본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%8B%A4%EC%9D%B4%EC%98%A4%EB%93%9C
최신순
조회순
정기훈 교수, 반딧불이 구조 적용한 유기발광다이오드(OLED) 개발
〈 정 기 훈 교수 〉 우리 대학 바이오 및 뇌공학과 정기훈 교수 연구팀이 반딧불이 발광기관 구조의 광학적 역할을 밝혀내고 이를 공학적으로 모사하는데 성공했다. 이를 통해 기존 유기발광다이오드(Organic Light-Emitting Diode: OLED) 보다 발광효율을 향상시킨 반딧불이 모사 유기발광다이오드를 개발했다. 김재준 박사가 주도한 이번 연구는 나노분야의 국제 학술지 ‘나노 레터스(Nano Letters)’ 5일자 온라인 판에 게재됐다. 반딧불이는 스스로 빛을 내는 대표적인 자연발광체이며 자연계 내에서 가장 높은 발광효율을 가져 예전부터 반딧불이에 대한 연구가 이뤄졌다. 이전 연구는 주로 발광 원리를 밝혀내는 과정에 집중됐고 상대적으로 반딧불이 발광기관의 광학적 구조에 대한 연구는 활발하지 않았다. 반딧불이의 발광기관은 외피층, 발광세포층, 반사층으로 구성된다. 발광세포층은 빛을 발생시키는 역할, 반사층은 외피층으로 향하지 않는 빛을 반사시키는 역할을 하고 최종적으로 발생된 빛은 외피층을 통해 밖으로 빠져나간다. 이 중 빛을 발생시키는 발광세포층에 대한 연구는 많이 이뤄졌지만 반사층 및 외피층이 어떤 광학 구조를 갖고 어떤 역할을 수행하는지는 명확하지 않았다. 연구팀은 반딧불이의 발광기관 외피에 마이크로 및 나노구조가 결합된 계층적 구조가 있음을 발견했다. 그리고 광학수치해석과 실험을 통해 이 계층적 구조의 역할은 발광세포층에서 발생되는 빛을 효과적으로 추출하면서 넓은 광 분포를 구현하는 것임을 밝혀냈다. 연구팀은 이러한 반딧불이의 광학구조를 OLED에 적용해 기존 OLED가 갖는 문제점을 해결하고자 했다. OLED는 발생된 빛이 내부에 갇혀 약 20%의 빛만 외부로 추출되는 문제를 갖는다. 연구팀은 반도체공정 및 미세몰딩공정을 이용해 반딧불이의 광학구조를 모사하는데 성공했고, 이를 OLED에 적용해 광 추출 효율을 최대 61%까지 향상시켰다. 또한 계층적 구조를 이용해 기존 OLED보다 넓은 광 분포도를 구현했다. 향후에는 광학구조의 설계 변경을 통한 다양한 광 분포 조절로 OLED 기반 조명 및 디스플레이에 적용이 가능하고 이를 통해 OLED의 발광 효율을 효과적으로 향상시킬 수 있을 것으로 기대된다. 연구팀은 “반딧불이 발광기관에서 발견된 계층적 광학구조를 성공적으로 모사했고 이를 통해 OLED의 발광효율을 효과적으로 향상시켰다”며 “이 연구를 기점으로 생물발광기관 모사 연구가 활발히 진행될 것으로 기대된다”고 말했다. 정 교수는 “이번 연구는 자연의 신비를 밝힘과 동시에 OLED의 광추출 효율을 높이는 새로운 방법을 제시했다”며 “이 연구가 생물발광체 관련 생체모사연구에 대한 연구자들의 관심을 불러일으킬 것이다”고 말했다. □ 그림 설명 그림1. 기존 OLED(좌)와 반딧불이 모사 OLED의 발광 사진(우) 그림2. 반딧불이 사진 그림3. 반딧불이 발광기관에서 발견된 계층적 구조의 전자현미경 사진(비대칭 마이크로구조 위에 나노구조가 형성되어 있음) 그림4. 반딧불이 모사 OLED의 구조
2016.04.26
조회수 10830
빛의 속도로 빠른 단방향 광전달 소자 개발
