출부를 형성,해 세포를 앞으로 나아가게 한다. 이 과정에서 방향타 단백질은 액틴 섬유 자체와도 매우 강하게 결합하는데, 이 결합이 소형 GTP결합 단백질의 활성을 더욱 촉진시킴으로써 세포의 이동 속도를 더 빠르게 한다는 사실을 발견했다. 또한 연구진은 광유전학 기술로 방향타 단백질의 활성을 조절해 세포가 움직이는 방향을 인위적으로 제어하는 데 성공했다. 청색광 수용체를 이용해 만든 융합 단백질이 발현된 세포에 청색광을 비추면 융합단백질이 PLEKHG3를 올가미처럼 붙잡아 PLEKHG3의 움직임을 방해하는 원리를 활용했다. 이에 따라 빛을 비추면 세포는 이동을 멈추고, 빛을 끄면 PLEKHG3의 활성이 다시 정상화돼, 세포는 움직인다. 빛을 비추는 부위를 조정해서, 세포의 이동방향도 제어할 수 있음을 확인했다. 본 연구는 방향타 단백질인 PLEKHG3가 세포를 움직이게 하는 핵심 단백질임을 밝히고, 광유전학 기술로 빛을 통해 세포의 이동을 자유롭게 제어한 데 의의가 있다. 허원도 교수는 “세포 이동을 극대화하는 새로운 메커니즘을 밝혀 암세포 전이 및 면역 세포 이동을 연구할 수 있을 것으로 기대된다”고 말했다. 이번 연구결과는 국제 학술지 미국국립과학원회보(PNAS) 8월 23일자 온라인 판에 게재됐다. □ 그림 설명 그림1. 세포내 PLEKHG3의 위치분석 그림2. 세포이동시 PLEKHG3의 세포내 위치추적 그림3. PLEKHG3에 의한 새로운 세포이동 메커니즘
2016.08.24
조회수 11462
최철희, 최경선 교수, 빛을 이용한 치료용 단백질 전달시스템 개발
우리 대학 바이오및뇌공학과 최철희 교수, 최경선 교수 공동 연구팀이 빛을 이용해 치료용 단백질을 체내로 정확하고 안전하게 전달할 수 있는 기술을 개발했다. 이는 체내 세포에서 자연적으로 생산되는 나노입자인 엑소솜과 단백질 약물이 빛을 받으면 자석처럼 서로 결합하는 기술로 우수한 기능과 안전성이 확보됐다는 의의를 갖는다. 이번 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communicaitons)’ 7월 22일자 온라인 판에 게재됐다. 최근 바이오 신약의 중요성이 커지면서 바이오 신약의 대부분을 차지하는 단백질 의약을 효과적으로 신체 내 표적 세포에 전달할 수 있는 약물전달시스템 개발이 활발히 이뤄지고 있다. 특히 나노입자는 그 특성 상 종양으로 더 많은 양이 침투할 수 있다는 장점이 있다. 따라서 새로운 물리, 화학 및 광학적 특성을 갖는 나노소재의 입자를 이용해 단백질 등의 바이오 신약을 전달하려는 시도가 진행 중이다. 하지만 현재 기술은 표적 세포에 이르기까지 생체 단백질 활성을 유지시키기 어렵고 면역 반응의 발생을 억제시켜야 하는 문제 등의 한계를 갖는다. 또한 치료용 단백질은 그 크기가 매우 커 기존 방법으로는 실용화가 매우 어렵다. 무엇보다도 가장 큰 문제는 독성 발생 가능성 등 인체 안전성이 해결되지 않았다는 않다는 점이다. 