본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%8B%A8%EB%B0%B1%EC%A7%88
최신순
조회순
고규영 교수, 녹내장 발생에 관여하는 신호전달체계 규명
우리 대학 의과학대학원 고규영 교수가 녹내장(Glaucoma)이 발생하고 진행되는 근본적 원인을 규명하고 새로운 치료방법을 제시했다. 김재령 박사과정이 1저자로 참여한 이번 연구는 미국 임상연구학회에서 발간하는 임상연구학회지(The Journal of Clinical Investigation) 9월 19일자 온라인 판에 게재됐다. 또한 10월 발간되는 인쇄본의 표지 및 커버스토리로 실린다. 녹내장은 안압이 상승해 시신경이 눌리거나 혈액 공급에 문제가 생겨 시신경이 망가지고 실명에 이르는 병이다. 증상이 나타날 땐 이미 시신경이 크게 손상된 상태라 완치가 어렵다. 전 세계 40세 이상 성인 인구의 3.5%가 녹내장을 앓고 있으며 국내에서도 환자가 빠르게 증가하는 추세다. 특히 전체 환자의 약 75% 이상을 차지하는 원발개방각녹내장의 경우 원인을 분자적 수준에서 밝히기 어려워 근본적인 치료법 마련에 한계가 있었다. 원발개방각녹내장 발병 기전의 이해를 넓힌 이번 연구로 그간 더뎠던 치료법 개발에 속도가 날 것으로 기대된다. 연구진은 안압이 안정적으로 유지되는 작동원리와 신호전달체계를 규명했다. 안압 조절에 중요한 기관인 쉴렘관의 항상성 유지를 Angiopoietin-TIE2 수용체 신호전달체계(이하 ANG-TIE2 신호전달체계)가 수행함을 밝혔다. 녹내장은 방수배출장치가 고장 나면서 발생한다. 눈 내부에서 생성된 방수는 섬유주를 지나 쉴렘관을 거쳐 혈관으로 배출된다. 안압은 방수가 생성되는 만큼 배출되어야 일정하게 유지되는데 방수배출장치에 문제가 생기면 안압이 상승한다. 원발개방각녹내장의 경우, 방수유출경로의 저항이 커지면서 방수가 제대로 빠져나가지 않아 발생하는 것으로 알려져 있으나 어떤 이유 때문에 저항이 커지는지는 알 수 없었다. 김재령 연구원과 박대영 연구원(박사후연구원/안과 전문의)은 혈관 성숙과 안정화에 필수적인 ANG 단백질과 TIE2 수용체가 각각 쉴렘관 주변부와 내피세포에 두드러지게 발현되는 것을 발견했다. 연구진은 ANG-TIE2 신호전달체계가 생후 초기 쉴렘관의 발달뿐만 아니라 성체가 된 이후에도 항상성 유지에 필수적일 것으로 예상했다. 실험 결과, 연구진은 쉴렘관 형성과 유지, 안압 조절에 있어 ANG-TIE2 신호전달체계가 핵심적인 역할을 수행함을 확인했다. ANG-TIE2 신호전달체계는 쉴렘관을 형성하고 내강을 유지해 방수 유출을 가능케 한다. 쉴렘관이 형성되는 동안에는 Prox1 전사인자 발현을 촉진하고 성체가 된 이후에는 적절한 양의 방수, 거대액포, Prox1 전사인자 발현을 유지하여 쉴렘관의 항상성을 지킨다. 연구진은 녹내장이 유발된 상황에서 ANG-TIE2 신호전달체계의 활성화가 어떤 효과가 있는지 추가 실험을 진행했다. TIE2 수용체를 활성화하는 실험적 항체(ABTAA)가 쉴렘관의 내피세포에 작용하여 방수 유출을 증가시키고 안압을 낮출 수 있는지가 관건이었다. 쉴렘관이 망가져 안압 상승으로 녹내장이 유발된 실험군의 눈 속에 항체를 투여한 결과, 쉴렘관이 회복되면서 안압이 내려가는 것을 확인했다. 결국 ANG-TIE2 신호전달체계가 쉴렘관의 항상성을 유지함으로써 안압을 조절해 녹내장이 발병하지 않도록 하는 것이다. 이번 연구는 녹내장을 근본적으로 해결할 수 있는 치료법 개발에 큰 도움이 될 것으로 보인다. 특히 녹내장을 재현한 질병 모델에 TIE2 활성 항체를 주사해 안압 하강 효과를 얻은 만큼 추후 임상 연구로의 확장이 기대된다. 연구진은 방수배출장치의 또 다른 요소인 섬유주와 ANG-TIE2 신호전달체계의 관계를 밝히는 실험과 실제 환자에게 TIE2 활성 항체를 사용할 수 있을지 전임상 실험을 계획 중이다. 연구를 이끈 고규영 교수는 “이번 논문에는 이십여 개에 달하는 연구 이미지 세트가 실렸다. 일반적인 경우의 두 배에 달한다”며 “쉴렘관 항상성 유지의 기전을 자세히 밝히는 방대한 양의 연구를 수행했음을 보여준다”라고 말했다. □ 그림 설명 그림1. 녹내장의 증상과 원인 그림2. ANG-TIE2 신호전달체계의 역할 그림3. ANG-TIE2 신호전달체계 억제 시 쉴렘관 항상성 저해 현상
2017.09.20
조회수 19012
조광현 교수, 간암 표적 치료제 내성 극복 위한 최적 약물조합 발견
〈 조 광 현 교수 〉 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 간암 약물 치료의 효과를 높이는 새로운 방법을 찾아냈다. 특히 이번 연구는 바이오분야의 4차 산업혁명을 견인하고 있는 IT와 BT의 융합연구인 시스템생물학(Systems Biology) 연구로 이뤄졌다. 서울대병원 내과 윤정환 교수팀과 공동연구를 통해 이루어낸 이번 연구 결과는 국제 간 전문지인 헤파톨로지(Hepatology)에 게재됐다. 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 바이오의료기술개발사업과 중견연구자지원사업의 지원을 받아 수행됐다. 간암은 전 세계적으로 남성에게는 다섯 번째, 여성에게는 일곱 번째로 발생률이 높은 암이며 암 사망원인의 두 번째를 차지한다. 특히 우리나라의 간암 사망률은 인구 10만 명 당 28.4명으로 경제협력개발기구(OECD) 국가 중 압도적인 1위이며 2위인 일본의 2배에 이르고 있다. 우리나라에서만 간암 환자가 매년 평균 1만 6000명이 새로 발생하고 있지만 5년 생존율이 12%에 미치지 못한다. 국가암정보센터에 따르면 지난해 암으로 사망한 사람 가운데 폐암이 1만 7399명으로 가장 많았고 간암은 1만 1311명으로 그 뒤를 이었다. 간암은 우리나라의 암 가운데 사회적 비용이 1위인 암이다. 