우리 학교 물리학과 조용훈 교수 연구팀은 반도체 나노와이어를 이용해 빛을 한쪽 방향으로만 선택적으로 전달할 수 있는 광자 다이오드를 개발했다. 개발된 광자 다이오드 구조는 직경이 수백 나노미터에 길이가 수 마이크로미터 정도로 크기가 매우 작아 고집적회로에 사용할 수 있으며 입사광의 편광방향에도 덜 민감해 효과적으로 활용가능하다. 집적회로에서 전자의 흐름을 제어하는 다이오드를 전자 대신 빛을 이용해 구동하는 방식으로 만들면 정보를 초고속으로 처리하고, 전송 손실이 작아지기 때문에 에너지 소비를 줄일 수 있어 꼭 필요한 미래기술이다. 그러나 기존에 비대칭메타물질이나 광결정구조 등을 이용한 기존의 광자 다이오드 방식은 크기가 커서 고집적회로에 적용하기 어렵다. 또 입사광의 편광방향과 입사 각도에 민감해 제한된 환경에서만 사용할 수 있었다. 연구팀은 수 마이크로미터 이하의 질화물반도체 나노와이어를 이용해 양 방향으로 빛이 나오는 강도가 크게 다른 높은 효율의 광자 다이오드를 개발했다. 개발된 반도체 나노와이어는 길이 방향으로 큰 에너지 차이를 보이는데 이는 나노와이어에 형성된 양자 우물의 두께와 양자우물 층의 인듐 함량을 길이 방향으로 연속적으로 제어했기 때문이라고 연구팀은 전했다. 연구를 주도한 조용훈 교수는 “길이 방향으로 나타나는 에너지의 큰 차이는 비대칭적으로 빛의 진행을 일으켜 광자 다이오드로서 작동하게 되는 것”이라며 “집적회로에서 전자 대신에 광자를 활용하면 정보의 전달속도가 빛의 속도에 근접할 정도로 빨라질 것으로 예상된다”고 말했다. 이번 연구는 나노 분야의 권위 있는 학술지인 ‘나노 레터스(Nano Letters)’ 9월10일자 표지논문으로 게재됐다. KAIST 물리학과 조용훈 교수의 지도를 받아 고석민(제1저자)·공수현(제2저자) 박사과정 학생이 수행한 이번 연구는 한국연구재단이 추진하는 중견연구자 지원 사업과 KAIST EEWS 연구센터 사업의 지원을 받아 수행됐다. 반도체 나노와이어로 만든 광자 다이오드가 광집적회로에 적용된 가상의 모습
2014.09.22
조회수 9396
박정영 교수, 핫전자 태양전지 원천기술 개발
- Nano Letters 발표, “에너지 손실을 최소화한 핫전자 태양전지 개발 가능성 열어”- 태양광을 흡수하여 생성되는 핫전자 태양전지 원천기술이 국내 연구진에 의해 개발되었다. 우리 학교 EEWS 대학원 박정영 교수(41세, 교신저자, 지속가능한 에너지공학기술사업단 해외학자)가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 WCU(세계수준의 연구중심대학)육성사업과 중견연구자지원사업의 지원을 받아 수행되었고, 연구결과는 나노과학 분야의 권위 있는 학술지인 ‘Nano Letters’ 온라인 속보(9월 14일)에 게재되었다. (논문명 : Surface Plasmon-Driven Hot Electron Flow Probed with Metal-Semiconductor Nanodiodes) 박정영 교수팀은 태양광을 흡수하여 생성되는 핫전자와 표면플라즈몬의 상관관계를 규명하였다. 박 교수팀은 금속박막과 산화물 반도체로 이루어진 나노다이오드를 이용해 빛에 의해 표면에 여기된 핫전자를 검출하고, 나노다이오드 금속박막의 표면처리를 통해 수십 나노미터 크기의 나노섬 형태로 변형하였는데, 이러한 나노섬은 표면플라즈몬을 보여준다. 연구팀은 나노다이오드에 검출된 핫전자를 측정하여 표면플라즈몬에 의한 핫전자의 증폭을 관찰하였다. 이는 표면플라즈몬이 핫전자의 생성을 극대화시키고, 이 원리는 태양전지의 효율을 높이는데 활용될 수 있다. 이 연구에는 EEWS 대학원의 이영근 석사과정생 (제 1저자)와 정찬호 박사과정생 (제 2저자) 이 참여하였다. 박정영 교수는 “핫전자를 정확히 이해하고 측정하는 것은 에너지 손실과정을 근본적으로 이해할 수 있도록 도와준다는 점에서 표면과학 및 에너지공학에서 매우 중요하다. 이번 핫전자 원천기술의 개발은 핫전자를 이용한 고효율 에너지 전환소자 개발에 응용이 될 수 있다”고 연구의의를 밝혔다. <그림>표면플라즈몬에 의해서 증폭된 핫전자의 측정을 위한 나노다이오드의 구조
2011.10.06