연구팀은 문제 해결을 위해 인간의 세포에서 자연적으로 발생하는 나노입자인 엑소솜(세포외 소낭)을 단백질 약물의 운송 수단으로 사용했고, 빛을 받으면 서로 결합하는 특징을 갖는 CRY2와 CIBN 단백질(CRY2, CIBN : 애기식물장대에서 유래한 서로 결합하는 특성을 갖는 단백질)을 이용했다. 엑소솜에는 CIBN을, 단백질 약물에는 CRY2를 융합시킨 뒤 450~490nm 파장의 푸른빛을 쏘면 CIBN과 CRY의 결합하는 특성으로 인해 자연스럽게 엑소솜에 단백질 약물의 탑재가 유도된다. 이 기술은 기존의 수동적인 탑재에 비해 두 가지 장점을 갖는다. 우선 세포 바깥에서 정제된 단백질을 엑소솜에 넣는 기술에 비해 치료용 단백질의 적재율이 천배 가까이 높아졌다. 그리고 단백질을 정제할 필요가 없어져 효율성, 성공률은 높아지고 비용은 적어진다. 연구팀은 기존보다 낮은 비용으로 보다 쉽게 치료용 단백질이 탑재된 엑소솜을 생산하면서 효율 및 안정성이 향상된 치료용 단백질 전달시스템을 개발했다. 이 기술은 기존 단백질 약물이 세포 외부에서만 작용한다는 한계를 극복함으로써 향후 바이오의약 분야의 새로운 패러다임을 제시하는 원천 기술이 될 것으로 기대된다. 연구팀은 현재 다양한 난치성 질환 치료를 위한 표적 단백질이 탑재된 치료용 엑소솜을 개발 중이며 효능 및 임상 적용 가능성을 검증하고 있다. 최철희 교수는 “이번 기술은 생체에서 만들어지는 나노입자인 엑소솜에 치료용 단백질을 효율적으로 탑재시켰다”며 “안전하고 기능이 우수한 단백질 약물을 대량 생산할 수 있는 획기적인 원천기술이다”고 말했다. 이 기술은 KAIST 교원창업기업인 ㈜셀렉스라이프사이언스 사에 기술이전 돼 엑소솜 약물 제조 기술의 최적화 및 전, 임상 시험을 위한 개발 단계 중이다. □ 그림 설명 그림1. 엑소솜 내부에 치료용 단백질이 함유된 것을 묘사한 개념도 그림2. 개발한 기술의 개념도
2016.08.09
조회수 13507
구조 생물학 권위자 김성호 UC Berkeley 명예교수 특별강연
구조 생물학 분야 세계적 권위자인 김성호(79․사진) 캘리포니아대학교 버클리캠퍼스(UC Berkeley) 명예교수가 KAIST에서 특별강연을 한다. 우리대학 생명과학과는 오는 23일(월)과 30일(월) 오후 두 차례 걸쳐 본교 의과학연구센터(E7) 원격강의실에서 ‘김성호 교수 초청 특별강연’을 연다. 강연 주제는 각각 ‘우주와 지구의 기원’과 ‘생명과 인류의 기원’이다. 김성호 교수는 X선 결정구조 분석법을 이용해 전달된 RNA(t-RNA)의 3차원 구조를 세계 최초로 밝혀 생물학계의 주목을 받아 왔으며 노벨상 후보로도 꾸준히 거론되는 인물이다. 또한 정상세포와 암세포에서 RAS단백질의 3차원 구조를 규명함으로써 RAS 단백질이 암을 일으키는 원인임을 밝혀 기존 암 연구 및 항암제 개발 연구에 새로운 방향을 제시하기도 했다. 최근에는 컴퓨팅 생화학자로 활동하면서 생물 유전체의 구조와 기능을 연구하는 유전체학 방법론을 개발 중이다. 이를 통해 질병의 유전적 민감도를 예측할 것으로 기대된다. 김 교수는 서울대 화학과를 졸업하고 미국 피츠버그대학에서 박사학위를 받았다. 이후 MIT 연구원과 듀크대 교수 등을 거쳐 현재 캘리포니아대학교 버클리캠퍼스 화학과 교수로 재직 중이다. 끝.
