본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%89%B4%EB%A1%9C%EB%AA%A8%ED%94%BD
최신순
조회순
인간 뇌처럼 뉴런-시냅스 동시 구동 모사한 메모리 최초 구현
우리 대학 신소재공학과 이건재 교수팀이 100 nm(나노미터) 두께의 단일 소자에서 뉴런과 시냅스를 동시에 모사하는 뉴로모픽(neuromorphic) 메모리를 개발했다고 23일 밝혔다. 뉴런은 신경계를 이루는 기본적인 단위세포를, 시냅스는 뉴런 간의 접합 부위를 말한다. 이 교수팀은 인간의 뇌처럼 뉴런과 시냅스가 유기적으로 동작하는 방식의 단일 메모리 소자를 최초로 구현했으며, 이를 통해 반도체 소자로 인간 뇌를 완전히 구현한다는 뉴로모픽 컴퓨팅 본연의 목표 달성에 근접할 수 있을 것으로 기대된다. 1,000억 개의 뉴런과 100조 개의 시냅스의 복잡한 네트워크로 구성된 인간 뇌는 그 기능과 구조가 고정된 것이 아니라 외부 환경에 따라서 유연하게 변하는 특징을 가지고 있다. 따라서 뉴로모픽 소자는 뉴런과 시냅스의 특성을 모사해 기존의 컴퓨터로는 구현할 수 없는 인간 뇌의 고도 인지 기능을 실현하는 데에 가장 큰 목적을 두고 있다. 지금까지 뉴로모픽 컴퓨팅 구현을 위해서 CMOS 집적회로와 비휘발성 메모리 등을 이용한 연구들이 진행됐으나, 기존 기술들은 뉴런과 시냅스의 기능을 분리해 모사한다는 한계점을 가지고 있었다. 인간 뇌에서 뉴런과 시냅스는 서로 유기적으로 연결돼 있으며, 서로 간의 상호작용을 통해 인지 기능이 발현된다. 이러한 뉴런과 시냅스의 기능을 인간 뇌처럼 단일 구조체에서 통합해 구현하는 것은 어려운 도전 과제였다. 이 교수 연구팀은 휘발성의 소자(threshold switch)로 뉴런을, 비휘발성의 상변화 메모리 소자로 시냅스를 모사해 단기·장기 기억이 공존하는 단일 뉴로모픽 소자를 개발했으며, 이를 통해 집적도 개선 및 비용 절감 효과도 얻을 수 있을 것으로 기대된다. 특히 기존 CMOS 뉴런 소자에서는 단순 신호 발산 기능만이 구현됐으나, 연구팀의 뉴런-시냅스 통합소자는 신호 발산 유형이 환경에 따라서 유연하게 적응하는 가소성(plasticity)을 구현하는 데 성공했다. 이건재 교수는 이번 연구 성과에 대해 "인간은 뉴런과 시냅스의 상호작용을 통해 기억, 학습, 인지 기능을 발현하므로 둘 모두를 통합 모사하는 것이 인공지능에 있어서 필수적인 요소ˮ라며 "개발한 단일 뉴런-시냅스 소자는 기존의 단순 이미지 학습 효과를 넘어서, 피드백 효과를 기반으로 한 번 배운 내용을 더 빨리 학습하는 재학습(retraining) 효과 구현도 성공해 인공지능뿐만 아니라 뇌를 역설계하는 연구에도 큰 도움이 될 것이다”고 언급했다. 한편 이번 연구는 삼성전자 전략산학과제와 지능형반도체 사업의 지원을 받아 수행됐으며, 국제 학술지 `네이쳐 커뮤니케이션즈(Nature Communications)'에 5월 19일 字 게재됐다.