조회수 14995
생체삽입형 바이오센서 기술 개발
-유연한 GaN LED 기술로 암을 진단- 인간의 주름진 뇌에 부착하거나, 혈관 및 척추를 감싼 유연한 LED에서 발생된 빛으로 질병을 진단하거나 치료할 수 있는 일들이 현실로 가까워지고 있다. 우리 학교 신소재공학과 이건재 교수팀이 최근 질화물 반도체 발광다이오드(GaN-LED)를 유연한 기판 위에 구현해내고 LED에서 발생되는 빛이 암의 항원-항체반응에 의하여 감도 차이가 일어나는 것을 확인함으로써 전립선암 항체를 검출하는 실험에 성공했다. 이번 연구를 계기로 유연한 LED에서 발생하는 녹색, 파란색, 그리고 자외선 영역까지의 다양한 파장의 강한 빛을 이용하면 신경세포를 자극할 수 있어 질병을 치료하는 데에도 응용될 수 있을 것으로 기대된다. 질화갈륨(GaN)은 적은 에너지로 높은 효율의 빛을 낼 수 있는 반도체로 현재 LED TV, 조명 등 산업 전반에 쓰이고 있으나 깨지기 쉬운 성질을 갖고 있다. 연구팀은 딱딱한 기판에서 성장된 얇은 고효율 GaN-LED를 유연한 플라스틱 기판에 전사하고, 생체 친화적인 재료를 사용한 바이오센서를 개발해 인체와 유사한 조건에 적용할 수 있게 했다. 이건재 교수는 “인체에 삽입된 유연한 LED는 인간 생명 연장과 건강한 삶의 중요한 과제를 해결할 수 있는 흥미롭고 새로운 분야로 꿈같은 일들이 실현될 수 있을 것”이라고 말했다. 이번 연구결과는 나노 분야의 세계적인 석학이자 최고 권위자인 미국 조지아 공대 왕종린(Wang, Zhong Lin) 교수가 편집장으로 있는 "나노 에너지(Nano Energy)" 9월호 온라인 판에 게재됐다. 관련 연구는 2009년부터 국내외에 다수의 특허가 출원․등록되었고, 지난 3월에는 KAIST를 대표하는 브랜드 과제로 선정되기도 했다. 한편, 이 교수는 논문의 공동책임으로 참여한 ETRI 성건용 박사팀과 생체이식형 라벨프리(Label-Free) LED 바이오센서에 대해 후속 연구를 계속 진행하고 있다.(끝) <관련 동영상> 생체 친화적이고 유연한 GaN-LED가 빛을 내는 동영상 http://www.youtube.com/watch?v=miqc-o8fOkw <그림설명>구부러지는 유연한 GaN-LED에서 푸른빛이 발생되고 있다.
2011.09.20
조회수 10064
유기발광다이오드 고효율 제조기술 개발
- 용액으로 제조해 값싸며, 대기 중에서 제조할 수 있는 OLED 길 열려 차세대 디스플레이로 각광받는 유기발광다이오드(OLED)의 제조공정이 크게 개선된다. 우리학교 기계공학과 양민양 교수팀은 대기 중에서도 쉽게 제조할 수 있는 고분자 유기발광다이오드를 개발하는 데 성공했다. 연구팀은 음극이나 양극과 같은 금속 전극을 제외한 기능성 층(정공주입층, 발광층, 전자수송층, 전자주입층)을 모두 액상으로 제조할 수 있도록 했다. 이 액상물질은 인쇄기술과 같은 용액공정을 적용할 수 있어 매우 저렴한 비용으로 제조가 가능할 것으로 기대된다. 기존 유기발광다이오드에는 LiF, CsF, Cs2CO3 등과 같은 알칼리․알칼리토금속을 포함하는 물질들이 전자주입층으로 구성돼 있다. 이 전자주입물질들이 음극과 발광층 사이에서 전자가 극복해야 할 전자주입장벽을 낮추어 발광효율을 높이는 역할을 하기 때문이다. 그러나 이 물질들은 대기 중에서 불안정할 뿐만 아니라 1nm(나노미터)정도의 초박막을 진공에서 증착을 통해 막을 입혀야 하기 때문에 대면적으로 얇은 층을 구현하기 어렵다. 또한, 아래층의 표면품질에 소자의 효율이 큰 영향을 받는다는 문제가 있어 모든 층을 용액공정으로 소자를 제조하는 데 어려움이 있었다. 양 교수팀은 5nm의 크기를 갖는 산화아연 나노입자 용액과 암모늄 이온용액을 통해 용액공정의 적용이 가능한 전자수송․주입 복합구조를 제시했다. 