그 이유는 다른 암에 비해 사망자가 많고 더 젊은 나이(40, 50대)에 사망하기 때문이다. 이에 부작용이 적고 생존율을 높여줄 수 있는 새로운 치료법 개발이 시급한 실정이다. 간암의 치료로는 수술 및 색전술, 약물 치료가 있지만 수술이 어려운 진행성 간암에서는 치료 방법이 극히 제한적이다. 진행성 간암의 표적 항암제로 소라페닙(Sorafenib)이 유일하게 승인돼 임상에서 쓰이고 있는데 국내에서만 매년 200억 원 이상 처방되고 있지만 일부 환자에서만 효능을 나타내며 또한 대부분의 경우 약제 내성이 발생한다. 소라페닙은 말기 간암 환자의 생존 기간을 약 3개월 정도 밖에 늘리지 못하지만 다국적 제약회사에 의해 개발된 많은 후발주자 약물들이 그 효과를 뛰어 넘는데 실패했다. 소라페닙은 다중타겟을 치료표적으로 하여 그 작용 기전이 모호하고 따라서 약제의 내성기전 또한 아직 잘 알려져 있지 않다. 조광현 교수가 이끈 융합 연구팀은 소라페닙 작용 및 내성 기전을 규명하기 위해 소라페닙을 간암 세포에 처리하였을 때 세포내 분자 발현이 변화하는 것을 분석했다. 이를 통해 암세포가 소라페닙에 대항하는 기전을 알아냈고 시스템생물학적 분석을 실시하여 암세포내 단백질 이황화 이성질화 효소(protein disulfide isomerase, PDI)가 암세포가 소라페닙에 대항하는데 핵심적 역할을 하는 것을 발견했으며 이 효소를 차단했을 때 소라페닙의 효능이 훨씬 증가함을 관찰했다. 공동연구를 수행한 서울대병원 내과 윤정환 교수 연구팀은 쥐를 이용한 동물실험에서 소라페닙과 단백질 이황화 이성질화 효소 차단제를 같이 처리하면 간암 증식 억제에 시너지가 있음을 관찰하였고 소라페닙에 저항성을 가진 간암 환자의 조직에서 이 효소가 증가되어 있음을 관찰하여, 향후 임상 적용을 위한 가능성을 확인하였다. 조광현 교수는 “세포내 중요한 역할을 담당하는 분자들은 대부분 복잡한 조절관계 속에 놓여있기 때문에 기존의 직관적인 생물학 연구로 그 원리를 밝히는 것은 근본적인 한계가 있다. 이번 연구는 IT와 BT의 융합연구인 시스템생물학으로 그 한계를 극복할 수 있음을 보여주는 대표적인 사례로, 특히 암에 대한 표적 치료제 작용을 네트워크 차원에서 분석하여 내성을 극복할 수 있는 새로운 치료법을 개발할 수 있는 가능성을 제시하였다”고 말했다. □ 사진 설명 사진1. 간암세포를 이용한 세포실험을 이용해 시뮬레이션 결과를 확인 사진2. 구축된 ER stress 네트워크를 이용한 네트워크 분석 및 컴퓨터 시뮬레이션 결과 사진3. 간암 세포가 소라페닙에 반응할 때 전사체 변화를 분석하여 ER stress 반응이 주요하게 나타남을 발견하게 된 ER stress 네트워크 모델
2017.08.24
조회수 21945
4차 산업혁명 주도하는 2017 KAIST 10대 핵심 특허기술 선정
신소재공학과 김일두 교수의 동물 단백질을 촉매로 활용해 호흡으로 질병을 진단할 수 있는 센서 개발과 관련한 연구결과가 게재된 화학분야 국제학술지인 '어카운트 오브 케미칼 리서치' 올 7월호 표지사진. 환자의 날숨 속 가스농도를 음주측정기와 같이 간편하고 빠른 방법으로 측정해 질병을 조기에 진단할 수 있는 ‘헬스케어 사물인터넷(IoT) 가스센서’와 빅데이터·인체네트워크 시뮬레이션을 이용한 ‘개인맞춤형 항암치료 기술’등이 4차 산업혁명을 이끌어 나갈 ‘2017 KAIST 10대 핵심 특허기술’로 뽑혔다. 우리대학은 최근 내부교수들을 대상으로 공모를 진행한 후 접수된 특허기술을 대상으로 학과장 및 변리사·벤처 투자자·사업화 전문가 등 10명 내외로 구성된 ‘평가·선정위원단’의 조사와 자문·평가를 통해 4차 산업혁명을 주도할 기술 가운데 당장 사업화 가능성이 높은 기술 위주로 ‘2017 KAIST 10대 핵심 특허기술’을 선정하고 그 결과를 23일 발표했다. 그동안 직접 연구·개발을 통해 특허를 보유 중인 우수기술 가운데 ICT(정보통신기술)·무인 운송수단·인공지능·로봇공학·사물 인터넷(IoT)·나노기술·빅데이터 분석 등 4차 산업혁명을 주도하는 파급효과가 큰 기술을 위주로 향후 다양한 분야로의 응용가능성과 시장규모·기술적인 혁신성 등을 감안해서 10대 기술을 선정했다는 게 학교 관계자의 설명이다. 선정된 기술은 비즈니스 모델 개발을 통한 프로토타입 제작지원은 물론 국내·외 마케팅 우선 추진과 IP R&D 분석 등 학교로부터 다양한 지원을 받게 된다. 특히 신성철 총장이 올 3월 취임당시 내걸은 KAIST 5대 혁신방안 중 하나인 ‘기술사업화’ 혁신의 일환으로 기술사업화에 대한 성공률 제고와 활성화를 위해 우리대학은 오는 9월 12일 서울 삼성동 코엑스에서 10대 핵심 특허기술에 관심이 많은 기업관계자 등 200여명을 초청해 해당 기술에 대한 구체적인 설명과 함께 현장에서 기술이전에 관한 상담 등을 진행하는 대규모 설명회를 개최할 예정이다. 사업화를 목적으로 국내·외 기업들과의 기술개발 및 기술이전 등 상호 협력방안을 논의하기 위해 마련한 이 설명회에는 신성철 총장을 비롯해 김규옥 기술보증기금 이사장, 고정식 총동문회장 등 주요 내·외빈이 참석한다. 특히 이날 설명회에는 김일두 교수(신소재공학과)·조광현 교수(바이오및뇌공학과) 등 연구자인 교수진 10명 모두가 직접 참석해 특허기술별로 15분씩 발표하는 시간을 갖는다. 우리대학이 23일 발표한 ‘2017 KAIST 10대 핵심 특허기술’은 ▲환자의 날숨만으로 병을 조기에 진단할 수 있는 헬스케어 사물인터넷(IoT) 가스센서(김일두 교수) ▲빅데이터와 인체네트워크 시뮬레이션을 이용한 개인맞춤형 항암치료 기술(조광현 교수) ▲인체 모션 감지용 고민감도 웨어러블 스트레인 센서(박오옥 교수) ▲하드웨어 기반의 칩 앤 플래쉬(Chip & Flash) 메모리 데이터 보안기술(최양규 교수) ▲근적외선 뇌 영상 바이오 헬스케어 장치(배현민 교수) 등 이다. 