2022.06.23
조회수 10946
차세대 뉴로모픽 구현을 앞당길 멤리스터 기반 고신뢰성 인공 뉴런(신경세포) 어레이 개발
우리 대학 전기및전자공학부 최신현 교수 연구팀이 뛰어난 안정성과 집적도가 높은 우리 뇌의 뉴런 세포의 동작을 모사하는 *고신뢰성 차세대 저항 변화 소자(멤리스터) 어레이를 개발했다고 7일 밝혔다. ☞ 멤리스터(Memristor): 입력에 따라 소자의 저항 상태가 바뀌는 소자. 입력 전압의 크기와 길이 등에 따라 소자 내부의 저항 값이 바뀌며 정보를 저장하거나 처리한다. 최 교수 연구팀은 기존 멤리스터의 불안정한 특성을 보이는 필라멘트 기반 방식에서 벗어나, 점진적인 산소 농도를 갖는 금속산화물을 이용해 안정적이고 신뢰성 높은 인공 뉴런 어레이를 발표하였다. 기존의 멤리스터 소자는 안정성이 낮고 응용에 사용하기 위한 어레이 형태로 제작하기 힘든 문제점이 있지만, 최 교수 연구팀이 개발한 소자는 뛰어난 안정성을 갖출 뿐만 아니라, 자가 정류 특성과 높은 수율을 갖춰 대용량 어레이 형태로 집적될 수 있다. 따라서 집적도가 높고 안정적인 뉴로모픽 시스템을 구현할 때 활발히 사용될 수 있을 것으로 기대된다. 전기및전자공학부 박시온, 정학천 석박사통합과정, 박종용 석사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 6월호에 출판됐다. (논문명 : Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing) 인간의 뉴런은 들어오는 신호의 크기와 주파수에 따라 스파이크를 내보내거나 내보내지 않는 방식으로 정보를 처리한다. 현대의 컴퓨터가 빅데이터를 처리하는데 많은 에너지를 소모하는 것과 다르게, 사람의 뇌는 매우 적은 에너지만으로도 많은 양의 데이터를 빠르게 처리할 수 있다. 이러한 이유로, 신경의 효율적인 신호전달 시스템을 모사하여 컴퓨팅에 사용하는 `뉴로모픽' 하드웨어 기술이 활발히 연구되고 있다. 멤리스터 소자는 고집적, 고효율로 뉴로모픽 컴퓨팅 시스템을 구현할 수 있는 차세대 소자로 주목받고 있다. 그러나 현존하는 멤리스터로 실용적인 대용량 인공신경망 컴퓨팅(Large-scale Neural Computing) 시스템을 구현하기에는 단위 소자의 신뢰성 및 수율의 문제가 있다. 기존의 멤리스터는 절연체 내부에서 필라멘트가 마치 번개와 같이 무작위적으로 생성되고 사라지며 동작하기 때문에 제어하기가 힘들어 낮은 신뢰성을 보이게 되며, 이로 인해 안정적인 뉴로모픽 시스템을 구현하는 데 한계점으로 지적되어 왔다. 최신현 교수 연구팀은 이러한 무작위적인 필라멘트 문제를 해결하기 위해 필라멘트 기반 저항 변화가 아닌, 산소 이온의 점진적인 이동을 이용해 저항 변화 소자를 구현함으로써 소자의 신뢰성 확보하였다. 또한 단위 소자를 통한 어레이 제작 기술을 확보하여, 400개의 고신뢰성 인공 뉴런 소자를 100% 수율의 크로스바 어레이 형태로 집적하는 데 성공했다. 연구팀은 제작한 고신뢰성 인공 뉴런 어레이 기반 뉴로모픽 시스템을 이용해 항균성 단백질(anti-microbial peptide) 아미노산 서열을 학습하고, 이를 바탕으로 새로운 항균성 단백질을 만들어내는 뉴로모픽 시스템을 구현하였다. 제1 저자인 박시온 석박통합과정 연구원은 "이번에 개발한 고신뢰성 인공 뉴런 소자는 안정적인 특성과 높은 수율을 바탕으로 차세대 멤리스터 기반 뉴로모픽 컴퓨팅 시스템 구현에 기여할 수 있을 것으로 기대되며, 개발된 인공 뉴런 소자를 이용해 촉각 등을 감지하는 로봇의 인공 신경계, 시계열 데이터를 처리하는 축적 컴퓨팅(reservoir computing) 등 다양한 응용을 가능케 하여 미래 전자공학의 기반이 될 것으로 기대한다ˮ라고 말했다. 한편 이번 연구는 삼성미래육성사업의 지원을 받아 수행됐다.