이들 용액은 알칼리․알칼리토금속을 전혀 포함하고 있지 않아 대기 중에서 안정해 모든 층을 용액공정으로 제조가 가능해졌다. 특히, 산화아연 나노입자층과 암모늄이온 복합층에 존재하는 암모늄 이온은 일정 이상의 전계를 가하면 발광층과 음극 사이에서 이온들이 전계에 따라 정렬해 계면쌍극자(interface dipole)를 형성한다. 이를 효과적으로 발광층과 음극사이의 전자주입 장벽을 낮추어 알칼리․알칼리 토금속을 사용하지 않음에 의해 발생하는 효율이 저감되는 문제를 극복해 발광효율 10cd/A와 휘도 50000cd/m2의 고성능을 구현했다. 한편, KAIST 양민양 교수와 윤홍석 박사과정 학생이 주도한 이번 연구결과는 권위 있는 학술지인 "어플라이드 피직스 레터스(Applied Physics Letters)"지 12월 14일자 온라인 판에 게재됐고 현재 국내 및 국제 특허 출원 완료됐다. [그림1] 연구팀이 개발한 고휘도 고발광효율 유기발광다이오드
2011.01.25
조회수 10985
KAIST-LG이노텍 LED분야 MOU체결
우리학교는 LG이노텍(대표 허영호)과 LED(발광다이오드)분야 선행기술 개발 및 맞춤형 인재육성을 위해 본관 2회의실에서 양해각서(MOU)를 체결했다고 5일 밝혔다. 양측은 이번 협약으로 KAIST 내에 "LG이노텍-KAIST LED R&D센터"를 설립하고 맞춤형 산학 교육프로그램을 개발해 7월 말부터 운영한다. 아울러 산학장학생을 선발해 장학금을 5년 동안 지원한다. 특히 LED R&D센터를 중심으로 주요 프로젝트를 선정해 KAIST의 우수 교수진 및 학생들과 LG이노텍 연구원들이 공동으로 핵심·원천기술 개발에 나선다. LG이노텍은 KAIST와 LED 선행연구를 통해 핵심·원천기술 및 맞춤형 우수 인재를 안정적으로 확보하고, KAIST는 미래 산업의 우수인재를 발굴, 기업 맞춤형 우수인재로 육성할 계획이다. LG이노텍 관계자는 "이번 산학 협력은 미래 성장동력인 LED분야에서 기술 경쟁력과 우수 인재를 지속 확보할 수 있는 계기를 마련한 것"이라며 "KAIST와의 긴밀한 협력을 통해 글로벌 LED 선도기업 도약에 박차를 가하겠다"고 말했다.
2010.07.05
조회수 12135
확실하게 '튀는' 호기심 많은 석현정 교수
경향신문 2009년 12월 26일(토)자는 우리학교 산업디자인학과 석현정교수를 인물면에서 그 제목으로 "확실하게 "튀는" 호기심 많은 여자랍니다"라는 제목으로 소개했다. 감성색채공학전문가 석현정 교수는 수학을 넘어 과학의 매력에도 빠지기 시작하던 무렵 과학고에 진학한 후 공학도였던 부친의 결정적인 조언에 힘입어 디자이너의 꿈을 키웠다. 당시만 해도 이공계 배경이 디자인을 전공하는데 자산이 될 수 있다는 것을 쉽게 이해하지 못하는 분위기였지만, 여러 만류를 뿌리치고 KAIST 산업디자인학과에 진학 한 그는 10여년이 지난 후, "감성 색채 공학(affective color engineering)" 전문가가 되었다. 1) 다음은 경향신문에 보도된 관련기사 기사보기 확실하게 "튀는" 호기심 많은 여자랍니다 매체: 경향신문 일시: 2009년 12월 26일(토) 지면: 21면(사람과 사람) 기자: 윤희일 기자(yhi@kyunghyang.com) 2) 다음은 11월 19일자로 카이스트 뉴스웹진(카이스타)에 실린 관련기사 전문 초·중학생 시절, 연관성이 적은 듯 보이는 미술과 수학 두 과목에 열의와 재능을 보였다. 덕분에 사생대회와 경시대회 모두 학교대표로 출전하는 영광을 누렸다. 처음 진로 선택의 기로에 선 것은 고등학교 진학 때. 당시 수학을 넘어 과학의 매력에도 빠지기 시작하던 무렵이라 결국 과학고에 진학했다. 과학고 수업은 흥미로웠지만 그의 창작에 대한 꿈은 쉽게 포기되지 않았다. 대학 진학을 앞두고 고민은 다시 찾아왔다. 