이밖에 ▲사용자의 감정에 따라 감성기반의 대화가 가능한 디지털 생명체 생성시스템과 제어방법에 관한 기술(김종환 교수) ▲스마트 팩토리 구현을 위한 레이저-통합 정밀계측시스템 기술(김승우 교수) ▲실내·외 이동로봇의 자율주행을 위한 위치인식 및 지도작성 기술(명현 교수) ▲가변이득 위상천이기를 이용한 초소형·저전력·고선형 5G 빔포밍 IC 최적화 기술(홍성철 교수) ▲5G 통신 용량증대를 위한 빔포밍 기반의 다중채널 무선자원 집적화 기술(조동호 교수)도 10대 핵심 특허기술에 포함됐다. 각 특허기술을 세부적으로 소개하면 우선 ▲환자의 날숨만으로 병을 진단할 수 있는 헬스케어 사물인터넷(IoT) 가스센서(김일두 교수·신소재공학과)는 환자의 호흡을 통해 배출되는 날숨 속 가스를 측정해 질병을 조기진단 할 수 있는 기술이다. 특정질병에 대해 음주 측정기처럼 간편하고 빠르게 진단할 수 있는 게 큰 특징으로 스마트 폰이나 모바일 헬스기기, 웨어러블 센서 등에 적용이 가능하다. ▲빅데이터와 인체네트워크 시뮬레이션을 이용한 개인맞춤형 항암치료 기술은 암세포 유전자 변이정보를 반영한 가상실험을 통해 약물효과를 예측하고 최적화할 수 있는 기술이다. 환자의 유전자 변이정보를 활용하므로 개인맞춤형 치료전략 수립이 가능하다. 조광현(바이오및뇌공학과) 교수는 “표적항암제 개발에 대한 중요성 및 시장규모는 기하급수적으로 증가하는 반면 암세포 특징이나 약제 내성부분을 반영하지 않은 기존연구는 치료효과가 낮기 때문에 약물효과를 예측할 수 있는 기술개발이 필요했다”고 개발동기를 밝혔다. ▲박오옥(생명화학공학과) 교수가 개발한 인체 모션 감지용 고민감도 웨어러블 스트레인 센서는 신축성 있는 실을 이용해 만들어졌기 때문에 기존의 금속으로 만들어진 센서와는 달리 신축성과 민감도가 매우 높은 차세대 센서다. 쉽게 구부려지고 늘어나는 특성상 웨어러블 디바이스에 적용이 가능하고 인체에 무해해서 옷 또는 장갑 등 스마트 의류에도 응용할 수 있다. ▲하드웨어 기반의 챕 앤 플래쉬(Chip & Flash) 메모리 데이터 보안기술(최양규 교수·전기및전자공학부)은 하드웨어 내에 위치한 보안 소자가 인가된 전기신호에 의해 물리적으로 파괴됨으로써 외부로부터의 시스템 접근을 원천적으로 차단하는 기술이다. 소프트웨어가 아닌 하드웨어적인 보안기술이므로 파괴된 보안 소자의 복구를 위한 방법이 현존하지 않기 때문에 90%이상을 SW 보안기술에 의존하고 있는 국방·국가정보·금융업·공공기관·대기업 서버 등에 적용이 가능하다. ▲근적외선 뇌 영상 바이오 헬스케어 장치(배현민 교수·전기및전자공학부)는 공간해상도를 가지는 고해상도 뇌 영상장치이다. 기존 시스템의 단점인 낮은 해상도를 획기적으로 개선했기 때문에 뇌혈관계 질환 및 뇌 인지기능 등을 모니터링 할 수 있고 휴대가 가능하다. 인구 고령화로 인해 퇴행성 뇌질환 시장규모는 지속적으로 성장할 가능성이 높기 때문에 향후 수요가 급증할 것으로 예상된다. ▲김종환 교수(전기및전자공학부)가 개발한 사용자의 감정에 따라 감성서비스를 제공하는 디지털 생명체 기술은 사용자의 외형·음성·성향정보를 분석하고 디지털 DNA에 저장해 이를 바탕으로 새로운 디지털 생명체를 생성하고 이 생명체를 통해 사용자에게 최적화된 감성서비스를 제공하는 기술이다. 사용자와 디지털 생명체 간 스토리가 있는 대화가 가능해서 하드웨어 교육용 로봇이나 엔터테인먼트·우울증이나 외로움 치료를 위한 헬스케어 분야에 적용할 수 있다. ▲스마트 팩토리 구현을 위한 레이저-통합 정밀계측시스템 기술(김승우 교수·기계공학과)은 생산설비에 멀티 타겟 계측기술을 적용해 생산 공정 중 장비의 변형을 실시간으로 진단하고 하나의 계측기를 이용해 여러 장비의 상태를 동시에 진단하며 다양한 계측데이터를 인공지능과 결합, 생산 장비를 실시간으로 보정할 수 있다. 계측시스템의 정밀도 향상으로 제품 품질을 높일 수 있어 대형구조물 정렬이나 공작기계 모니터링·정밀 대형장비 열 변형 계측 등에 활용가능하다. ▲명현(건설및환경공학과) 교수의 실내·외 이동로봇의 자율주행을 위한 위치인식 및 지도작성 기술은 저가의 장비를 활용한 고성능 네비게이션 기술이다. 기존의 저가 센서들을 융합했기 때문에 다양한 환경에 대응이 가능하고, 각 센서의 단점을 상호 보완할 수 있기에 동적인 환경에서도 평균 10cm 이내의 작은 오차로 정확한 위치정보를 수집할 수 있다. 명 교수는 “기존 기술은 동적인 환경에서 위치인식에 대한 오차가 크고 실외의 경우 고가의 센서가 필요하므로 저가의 센서로 다양한 환경에 적용 가능한 위치인식 및 맵 작성기술이 각광을 받을 것으로 예상했다”고 개발배경을 설명했다. ▲5G 빔포밍 IC 최적화 기술(홍성철 교수·전기및전자공학부)은 5G 이동통신을 위한 새로운 구조의 저전력·초소형·고선형 빔포밍 IC기술이다. 감쇠기를 없애 초소형 IC를 구현하고 가변이득 위상천이기 제작으로 이득변화에 따른 위상오차를 최소화해서 낮은 전력에서도 효율이 증가된다는 게 특징이다. 4차 산업혁명 시대의 핵심 인프라인 5G 이동통신 기술로 사물인터넷(IoT) 및 5G 차량 사물통신(V2X) 등에 활용이 가능하다. 마지막으로 조동호(전기및전자공학부) 교수의 ▲5G 통신용량 증대를 위한 빔포밍 기반의 다중채널 무선자원 집적화 기술은 N개의 패턴/편파 안테나를 집적함으로써 N배의 대용량 전송을 가능하게 하는 5G 이동통신의 핵심기술이다. 통신 속도 개선, 간섭 저하 및 송신 전력소모 감소 등의 효과가 기대된다. 자율 주행 통신을 위한 인프라로도 활용이 가능하다. 최경철 산학협력단장은 “이번 2017 10대 핵심 특허기술에 대한 선정을 계기로 우리대학은 앞으로 국내·외 기업을 대상으로 기술이전 마케팅을 적극 추진하는 한편 성공적인 기술이전으로 이어질 수 있도록 온갖 지원을 아끼지 않을 것”이라고 말했다. 최 단장은 또 “기술사업화 활성화를 위해 아직 발굴되지 않은 핵심 특허기술과 각종 사업추진 관련 아이디어 등에 관한 지속적인 발굴노력 등을 통해 산학협력 사업을 적극 추진해나갈 방침”이라고 강조했다.