2022.06.07
조회수 12718
인간의 촉각 뉴런을 모방한 뉴로모픽 모듈 개발
우리 대학 전기및전자공학부 최양규 교수 연구팀이 지난 2021년 8월에 뉴런과 시냅스를 동일 평면 위에서 동시 집적으로 ‘인간의 뇌를 모방한 뉴로모픽 반도체 모듈’을 개발하고, 연이어서 이번에는 ‘인간의 촉각 뉴런을 모방한 뉴로모픽 모듈’을 개발하는 데에 성공했다고 24일 밝혔다. 개발된 모듈은 인간의 촉각 뉴런과 같이 압력을 인식해 스파이크 신호를 출력할 수 있어, 뉴로모픽 촉각 인식 시스템을 구현할 수 있다. 우리 대학 전기및전자공학부 한준규 박사과정과 초일웅 박사과정이 공동 제1 저자로 참여한 이번 연구는 저명한 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 2022년 1월 온라인판에 출판됐으며, 후면 표지 논문(Back Cover)으로 선정됐다. (논문명 : Self-powered Artificial Mechanoreceptor based on Triboelectrification for a Neuromorphic Tactile System). 인공지능을 이용한 촉각 인식 시스템은 센서 어레이에서 수신된 신호를 인공 신경망을 이용해 높은 정확도로 물체, 패턴, 또는 질감을 인식할 수 있어, 다양한 분야에 걸쳐 유용하게 사용되고 있다. 하지만 이러한 시스템의 대부분은 폰 노이만 컴퓨터가 필요한 소프트웨어를 기반으로 하므로, 높은 전력을 소모할 수밖에 없어 모바일 또는 사물인터넷(IoT) 장치에 적용되기는 어렵다. 한편, 생물학적 촉각 인식 시스템은, 스파이크 형태로 감각 정보를 전달함으로써 낮은 전력 소비만으로 물체, 패턴, 또는 질감을 판별할 수 있다. 따라서 저전력 촉각 인식 시스템을 구축하기 위해, 생물학적 촉각 인식 시스템을 모방한 뉴로모픽 촉각 인식 시스템이 주목을 받고 있다. 뉴로모픽 촉각 인식 시스템을 구현하기 위해서는 인간의 촉각 뉴런처럼 외부 압력 신호를 스파이크 형태의 전기 신호로 변환해주는 구성 요소가 필요하다. 하지만, 일반적인 압력 센서는 이러한 기능을 수행할 수 없다. 연구팀은 마찰대전 발전기(triboelectric nanogenrator, TENG)와 바이리스터(biristor) 소자를 이용해, 압력을 인식해 스파이크 신호를 출력할 수 있는 뉴로모픽 모듈을 개발했다. 제작된 뉴로모픽 모듈은 마찰대전을 이용하기 때문에, 자가 발전이 가능하고 3 킬로파스칼(kPa) 수준의 낮은 압력을 감지할 수 있다. 이는 손가락으로 사물을 만질 때, 피부가 느끼는 압력 정도의 크기다. 연구팀은 제작된 뉴로모픽 모듈을 바탕으로 저전력 호흡 모니터링 시스템을 구축했다. 호흡 모니터링 센서가 코 주위에 설치되면 들숨 및 날숨을 감지하고 복부 주변에 설치되면 복식호흡을 별도로 감지할 수 있다. 따라서 수면 중 무호흡이 일어날 경우, 이를 감지해 경보를 보냄으로써 심각한 상황으로의 진행을 미연에 방지할 수 있다. 연구를 주도한 한준규 박사과정은 "이번에 개발한 뉴로모픽 센서 모듈은 센서 구동에 필요한 에너지를 스스로 생산하는 반영구적 자가 발전형으로 사물인터넷(IoT) 분야, 로봇, 보철, 인공촉수, 의료기기 등에 유용하게 사용될 수 있을 것으로 기대된다ˮ며, "이는 `인-센서 컴퓨팅(In-Sensor Computing)' 시대를 앞당기는 발판이 될 것이다ˮ고 연구의 의의를 설명했다. 한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업, 중견연구사업, 미래반도체사업, BK21 사업 및 반도체설계교육센터의 지원을 받아 수행됐다.