그때 아버지가 결정적인 조언을 줬다. 엔지니어링에 대한 지식이 있는 디자이너가 미래 산업을 이끌 거라고. 매력적인 조형물과 실제 제품과의 간극을 메워주는 디자이너가 되라고. 그의 부친은 공학도였다. 반면, 당시 수학 담당교사는 "수학을 잘하는 학생이 왜 산업디자인학과를 가냐"며 안타까워하기도 했다. 당시만 해도 이공계 배경이 디자인을 전공하는데 자산이 될 수 있다는 것을 쉽게 이해하지 못하는 분위기였다. 여러 만류를 뿌리치고 KAIST 산업디자인학과에 진학 한 지 10여년 후, 그는 "감성 색채 공학(affective color engineering)" 전문가가 되었다. "색채 연구는 광학·컴퓨터공학·화학 등과 같은 과학 영역과 심리학과 미술의 영역에서 주로 이루어지고 있습니다. 일례로 색채 과학 영역에서는 디스플레이에서 보다 많은 영역의 색을 보다 정확하게 표현하기 위한 연구가 있다면 심리학·미술은 실생활에 색의 응용을 연구하죠. 감성색채공학은 그 중간의 역할이라고 할 수 있습니다. 소비자가 좋아하는 색과 공학적 표현 방법을 동시에 찾아내는 거죠." 분석력과 창의력을 골고루 갖춘 "양뇌형(Both-Brain) 인재" 석현정 KAIST 산업디자인학과 교수는 그의 다재다능한 능력을 색채 연구에서 꽃피우고 있다. ◆"色, 결코 단순하지 않은 매체…感性, 인지하는 것 이상의 가치" "색채는 측정이 가능해요. 실제로 색을 다루다보면 굉장히 많은 숫자들을 다루게 되죠. 색은 디자인과 계산을 같이 할 수 있는 매우 희귀한 위치에 있고, 또한 의사소통의 도구로서 활용할 수 있는 "매체(media)"이기도 합니다." 석현정 교수에 따르면 색채는 결코 단순하지 않은 매체다. 사람이 실제로 색을 인지하는 과정을 이해해야 하고, 그에 대한 생리학적 반응과 빛의 속성에 대한 물리학적 특성, 색이 적용되는 매체에 대한 연구도 있어야 한다. 한마디로 융합적인 연구주제인 셈. 디자인·심리학·생리학·전자공학·물리학 등 여러 분야의 전문지식이 필요하다. 석 교수가 이공계 지식을 가지고 있고, 인디케이터(indicator)를 중요시하는 공학자들과 숫자로 대화할 수 있다는 것은 큰 경쟁력이다. 실제 색채연구는 단순히 디자인적인 감각만으로 이루어지는 것이 아니기 때문이다. 석 교수의 주요 연구 분야인 LED(발광다이오드) 연구는 LED 조명을 활용해서 사람의 생리신호와 감성적 변화를 측정, 상황에 따라 다양하게 활용할 수 있도록 한다. 기존의 형광등이 온오프(on/off)밖에 안되는 것과 달리 LED는 색깔(RGB값)과 색도, 밝기를 조절할 수 있어 연구결과에 따라 학습능력 향상과 고객만족도 상승을 위한 구체화된 제품으로 응용이 가능하다. 실제로 석 교수가 남녀 각각 20명을 대상으로 조명 색에 따라 심리적으로 느끼는 시간의 빠르기를 측정한 결과, 자신이 선호하는 색의 조명 아래에서 시간의 흐름을 더욱 빠르게 느끼는 것으로 나타났다. 석 교수는 "좋아하는 사람과 같이 있으면 시간이 빨리 흐르는 것처럼 느껴지는 것과 비슷한 원리"라고 설명했다. 석 교수는 상대방의 감성을 이해하는데 배경 색채가 영향을 미친다는 사실도 증명했다. 그는 TV 뉴스에서 정치인들의 인터뷰 장면을 보다가 해당 연구를 시작했다. "붉은 와인색의 체리나무를 배경으로 한 국회의장의 얼굴은 항상 몹시 화가 난 얼굴이더라고요. 게다가 TV나 인터넷이란 매체는 색채왜곡이 나타나기 때문에 사람도 배경도 더 빨갛게 보입니다. 1년치 뉴스를 무작위로 뽑아서 실험해 보니 실제로 배경색에 따라 그 사람의 감정을 다르게 받아들였죠. 이 실험 결과를 증명사진 찍을 때 적용하면, 중립적인 표정을 좀더 밝게 보일 수 있도록 할 수 있습니다. 사진 찍을 때 붉은색 보다는 밝은 녹색 계열을 배경으로 찍어보세요. 