2017.08.23
조회수 25122
김일두 교수, 동물 단백질 촉매로 활용한 질병진단센서 개발
〈 김 일 두 교수 〉 우리 대학 신소재공학과 김일두 교수 연구팀이 동물의 단백질을 촉매로 활용해 호흡으로 질병을 진단할 수 있는 센서를 개발했다. 이는 사람의 날숨에 포함된 다양한 질병과 관련된 바이오마커 가스들에 대한 패턴 인식을 통해 질병을 조기 모니터링 할 수 있는 기술이다. 이번 기술은 다양한 단일 금속입자 뿐만 아니라 어떠한 조합의 이종입자도 2 nm 크기로 합성할 수 있는 장점을 갖는다. 연구팀은 기존에도 호흡으로 질병을 진단하는 센서를 개발했으나 이번 기술은 더욱 정확하고 높은 감도를 갖는다는 특징이 있다. 김상준, 최선진 박사가 1저자로 참여한 이번 연구 결과는 미국 화학회의 화학분야 국제 학술지 ‘어카운트 오브 케미칼 리서치(Accounts of Chemical Research)’ 7월호 표지논문으로 선정됐고, 독일 와일리 국제 학술지인 ‘어드밴스드 머터리얼즈(Advanced Materials)’에도 게재가 확정됐다. 혈액 체취나 영상 촬영 없이 내뱉는 숨(호기)만으로 각종 질병 여부를 파악하는 호흡 지문 센서 기술은 핵심 미래 기술이다. 호기 속 특정 가스들의 농도변화를 체크해 건강 이상 여부를 판단할 수 있다. 호기가스 성분에는 수분 외에도 수소, 아세톤, 톨루엔, 암모니아, 황화수소, 일산화질소 등이 포함된다. 이 가스들은 천식, 폐암, 1형 당뇨병, 구취 등 특정 질병 환자에게서 높은 농도로 배출되는 바이오마커 가스이다. 호흡을 이용한 질병 진단은 마치 음주측정기처럼 테들라(Tedlar) 백에 포집된 날숨 가스를 소형 센서 장치로 주입한 후 빠른 속도로 분석되기 때문에 쉽고 간편하게 질병을 진단할 수 있다. 또한 질병 대사가 일어나는 시점에서 검출이 가능해 조기 진단이 가능하다. 하지만 매우 경미한 수준인 10억분의 1(ppb)에서 100만분의 1(ppm) 수준으로 발생하는 가스를 호흡 속에서 정확히 분석하기 위해서는 기술의 진보가 필요하다. 특히 수분을 포함한 수백 종의 방해 가스는 특정 질병 관련 바이오마커 가스를 선택적으로 분석하는 저항 변화식 센서의 취약점으로 남아 있다. 기존의 가스 센서는 백금, 팔라듐 등 특정 촉매를 결합해 감지 특성을 높이려고 시도했으나 ppb 농도에서는 생체지표 가스 감지 특성이 높지 않다는 한계가 있었다. 연구팀은 기존 센서의 한계 극복을 위해 동물의 조직에 존재하는 나노크기의 단백질을 희생층으로 이용해 속이 비어있는 단백질 껍질 안에 석출된 이종촉매(Heterogeneous catalyst) 입자를 합성하는데 성공했다. 이번 연구에 사용된 나노크기의 단백질은 주기율표에 존재하는 원소물질을 조합해 어떠한 형태의 이종촉매도 다양하게 구현할 수 있다는 큰 장점을 갖는다. 특히 이종 원소간 조성비를 쉽게 조절할 수 있고 금속간화합물도 제조할 수 있어 신조성을 갖는 촉매 합성 측면에서 매우 획기적인 방법이다. 예를 들어 백금이 기준 촉매일 때 백금팔라듐(PtPd), 백금니켈(PtNi), 백금루테늄(PdRu), 백금이트륨(PtY3) 등 다양한 이종 합금촉매로 확장할 수 있다. 연구팀은 개발된 이종촉매 입자를 넓은 비표면적과 다공성 구조를 갖는 금속산화물 나노섬유에 결착시켜 특정 생체지표 기체에만 선택적으로 반응하는 감지소재를 개발했다. 이종촉매가 결착된 나노섬유 센서는 기존에 촉매 활성이 가장 뛰어나다고 알려진 백금이나 팔라듐 촉매보다 약 3~4배 이상 감지 특성이 향상됨을 확인했다. 특히 아세톤이나 황화수소 가스는 1ppm에서 감도가 100배 수준으로 바뀌는 최고 수준의 감도 특성이 관찰됐다. 연구팀은 다양한 종류의 감지 소재가 적용된 복합 센서 배치(sensor array) 시스템을 이용해 사람의 지문을 인식하듯 개개인의 호흡을 패턴 인식해 일반인도 쉽게 건강 이상을 판별할 수 있는 질병진단 플랫폼을 개발했다. 16종의 다른 선택성을 갖는 센서를 어레이화하는데 성공했으며, 환자의 건강상태에 따라 날숨 농도변화가 다르게 나타나기 때문에 날숨 속 가스 정보를 지문처럼 패턴화하여 개인의 건강 변화를 지속적으로 모니터링 하는 헬스케어 기기에 적용할 수 있다. 김 교수는 “기존에 센서에 사용된 적이 없는 2 nm 크기의 이종촉매를 단백질을 이용하여 적용함으로써, 질병과 연관된 생체지표 가스에 고감도 및 고 선택성으로 반응하는 센서소재 라이브러리를 구현할 수 있다”며 “앞으로 다양한 촉매 군을 확보하면 수많은 질병을 진단할 수 있는 센서를 개발할 수 있다”고 말했다. 또한 “호흡으로 질병을 진단하는 센서는 누구나 손쉽게 스스로 진단할 수 있는 자가 진단 기기의 시작으로 의료비 지출 상승을 막고 지속적 건강관리에 큰 도움이 될 것이다”고 말했다. 이번 기술과 관련된 특허들은 지난 3월과 6월 각각 벤처기업과 중소기업에 기술이전 됐다. 본 연구는 미래창조 과학부 웨어러블 플랫폼소재 기술센터 과제와 바이오의료기술개발사업 과제의 지원으로 이루어졌다. □ 그림 설명 그림1. 어카운트 오브 케미칼 리서치 표지 이미지 그림2. 다종 입자 촉매 그림3. 함금촉매 합성 그림4. 다종센서 어레이_날숨 분석 센서
2017.07.18
조회수 34846
김호민 교수, 뇌의 시냅스 구조 및 기능 조절 단백질 구조 규명