2016.05.23
조회수 10166
최광욱 교수, 신체 세포조직의 성장 원리 규명
우리 대학 생명과학과 최광욱 교수 연구팀이 신호전달체계에 존재하는 ‘14-3-3’ 단백질이 신체 기관 발달 및 세포 조직 성장에 새롭게 관여함을 규명했다. 이번 연구는 네이처의 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6일자 온라인 판에 게재됐다. (논문명: 14-3-3 proteins regulate Tctp-Rheb interaction for organ growth in Drosophila) 우리 신체에는 토르 신호(Tor signaling)라고 불리는 신호전달체계가 존재한다. 이 신호전달체계는 단백질 합성을 늘려 세포 크기를 키우거나 세포 숫자를 늘리는 역할을 한다. 토르 신호가 너무 많으면 암을 유발하기도 하고, 반대로 너무 적으면 신체 기관이 제대로 성장을 할 수 없게 된다. 이와 같이 토르 신호는 세포 조직의 성장과 밀접한 관련이 있다. 이 토르 신호를 조절하는데 Tctp(Translationally controlled tumor protein)와 Rheb 단백질이중요한 역할을 한다. 최 교수 연구팀은 과거 연구에서 토르 신호전달체계에서 Tctp 단백질이 Rheb 단백질의 기능 조절에 영향을 끼친다는 것을 밝혔다. 하지만 Tctp와 Rheb이 어떤 방식으로 조절되는지, 중간에 어떤 매개체가 필요한지 등은 밝혀내지 못했다. 연구팀은 문제를 해결하기 위해 초파리를 이용한 유전적 상호작용 분석 실험을 수행했다. 그리고 14-3-3 단백질이 Tctp와 Rheb 사이의 다리 역할을 해 두 단백질이 상호작용할 수 있음을 밝혔다. 초파리 체내에는 두 개의 14-3-3 동종형 유전자가 존재한다. 따라서 두 개 중 하나가 없어도 현저한 성장 장애는 나타나지 않는다. 그러나 연구팀은 Tctp 또는 Rheb의 기능이 부분적으로 손상된 상태에서 14-3-3의 결핍이 발생하면 기관 성장에 심각한 문제가 생기는 것을 확인했다. 이러한 상승효과의 원리를 통해 14-3-3 단백질이 Tctp와 Rheb 단백질 사이의 결합을 직접적으로 조절해 성장에 관여함을 규명했다. 이번 연구에 기초해 향후 고등 동물에서도 유사한 조절 기작이 존재하는지 확인하기 위한 연구가 진행될 것으로 예상된다. 고등 동물에서의 연구도 성공적으로 이뤄진다면 향후 암 조직의 조절이나 기관 발달 촉진 등의 효과도 얻을 수 있을 것으로 기대된다. 연구팀은 14-3-3 유전자가 초파리 뿐 아니라 인체에도 존재하기 때문에 토르 신호전달체계의 문제로 인한 종양의 원인 규명 및 치료법 예방에 중요한 역할을 할 것으로 전망했다. 최 교수는 “인체에는 유전자 중복으로 인해 기능이 밝혀지지 않은 질병 관련 유전자들이 많다”며 “초파리 모델 동물이 질병 관련 유전자들의 생체 내 작용을 규명하는 데 기여할 것이다”고 말했다. 생명과학과 르 풍 타오 학생이 주도한 이번 연구는 교육부와 한국연구재단이 추진하는 중견연구자지원사업과 글로벌 연구실지원사업의 일환으로 수행됐다. □ 사진 설명 사진1. 14-3-3과 tctp 단백질 결핍으로 인해 초파리 눈이 소실된 사진 사진2. 14-3-3과 tctp 단백질 결핍으로 인해 초파리 날개가 소실된 그림 사진3. 14-3-3 결핍으로 인한 초파리의 두뇌부가 상실된 사진
2016.05.18
조회수 13290
오병하 교수, 제9회 아산의학상 기초의학부문 수상
〈오 병 하 교수〉 우리 대학 생명과학과 오병하 교수가 아산사회복지재단이 수여하는 제9회 아산의학상 기초의학부문 수상자에 선정됐다. 아산의학상은 기초의학 및 임상의학 분야에서 뛰어난 업적을 이룬 의과학자를 격려하기 위해 2007년 제정됐으며, 국내 의학발전에 기여하고 인재 양성에 힘쓴 해외 의과학자를 올해 처음으로 선정했다. 오 교수는 세포분열시 필수적으로 나타나는 현상인 DNA가 염색체로 응축되는 과정에 작용하는 단백질 콘덴신의 구조와 작용원리를 밝혀낸 업적을 높이 평가받았다. DNA 응축이 제대로 이뤄지지 않으면 분열되는 세포가 유전정보를 받지 못하고 사멸하게 되므로, 향후 콘덴신 기능을 제어하여 암세포의 분열과 증식을 억제하는 항암제 개발에 이번 연구를 활용할 수 있을 것으로 기대하고 있다. 그밖에 임상의학부문에 로베르토 로메로 미국 국립보건원(NIH) 주산의학연구소 교수, 젊은의학자부문에 조승우 연세대 생명공학과 교수, 김준범 울산의대 흉부외과 교수가 선정됐다. 시상식은 오는 21일(월) 오후 6시 용산구 한남동 그랜드 하얏트 호텔 그랜드볼룸에서 열리며, 기초의학부문 3억 원, 임상의학부문 25만 달러, 젊은의학자부문 각각 5천만 원의 상금을 시상한다.
2016.03.18
조회수 10589
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
>
다음 페이지
>>
마지막 페이지 9