인상이 더 부드러워 보입니다." 또 색채연구도 그린테크놀로지와 연관이 있다. 현재 사용하고 있는 순백색의 종이들은 표백 과정에서 화학약품과 물이 많이 들어간다. 이 과정에서 환경오염을 일으키고 있는 것. 석 교수는 수치를 정량화해서 데이터베이스를 구성, 보고서·소설책·연습장 등 용도에 따라 소비자들이 어느 정도까지 백색도가 낮은 종이를 허용할 수 있는가를 연구했다. 그에 따르면 재생용지는 친환경 의식이 높은 소비자들에게는 오히려 더 매력적일 수도 있다. 이러한 그의 연구들은 컬러커뮤니케이션·컬러마케팅·컬러환경공학 등 다양한 이름으로 공학과 경영 분야에 스며들고 있다. 그는 최근 "과학과 공학 속의 컬러"라는 주제로 열린 "제3회 KI(KAIST 연구소) 국제공동심포지엄"에서 색채라는 매개에 대한 연구들을 공유하기도 했으며, 점차 그에게 자문을 구하는 기업들이 많아지고 있다. 석 교수의 전문 분야는 감성색채공학이지만 학문의 큰 틀은 "인간의 감성적 가치를 이해·활용할 수 있는 연구를 통해 디자인에 응용하는 것"이다. 그는 디자인적 문제를 해결하거나 기존에 없던 새로운 제품·서비스를 만들어낼 때 사람의 감성적 가치가 가지는 영향력을 매우 높이 산다. 결국 훌륭한 디자인을 위해서는 인간의 감성에 대한 연구가 반드시 필요하다는 의미다. "감성은 어떠한 새로운 서비스에 대한 그 사람의 긍정적 반응을 극대화하거나 부정적인 것을 긍정적으로 바꾸는 힘이 있습니다. 가령 우리나라에서 만든 KTXⅡ를 외국에 수출할 때, 우리나라의 감성에 맞게 디자인 된 블루톤의 열차를 그대로 보여주는 것보다는 그 나라의 정서에 맞춰줌으로써 감성적으로 "남의 기술을 수입한다"는 부정적인 생각을 없애줄 수 있죠." 그는 "우리가 이성적으로 생각하는 듯하지만 사실은 사람의 인지활동에 감성적인 측면이 큰 영향을 미칠 수도 있다"며 "이성에 대한 연구는 많이 됐지만 감성 연구는 최근에야 진행되고 있다"고 설명했다. ◆""T자형 인재"가 되는 법?…세로 축은 "동기"로, 가로 축은 "호기심"으로" 다방면에 능하면서 감성색채공학이라는 전문 분야까지 구축한 "T자형 인재" 석현정 교수의 비결은 동기 부여와 호기심. 그는 "동기를 스스로 찾았기 때문에 방황하지 않았고, 일상의 호기심을 연구로 연결시켜 연구에 흥미를 잃지 않도록 했다"고 비결을 설명했다. "하고 싶은 연구를 하는 것이 가장 연구에 대한 의지를 굳건하게 하지요. 색채 연구는 내가 하고 싶은 것과 내가 잘 할 수 있는 것이 일치된 분야였어요. 아름다운 색을 연구하고 싶었고, 숫자와 공학을 이해하는데 다른 디자이너들보다 경쟁력이 있었죠." 그는 KAIST에서 학부를 졸업한 후 이어 대학원에서 색채를 전공했고, 박사학위는 심리학으로 받았다. 석사과정에서 색채를 연구하기 위해서는 인지심리에 대한 이해가 반드시 필요하다는 판단이 들었고, 직접 관련 분야 전문가를 찾아 독일 만하임대학(Universitaet Mannheim)으로 간 것이다. 그의 자기 동기부여가 T자의 세로축을 그었다면, 타고난 호기심은 가로축을 만들었다. 실제로 그의 연구들 중에는 일상생활에서의 호기심이 발전된 것들도 있다. 대표적인 것이 "통화 연결음" 연구. 미혼시절 이성을 소개받을 때 잘 모르는 상대와 통화하며 그 사람의 통화연결음으로 성격을 유추해보다가 문득 이를 과학적으로 증명해봐야겠다는 생각이 들어 연구를 진행했다. "무의식중에 통화연결음에서 형성되는 기분(무드:mood)에 의해 무의식적으로 의사결정의 조종(마니플레이션:manipulation)을 받습니다. 음악을 들으며 "이 사람은 어떨 것이다"라고 나도 모르게 감성에 의해서 이성적 판단을 하게 되는 것이죠." 그는 대상을 잘 아는 사람들로 구성된 A그룹과 모르는 사람으로 구성된 B그룹으로 나누어 통화연결음을 20초 정도 듣고 대상과 대화를 하도록 했다. 