< 김 호 민 교수 〉 우리 대학 의과학대학원 김호민 교수와 DGIST 고재원 교수 공동 연구팀이 신경세포 연결을 조절하는 핵심단백질인 MDGA1의 3차원 구조를 최초로 규명해 시냅스 발달을 조절하는 원리를 제시했다. 이번 연구 내용은 신경생물학 분야 국제학술지 ‘뉴런(Neuron)’ 6월 21일자 Issue Highlight에 게재됐다. 뇌는 많은 신경세포로 이뤄져 있고 두 신경세포가 연접하면서 형성되는 시냅스라는 구조를 통해 신호를 전달하면서 그 기능을 수행한다. 대표적인 시냅스 접착 단백질로 알려진 뉴롤리진(Neuroligin)과 뉴렉신(Neurexin)은 상호작용을 통해 흥분성 시냅스(excitatory synapse)와 억제성 시냅스(inhibitory synapse)의 발달 및 기능을 유지한다. 연구팀은 뉴롤리진(Neuroligin)과 뉴렉신(Neurexin)의 결합을 조절하는 MDGA1의 3차원 구조와 억제성시냅스(inhibitory synapse)의 형성을 저해하는 원리를 최초로 규명했다. 김 교수는 “단백질 구조생물학과 신경생물학의 유기적인 협력 연구를 통해 시냅스 발달 조절에 핵심적인 MDGA1의 구조와 작용 메커니즘을 규명했다는데 의미가 있다”며 “시냅스 단백질들의 기능 이상으로 나타나는 다양한 뇌정신질환의 발병 메커니즘을 폭넓게 이해하는 밑거름이 될 것이다. 향후 뇌신경·뇌정신질환 치료제 개발에 활용될 수 있을 것으로 기대된다.”고 말했다. 이번 연구는 미래창조과학부 기초연구지원사업(개인연구)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 시냅스 조절하는 핵심단백질 구조 최초 규명 그림2. 시냅스 단백질 MDGA1에 의해 조절되는 억제성 시냅스 형성 분자 메커니즘
2017.07.11
조회수 21589
허원도 교수, 빛으로 단백질군집형성 속도 10배 높이는 새 광유전학 기술 개발
〈 허 원 도 교수 〉 우리 대학 생명과학과 허원도 교수 연구팀이 청색광 수용 단백질인 크립토크롬2(Cryptochrome2)를 변형한 크립토크롬2 클러스트(CRY2clust)를 개발했다. 이를 통해 기존에 비해 약 10배 더 빠른 반응속도로 단백질 군집을 형성하는 데 성공했다. 이번 연구결과는 네이처 자매지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 23일자에 게재됐다. 세포막 단백질이나 신호전달 단백질, 효소 등 많은 단백질은 자신들끼리 서로 군집을 이룰 때 제 기능이 활성화된다. 그 동안 화학물질을 이용해 단백질 군집 형성을 유도하려는 노력이 이뤄져왔으나 부작용과 시간적 제약 등 한계가 있었다. 광유전학 분야 연구자들은 화학물질을 사용하지 않는 대신 빛을 이용해 단백질 군집을 형성하고자 식물의 청색광 수용 단백질인 크립토크롬2를 활용했다. 허원도 교수 연구팀은 크립토크롬2의 일부 구조를 변형해 기존 크립토크롬2를 활용한 광유전학 기술보다 단백질 군집을 더 빠르게 만들 수 있는 방법을 찾았다. 크립토크롬2의 단백질 사슬 C말단(C-terminal)에 9개의 아미노산 잔기로 구성된 매우 짧은 펩티드(Peptide)를 부착하자 일반 크립토크롬2보다 빛에 10배 이상 더 빠르게 반응한다는 사실을 관찰한 것이다. 연구진은 이 기술을 CRY2clust라 이름 붙였다. 연구팀은 과거 자체 개발한 광유전학 기술에 CRY2clust를 접목해 CRY2을 이용한 기존 시스템과의 단백질 활성 효율의 차이를 확인했다. CRY2clust를 사용하면 빛으로 세포막의 칼슘이온채널을 훨씬 빠르게 끄고 켜거나(광유도 칼슘이온채널 활성 시스템 ; OptoSTIM1) 신경세포의 분화를 더욱 효율적으로 조절(광유도 신경성장인자 수용체 활성 시스템 ; OptoTrkB)할 수 있었다. 연구진은 더 나아가 실험실에서 단백질 군집 형성에 주로 활용하는 여러 형광단백질(Fluorescent protein)과 크립토크롬2를 짝지어 결합해봄으로써 빛을 이용해 단백질 군집을 더 효율적으로 만들 수 있는 조합의 조건을 찾았다. 형광단백질이 하나보다는 여러 개가 결합한 형태일수록 빛을 비추었을 때 광유도 클러스트를 더욱 높은 비율로 형성했다. 또한 형광단백질을 크립토크롬2의 단백질 사슬 말단 중 N말단이 아닌 C말단에 붙이는 경우 광유도 클러스트 형성 효율이 더 높은 것으로 확인됐다. 단백질 군집이 잘 형성되는 조건을 찾았다는 점에서 연구자의 실험 선택의 폭을 넓혀준 데 의의가 있다. 허원도 교수 연구팀은 CRY2clust를 개발해 빛을 이용한 단백질의 활성을 훨씬 효율적으로 유도하는데 성공했다. 허원도 교수는 “이번 연구에서 개발한 CRY2clust는 향후 광유전학 분야의 실험에 유용한 도구가 될 것이다”며“다양한 형광단백질-CRY2 조합을 통해 찾은 단백질 군집 형성 성공 요인은 광유전학 시스템 개발에 길잡이 역할을 할 것이다”고 말했다. □ 그림 설명 그림1. 기존 크립토크롬2 대비 CRY2clust의 단백질 군집 형성 속도 그림2. CRY2clust 시스템을 적용한 광유도 단백질 기능 조절 그림3. 형광단백질을 이용한 다양한 단백질 군집 형성
2017.06.26
조회수 16038
2017 KAIST 리서치 데이, 23일 개최
‘2017 KAIST 리서치 데이(Research Day)’ 행사가 23일 오전 10시 30분부터 KI빌딩 1층 퓨전홀에서 열린다. 이 행사는 우리대학이 최근의 주요 연구 성과를 소개하는 한편 제4차 산업혁명 관련 R&D 분야에 대한 정보와 지식, 노하우 등을 공유함으로써 융합연구를 활성화한다는 취지로 2016년 5월 처음 마련했다. 작년에 이어 올해 두 번째를 맞는 이날 행사는 △연구부문 우수교원 및 우수 연구 성과 포상 △수상자 강연 △첸 쉐이(CHEN Shiyi) 중국 남방과학기술대(SUSTech, Southern University of Science and Technology) 총장 특별강연 등의 순으로 진행된다. 우선 2017년 연구대상은 건설및환경공학과 손훈 교수가, 연구상 수상자로는 기계공학과 오준호 삼성 지정석좌교수와 생명화학공학과 이상엽 특훈교수가 각각 선정됐다. 이노베이션상은 물리학과 박용근 교수, 융합연구상은 물리학과 이용희 교수와 신소재공학과 신종화 교수가 각각 수상한다. 대표 연구 성과로는 △3차원 홀로그래픽 현미경(박용근 교수·물리학과) △맞춤형 단백질 변형기술(박희성·화학과) △찔러도 피가 나지 않는 무출혈 주사바늘(이해신·화학과) △이동식 펄스에코 레이저 초음파 전파영상화 시스템(이정률·항공우주공학과) △복굴절을 이용한 3차원 깊이 측정기술(김민혁·전산학부) 등 자연과학분야 4건, 생명과학분야 1건, 공학분야 5건 등 모두 10건이 선정됐다. 우리대학은 이날 행사에서 이들 10선에 뽑힌 연구 성과물에 대해 시상하는 한편 동영상을 통해 참석자들에게 소개하는 시연회도 갖는다. 이와 함께 오후 2시부터는 첸 쉐이(CHEN Shiyi) 중국 남방과학기술대(SUSTech, Southern University of Science and Technology) 총장이 ‘4차 산업혁명과 사회적 가치창출을 위한 기업가 정신’이란 주제로 특별 강연회를 가질 예정이다. 교수와 학생 등 우리대학 구성원은 물론 일반시민들까지 누구든 사전신청 없이 이 행사에 참여할 수 있다.
2017.05.18
조회수 23845
박희성 교수, 맞춤형 단백질 변형기술 동물 모델 적용에 성공
우리 대학 화학과 박희성 교수 연구팀이 아주대 의과대학 박찬배 교수와의 공동 연구를 통해 동물 모델에서 단백질의 아세틸화 변형을 조절할 수 있는 기술을 개발했다. 인간의 질병 연구에 대표적으로 쓰이는 쥐 모델에서 단백질 아세틸화를 조절할 수 있게 돼 다양한 질병의 원인을 밝힐 수 있을 것으로 기대된다. 이번 연구는 미래창조과학부의 글로벌프런티어사업(의약바이오컨버젼스연구단, 단장 김성훈)과 지능형 바이오시스템 설계 및 합성연구단(단장 김선창), 식약처의 미래 맞춤형 모델동물개발 연구사업단(단장 이한웅)의 지원을 받아 수행됐다. 이번 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 21일자 온라인 판에 게재됐다. 우리 몸의 세포에서 만들어지는 2만 여종의 단백질은 생합성 이후 인산화, 아세틸화, 당화 등 200여 종의 다양한 변형(post-translational modification)이 발생하게 된다. 세포 내 단백질들은 다양한 변형을 통해 기능과 활성이 조절되며 이러한 변형은 생체 내에서 세포 신호 전달 및 성장 등 우리 몸의 정상적인 신진대사 활동을 조절하는 매우 중요한 역할을 한다. 하지만 유전적 또는 환경적 요인으로 인해 단백질 변형이 비정상적으로 일어나면 세포의 신호 전달, 대사 활동 등이 손상돼 암, 치매, 당뇨를 포함한 다양한 중증 질환을 유발한다. 기존에는 이러한 비정상적 단백질 변형을 동물 모델에서 인위적으로 유발시키고 제어하는 기술이 존재하지 않아 질병의 원인 규명 및 신약 개발 연구에 어려움이 있었다. 박 교수팀은 2016년 9월 다양한 비정상 변형 단백질을 합성할 수 있는 맞춤형 단백질 변형 기술을 개발해 사이언스(Science)지에 발표한 바 있다. 연구팀은 기존 연구를 더 발전시켜 각종 암과 치매 등의 이유가 되는 퇴행성 신경질환의 원인인 비정상적인 단백질 아세틸화를 동물 모델에서 직접 구현하는 기술을 개발했다. 연구팀은 이 기술을 바탕으로 실험용 쥐의 특정한 발달 단계나 시기에 표적 단백질의 특정 위치에서 아세틸화 변형을 조절할 수 있음을 증명했다. 또한 다른 조직에 영향을 주지 않고 간이나 콩팥 등 특정 조직이나 기관에서만 표적 단백질의 아세틸화 변형 제어가 가능함을 확인했다. 연구팀은 “이 기술은 암과 치매 등 단백질의 비정상적 변형으로 발생하는 각종 질병의 바이오마커 발굴 등 질병 원인 규명 연구의 획기적인 전기를 마련할 것으로 기대된다”고 말했다. 박희성 교수는 “실용화 될 경우 지금까지 실현이 어려웠던 다양한 질병에 대한 실질적 동물 모델을 제조할 수 있을 것으로 전망된다”며 “향후 맞춤형 표적 항암제 및 뇌신경 치료제 개발 등 글로벌 신약 연구에 새 패러다임을 열 것이다”고 말했다. □ 그림 설명 그림1. 아세틸화 변형 조절 마우스 개발 및 아세틸화 제어 결과 그림2. 비정상적인 단백질 변형 및 각종 질병의 모식도
2017.03.06
조회수 22272
올해의 KAIST인 상, 화학과 박희성 교수
〈 박 희 성 교수 〉 우리 대학은 2016년 올해의 KAIST인 상에 화학과 박희성(46) 교수를 선정하고 2일 오전 10시 교내 대강당에서 열리는 2017년도 시무식에서 시상했다. 16회째를 맞는 올해의 KAIST인 상은 한 해 동안 국내외에서 KAIST 발전을 위해 노력하고 교육, 연구 실적이 탁월한 인물에게 수여한다. 수상자인 박희성 교수는 암과 치매 등 각종 질병을 유발하는 것으로 알려진 단백질의 비정상적인 변형을 재현할 수 있는 맞춤형 단백질 변형 기술을 개발해 KAIST의 위상을 높인 공을 인정받았다. 박 교수는 지난 2011년 암을 일으키는 원인으로 알려진 비정상적인 단백질 인산화를 조절하는 기술을 개발해 저명 학술지인 ‘사이언스(Science)’지에 논문을 발표했다. 이후 박 교수는 선행 연구를 발전시켜 인산화 이외 200여 종의 다양한 단백질 변형을 구현할 수 있는 기술을 개발하는데 성공해 지난 9월 사이언스(Science)지에 논문을 발표했다. 박 교수의 맞춤형 단백질 변형 기술은 암을 포함한 각종 질병의 직접적인 원인을 밝히는데 유용하게 쓰일 것으로 기대된다. 또한 향후 표적항암제 개발 등 글로벌 신약개발 연구에 새로운 방향을 제시할 것으로 예상된다. 박 교수는 “KAIST를 대표하는 상을 수상하게 돼 커다란 영광이며 동시에 무거운 책임감을 느낀다” 며 “KAIST가 명실상부한 세계 최고의 교육 연구기관이 되는데 보탬이 되도록 최선을 다해 노력하겠다”고 말했다.