그 결과 A그룹은 음악의 분위기에 영향을 거의 받지 않았지만, B그룹은 그 사람의 성격을 먼저 들은 통화연결음의 분위기와 유사하게 판단했다. 관련 연구결과는 국제학술대회에서 논문상을 받았다. 그는 "모든 것이 다 연구소재"라며 "호기심이 있어야 한다"고 말했다. 석 교수는 산업디자인학과의 막내교수로서 학생들의 선배이기도 하다. 학생들에게 해줄 조언도 남다를 터. 그는 특히 학생들이 어떻게 하면 훌륭한 사회성을 가지고 리더로서 성장할 수 있을지 고민이 많다. 학생들이 학업에만 빠져 있다가 사회 속에서의 정체성을 찾는 것에 소홀해지거나 주위의 배려를 당연하게 여기지는 않을까 하는 걱정이다. "저부터 시행착오를 겪었거든요. 석사 졸업 후 기업체에서 웹 인터페이스 디자이너로 일한 적이 있었는데 적응하는데 힘든 점들이 있었습니다. 동료들이 대부분 일반 미술대학 출신들이어서 디자인관이 차이가 많았죠. 제가 디자인한 것들이 그들에게 좀 엉뚱하게 보였는지 놀림을 받을 때도 있었습니다. 또 스스로가 "최고가 아니면 안된다"는 생각이 있어서 제 자신이 불행하게 느껴졌고요. 그러니 동료들과도 원활하지 못했죠. 하지만 지금 생각해보면 그때 굉장히 많은 것들을 배웠습니다. 특히 그래픽 디자인의 상당 부분을 당시 어깨 너머로 실무 디자인을 보면서 배웠고, 인간적인 측면도 많이 성장했죠. 아직도 많이 부족하지만요." 실제로 그는 스스로도 여전히 노력을 하고 있다. 그는 "KAIST에 있다보면 다른 사람들보다 우월하다는 착각에 빠지기 쉽고, 실제로 그렇지 않더라도 다른 사람들에게 오해를 받기도 쉽다"며 "늘 감사하고 남을 위해 베풀 수 있도록 해야 한다"고 피력했다.
2009.12.26
조회수 17323
황성재학생 '올해의 IP상', 강동석학생 최우수상 수상
황성재 학생 우리대학 전산학과 석사과정에 재학중인 황성재 학생(지도교수 임창영)이 빠른 터치폰 문자 입력 방식을 개발해서 화제를 모으고 있다. 최근 황성재 학생은 터치 폰의 문자 입력을 빠르게 할 수 있는 발명으로 특허청이 주최한 ‘2009 대학 IP(Intellectual Property )오션 공모전’에서 최고상인 ‘올해의 IP상’ 수상자로 선정됐다. 또한 테마 공모 중 녹색성장 분야에서는 우리학교 신소재공학과 석사과정에 재학중인 강동석 학생(지도교수 전덕영)의 ‘새로운 조성의 적색 형광체와 백색 발광다이오드’ 발명이 가장 우수한 것으로 선정되었다. 특허청은 이공계 대학생(석박사 과정 포함)의 졸업작품이나 논문이 사장되는 것을 방지하고, 창의적 아이디어와 발명을 지식재산권으로 권리화 하기위해 개최한 이번 공모전에서 총 39개 팀과 한국기술교육대 등 3개의 우수 대학을 23일 선정하고 24일 11시 서울 강남 노보텔 앰배서더 샴페인홀에서 시상식을 가졌다. 이번 공모전은 녹색성장을 주제로 하여 ▲녹색발전 ▲녹색수송 ▲녹색 디스플레이 및 조명 ▲녹색도시의 4가지 테마부문과 자유부문으로 나눠 진행되었고 팀과 개인이 334개 기술에 대한 발명 아이디어를 출품했다. 특허청은 공모전의 우수 발명 아이디어에 대해서는 특허 출원경비뿐 아니라 사업화를 위한 컨설팅을 지원해 대학생의 발명 아이디어의 권리화와 사업화를 도울 예정이다. 올해의 IP상 수상자로 선정된 황성재씨가 한 발명은 ‘멀티터치 기반의 한글입력 장치와 그 방법’에 관한 것으로 터치폰을 이용하여 문자를 입력할 때 터치 수 및 드래그의 방향, 길이에 따라 한글을 빠르게 입력할 수 있다. 황씨는 “많이 사용되는 기존의 천지인이나 나랏글 입력 방식에 비해 글자당 입력키의 수(Key Stroke Per Character, KSPC)를 17~50%로 줄일 수 있어 효율적이며, 사용법이 쉬운 장점이 있다”고 밝혔다. 