2017.01.02
조회수 14248
김호민 교수, 패혈증 원인 물질의 생체 내 메커니즘 최초 발견
우리 대학 의과학대학원 김호민 교수와 연세대학교 윤태영 교수 공동 연구팀이 우리 몸이 패혈증의 원인 물질인 박테리아 내독소를 어떻게 받아들이고 전달하는지 규명했다. 이를 통해 박테리아 내독소가 생체 내 단백질로 전달되는 분자 원리를 밝혀냄으로써 내독소가 전달되는 길목을 차단해 패혈증을 치료할 수 있는 새로운 가능성이 제시됐다. 패혈증은 감염에 의해서 과도하게 활성화된 면역반응에 따른 전신성 염증반응 증후군이다. 이 연구는 면역학 분야 국제 학술지이며, 셀(Cell) 자매지인‘이뮤니티 (Immunity)’12월 13일자에 게재되었다. 그람 음성균 세포외막에 존재하는 내독소는 생체 내 단백질을 통해 면역세포 표면의 세포수용체로 전달돼 선천성 면역 반응을 활성화시킨다. 감염에 의한 혈액 내 내독소 다량 유입은 고열, 혈압저하, 장기손상 등 과도한 염증반응의 결과인 패혈증으로 이어질 수 있지만, 내독소 인식 및 전달 관련 구체적인 분자 원리가 밝혀져 있지 않아 패혈증 치료제 개발에 한계가 있었다. 연구팀은 문제 해결을 위해 단분자 형광기법과 바이오 투과전자현미경을 활용했다. 마이셀(Micelle) 형태로 존재하는 내독소 표면에 막대 모양의 LBP가 결합하여 내독소를 인식하고, 여기에 CD14가 빠르게 결합해 내독소 한 분자를 가져간 후 면역세포 수용체인 TLR4-MD2와의 상호결합을 통해 건네주는 내독소 인식 및 전달 원리를 확인했다. 박테리아 내독소와 정제된 LBP 단백질을 혼합해 바이오투과전자현미경으로 사진을 찍은 후 각각의 분자의 모양을 컴퓨터를 활용한 이미지 프로세싱을 통해 분석함으로써 내독소와 결합한 LBP 단백질 구조를 최초로 규명했다. 특히 막대모양의 LBP 단백질이 그들의 N-도메인 끝을 통해 내독소 마이셀 표면에 결합함으로써 박테리아 내독소만을 특이적으로 인식하는 것을 발견했다. 연구팀은 박테리아 내독소에 형광을 부착시킨 후 내독소 항체를 활용해 유리슬라이드 표면에 코팅시키고, LBP, CD14, TLR4-MD2 단백질들을 흘려주면서 박테리아 내독소, LBP, CD14, TLR4-MD2 분자 하나하나의 동적인 움직임을 실시간으로 관찰하는 단분자 형광 시스템을 최초로 구축했다. 이를 통해 박테리아 내독소 표면에 결합한 LBP 단백질로부터 CD14 단백질이 내독소 한 분자만을 반복적으로 가져간 후 빠르게 TLR4-MD2로 전달함으로써 선천성 면역의 세포신호전달을 활성화 시키는 분자메커니즘을 최초로 규명했다. 또한 마우스 면역세포인 수지상세포를 활용하여 첨단 생물물리학적인 기법을 통해 제시한 분자메커니즘이 생체 내에서 내독소를 인식하여 면역반응을 유발하는 핵심 메커니즘을 검증했다. 기존의 실험방법으로 접근이 어려웠던 LBP, CD14, TLR4-MD2 단백질들 간의 동적인 상호작용을 최신 첨단 실험기법을 통하여 분자수준에서 규명함으로써 생체 내 내독소 인식 및 전달메커니즘을 규명했다. 연구 방법 및 결과는 박테리아 감염에 의한 선천성 면역 연구에 새로운 방향을 제시할 것이며 특히 이 연구에서 규명한 분자적, 구조적 지식들은 패혈증 발병메커니즘 연구 및 치료제 개발에 적극 활용될 수 있을 것으로 기대된다. 김호민 교수는“박테리아 내독소가 생체 내 단백질들의 동적인 상호작용에 의해 면역세포로 전달되는 일련의 과정들을 분자수준에서 최초로 밝힌 것이다”며 “박테리아 내독소 인식 및 전달메커니즘 이해를 통하여 선천성 면역 유발 메커니즘 이해뿐만 아니라 패혈증 예방 및 치료제 개발에 기여할 것으로 기대된다”라고 말했다. 이번 연구는 미래창조과학부, 한국연구재단 기초연구사업(개인연구, 집단연구), IBS 나노의학연구단의 지원으로 수행됐다. □ 그림 설명 그림1. 생체 내 박테리아 내독소 전달 메커니즘
2016.12.27
조회수 21299
박희성, 이희윤 교수, 암, 치매 유발하는 '변형 단백질' 생산기술 개발
우리 대학 화학과 박희성 교수, 이희윤 교수 공동 연구팀이 암과 치매 등 각종 질병을 유발 원인으로 알려진 단백질의 비정상적인변형을 구현할 수 있는 맞춤형 단백질 변형기술을 개발했다. 양애린 박사가 1저자로 참여한 이번 연구 결과는 ‘사이언스(Science)’ 9월 29일자 온라인 판에 게재됐고 '가장 중요한 논문(First Release)'에 선정됐다.(논문명 : A chemical biology route to site-specific authentic protein modifications) 신체의 기본 단위인 세포는 2만여 종의 유전자를 가지고 있다. 여기서 만들어지는 단백질의 종류는 100만 종 이상으로 추정된다. 이는 단백질이 만들어진 후 다양한 단백질 변형(post-translational modification) 현상이 일어나기 때문이다. 이러한 단백질 변형의 원인으로는 인산화, 당화, 아세틸화, 메틸화 등 200여 종이 알려져 있으며, 정상적으로 변형된 단백질들은 생체 내에서 세포 신호 전달, 성장 등 정상적인 신진대사 활동에 중요한 역할을 한다. 