이 발명은 심사위원으로 부터 휴대폰, PDA, eBook, 내비게이션 등의 모바일 기기뿐 아니라 화이트 보드, TV, 화면에 손을 움직여 시스템을 작동시킬 수 있는 테이블 탑 인터페이스 등 非모바일 기기에도 적용 가능하여 그 활용성 측면에서도 높은 평가를 받았다. 또한 테마 공모 중 녹색성장 분야에서는 KAIST 강동석 씨(신소재공학부 석사, 27세)의 ‘새로운 조성의 적색 형광체와 백색 발광다이오드’ 발명이 가장 우수한 것으로 선정되었다. 이 발명은 산화물 형광체를 사용하여 높은 화학적 안정성을 지닐 뿐 아니라 4배 이상 향상된 발광 효과를 보여 에너지 절약에 크게 기여 할 것으로 보인다는 평가를 받았다. 특허청 김영민 산업재산정책국장은 “대학생과 대학원생의 아이디어, 졸업작품이나 논문이 졸업을 위한 수단으로만 사용되고 특허로 권리화되어 활용되지 못하는 경향이 있었다”며 “이번 공모전을 통해 이공계 대학생의 우수한 지재권 창출을 지원하겠다”고 밝혔다.
2009.12.24
조회수 13516
양경훈교수팀, 양자효과를 이용한 초고속 IC 세계최초 개발
- 동일 성능 기존 IC 대비 75%의 소비전력 절감 효과 - KAIST(총장 서남표) 전자전산학과 양경훈(梁景熏, 46) 교수팀은 교육과학기술부 21세기프론티어연구개발사업 중 테라급나노소자개발사업(단장 이조원)의 지원을 받아, 양자 효과 소자인 공명 터널 다이오드(RTD : Resonant Tunneling Diode)를 이용하여, 초고속 통신 시스템의 핵심 부품인 40 Gb/s 급 멀티플렉서 집적회로 개발에 성공했다고 밝혔다. 상온에서 동작하고 기존 소자와 호환이 가능한 공명 터널 다이오드에 2 ㎛ 급 소자 공정기술을 적용해 자체 개발한 이 집적회로는 세계최초로 양자 효과를 이용한 초고속 멀티플렉서로서 나노 전자소자 기술의 실용화 가능성을 제시한 것으로 평가된다. CMOS, HBT 및 HEMT 등의 전자소자를 이용한 집적회로는 차세대 40 Gb/s 급 이상 통신 시스템의 핵심부품으로 널리 사용되어 왔으나 과도한 전력소모의 문제점으로 인하여 소비전력의 절감이 필수적으로 요구되어 왔다. 연구팀은 디지털 신호를 자체적으로 저장하고 빠른 신호처리가 가능한 공명 터널 다이오드 고유의 부성 미분 저항 특성(NDR : Negative Differential Resistance)을 이용하여, 세계적 반도체 제조기업인 인피니언(Infineon)에서 0.12 ㎛ CMOS 공정 기술을 바탕으로 개발한 40 Gb/s 멀티플렉서(소자 수 42개, 전력소모 100 mW)보다 소자 수는 1/2 이하(19개)로 줄이고 전력소모 또한 1/4(22.5 mW)로 줄이면서 40 Gb/s급 이상에서 동작하는 저전력/초고속 멀티플렉서 집적회로를 개발하였다. 이번 연구에서 개발된 양자 소자를 이용한 회로 설계 기술은 멀티플렉서 이외에, 차세대 초고속 통신 시스템 용의 다양한 디지털 및 아날로그 집적 회로 개발에 응용이 가능한 원천 기술이다. 또한 기존의 HBT, HEMT 등 화합물 반도체 소자 기반 초고속 집적회로의 공정설비를 그대로 이용할 수 있기 때문에 대량생산이 가능하여 향후 차세대 나노/양자 소자 시장을 선도할 수 있는 기술로 기대된다. 이번 연구결과는 5월 26일 프랑스 파리에서 열린 IEEE IPRM 국제학술대회에 발표되었으며 오는 8월 18일, 미국 알링턴에서 열리는 세계적 나노기술 학회인 “IEEE 나노테크놀로지(IEEE International Conference on Nanotechnology)” 학회에서 발표될 예정이다. 이밖에 8월 27일(수) “NANO KOREA 2008”에서도 초청 발표될 예정이다.
2008.06.26
조회수 15537
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2