그러나 유전적, 환경적 요인으로 인해 비정상적 단백질 변형이 일어나면 세포의 대사활동과 신호전달이 손상돼 세포의 무한 분열을 초래하기도 한다. 각종 암은 물론 치매를 일으키는 퇴행성신경질환 및 당뇨를 포함한 각종 만성질환을 유발한다. 이전에는 이러한 비정상적인 단백질 변형을 구현한 맞춤형 변형 단백질 개발기술이 존재하지 않아 각종 질병의 원인 규명과 맞춤형 신약 개발 연구에 많은 어려움이 있었다. 연구팀은 2011년 암을 일으키는 직접적인 원인으로 알려진 비정상적인 단백질 번역 후 인산화를 구현하기 위한 맞춤형 인산화 변형 단백질 생산기술을 개발해 사이언스지에 논문을 발표했었다. 이번 연구는 지난 2011년의 선행연구 결과를 더욱 발전시켜 인산화 이외에 당화, 아세틸화 등과 같은 다른 200여종의 단백질 변형을 직접 구현해 원하는 변형 단백질을 합성할 수 있는 기술이다. 박 교수는 “이 기술을 활용하면 원하는 위치에서 원하는 종류의 맞춤형 변형 단백질 생산이 가능해져 암과 치매 등 단백질 변형으로 인해 발생하는 질병의 직접적인 원인을 밝힐 수 있다”며 “신약 및 치료제 개발 속도를 높이고 발생할 수 있는 부작용을 최소화할 수 있는 획기적인 기술이다”고 말했다. 이번 연구는 글로벌프론티어 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 맞춤형 단백질 변형 기술 개발 그림2. 맞춤형 단백질 변형 기술의 활용
2016.10.03
조회수 12335
허원도 교수, 세포의 이동 방향 결정하는 방향타 단백질 발견
〈 허 원 도 교수 〉 우리 몸의 세포는 가만히 멈춰있는 것이 아니라 이동한다. 세포가 특정 방향으로 이동하는 과정은 배아 발달, 상처 치유, 면역 반응 등에 필수적이다. 우리 몸 여러 기관에 암이 전이되는 현상도 암 세포의 이동 때문에 발생한다고 볼 수 있는데 이처럼 세포의 이동은 다양한 생리 및 병리적 조건에서 중요한 역할을 담당한다. 세포 이동에는 여러 종류의 소형 GTP 결합 단백질과 이 단백질의 활성을 조절하는 GEF 단백질들이 관여한다. 세포는 진행 방향 부위의 소형 GTP 결합 단백질(Rac1, Cdc42)이 활성화되면서, 동력을 내는 액틴 섬유를 중합(polymerization)해 지느러미 같은 돌출부를 만들어 앞으로 나아갈 수 있다. 그러나 기존 연구에서는 세포 이동을 관장하는 여러 종류의 GEF 단백질을 세포에 발현시켜도 세포의 이동이 크게 증가하지 않는 한계가 있었고, 세포 이동의 구체적인 작동원리를 밝히지 못했다. 우리 대학 생명과학과 허원도 교수 연구진은 GEF 단백질 중 하나인 ‘PLEKHG3’ 단백질이 세포의 이동 방향을 결정하는 ‘방향타’ 역할을 담당한다는 사실을 처음으로 발견했다. 또한, 독자적으로 개발한 광유전학 기술(광유도 분자 올가미, LARIAT)을 접목, 빛으로 ‘방향타 단백질(PLEKHG3)’ 의 활성을 조절해 세포의 이동을 실시간으로 제어하는 데 성공했다. 연구진은 바이오이미징 기술로 세포 내 63개 GEF 단백질들의 분포양상을 분석해, 세포가 이동하는 동안 세포이동을 조절할 가능성이 높은 GEF 단백질들을 선별했다. 그 중 PLEKHG3가 세포의 진행 방향 부위로 빠르게 이동하는 현상을 확인했다. 방향타 역할을 하는 이 단백질은 해당 부위에서 소형 GTP 결합 단백질을 활성화해 세포 골격을 이루는 액틴 섬유를 형성한다. 액틴 섬유는 그물망을 이루며 지느러미 같은 돌출부를 형성,해 세포를 앞으로 나아가게 한다. 이 과정에서 방향타 단백질은 액틴 섬유 자체와도 매우 강하게 결합하는데, 이 결합이 소형 GTP결합 단백질의 활성을 더욱 촉진시킴으로써 세포의 이동 속도를 더 빠르게 한다는 사실을 발견했다. 또한 연구진은 광유전학 기술로 방향타 단백질의 활성을 조절해 세포가 움직이는 방향을 인위적으로 제어하는 데 성공했다. 청색광 수용체를 이용해 만든 융합 단백질이 발현된 세포에 청색광을 비추면 융합단백질이 PLEKHG3를 올가미처럼 붙잡아 PLEKHG3의 움직임을 방해하는 원리를 활용했다. 이에 따라 빛을 비추면 세포는 이동을 멈추고, 빛을 끄면 PLEKHG3의 활성이 다시 정상화돼, 세포는 움직인다. 빛을 비추는 부위를 조정해서, 세포의 이동방향도 제어할 수 있음을 확인했다. 본 연구는 방향타 단백질인 PLEKHG3가 세포를 움직이게 하는 핵심 단백질임을 밝히고, 광유전학 기술로 빛을 통해 세포의 이동을 자유롭게 제어한 데 의의가 있다. 허원도 교수는 “세포 이동을 극대화하는 새로운 메커니즘을 밝혀 암세포 전이 및 면역 세포 이동을 연구할 수 있을 것으로 기대된다”고 말했다. 이번 연구결과는 국제 학술지 미국국립과학원회보(PNAS) 8월 23일자 온라인 판에 게재됐다. □ 그림 설명 그림1. 세포내 PLEKHG3의 위치분석 그림2. 세포이동시 PLEKHG3의 세포내 위치추적 그림3. PLEKHG3에 의한 새로운 세포이동 메커니즘
2016.08.24
조회수 13128
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
>
다음 페이지
>>
마지막 페이지 9