2022.02.25
조회수 14392
고속 동작 뉴로모픽 자성 소자 핵심 기술 개발
우리 대학 신소재공학과 박병국, 신소재공학과 정연식, 물리학과 김갑진 교수 연구팀이 고속 동작 자성메모리의 핵심 전극 소재로 활용될 수 있는 *반강자성체의 자화 방향을 전기적으로 제어할 수 있는 소재 기술을 개발했다고 29일 밝혔다. * 반강자성체(antiferromagnetic material): 인접한 원자의 자기모멘트의 방향이 서로 반대 방향으로 평행한 구조를 가져, 외부에서 자기장을 걸었을 때 자성을 띠는 강자성체와는 달리 알짜자화값이 나타나지 않는 물질로 누설자기장이 없고 고속스위칭 특성을 갖는다. 공동연구팀의 결과는 기존의 강자성체 기반 자성 소자보다 집적도가 높고 동작 속도가 10배 이상 빠르다고 예상되는 반강자성체 기반 소자의 개발 가능성을 높였다. 또한, 기존에 알짜 자화값이 존재하지 않아서 자화의 방향을 제어하기 어려웠던 반강자성체를 전기적으로 조절할 수 있는 기술을 개발함으로써 반강자성체의 자화 방향을 연속적으로 제어하여 기존의 이진법을 뛰어넘는 멀티레벨 메모리 특성을 보였다. 이는 뇌의 시냅스 동작을 모방할 수 있어 뉴로모픽 컴퓨팅에 응용될 수 있을 것으로 기대된다. 우리 대학 신소재공학과 강재민 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)'에 11월 5일 字온라인 게재됐다. (논문명 : Current-induced manipulation of exchange bias in IrMn/NiFe bilayer structures) 자성메모리(Magnetic Random Access Memory, MRAM)는 차세대 비휘발성 메모리 소자로 개발되고 있다. 기존 자성메모리는 강자성체를 기반으로 하는데, 고집적 소자에서는 강자성체에서 발생하는 누설 자기장으로 인해 인접한 자기 소자 사이에 간섭이 발생하게 된다. 이에 반해 반강자성체는 알짜 자성을 띠고 있지 않아서 누설 자기장이 발생하지 않아 이를 자성 소자에 적용하면 초고집적 자기메모리 소자 개발이 가능하게 된다. 이를 위해서 반강자성체의 자화 방향을 전기적으로 제어하는 기술의 개발이 요구되고 있다. 연구팀은 교환 결합(exchange bias)*이 형성된 반강자성체/강자성체 이중층 구조를 제작해 반강자성체에서 생성되는 스핀 전류를 이용해 반강자성체의 자화 방향이 전류의 크기와 부호에 따라 가역적으로 회전함을 실험적으로 규명했다. 또한 반강자성체의 자화 방향을 연속적으로 제어해 다중상태 메모리 구성이 가능함을 보였다. * 교환결합(exchange bias): 반강자성체/강자성체 이중층 구조에서 경계면에 있는 스핀 모멘트들이 상호작용으로 결합하는 현상으로 강자성체에 유효자기장이 발생하게 된다. 연구팀이 개발한 반강자성 제어 기술 및 다중상태 스위칭 거동을 활용하면 초고집적 및 초고속 동작이 가능한 반강자성체 기반 자성메모리 및 뉴로모픽 소자의 핵심 기술로써 활용될 수 있을 것으로 기대된다. 제1 저자인 강재민 박사과정은 "이번 연구는 반강자성체의 자화 방향을 스핀 전류로 제어할 수 있음을 실험으로 규명해, 향후 반강자성체를 기반으로 하는 차세대 반도체 기술로 여겨지는 스핀트로닉스 전자소자 개발에 응용될 수 있을 것이다ˮ 라고 밝혔다. 한편 이번 연구는 과학기술정보통신부 미래소재디스커버리사업과 중견연구자지원 사업, KAIST 글로벌 특이점 연구과제의 지원을 받아 수행됐다.
2021.11.30
조회수 10099
인간의 뇌를 모방한 뉴로모픽 반도체 개발
우리 대학 전기및전자공학부 최양규, 최성율 교수 공동연구팀이 인간의 뇌를 모방한 고집적 뉴로모픽 반도체를 개발했다고 5일 밝혔다. 뉴로모픽(neuromorphic) 하드웨어는, 인간의 뇌가 매우 복잡한 기능을 수행하지만 소비하는 에너지는 20와트(W) 밖에 되지 않는다는 것에 착안해, 인간의 뇌를 모방해 인공지능 기능을 하드웨어로 구현하는 방식이다. 뉴로모픽 하드웨어는 기존의 폰 노이만(von Neumann) 방식과 다르게 인공지능 기능을 초저전력으로 수행할 수 있어 많은 주목을 받고 있다. 공동연구팀은 단일 트랜지스터를 이용해 인간의 뇌를 모방한 뉴런과 시냅스로 구성된 뉴로모픽 반도체를 구현했다. 이 반도체는 상용화된 실리콘 표준 공정으로 제작되어, 뉴로모픽 하드웨어 시스템의 상용화 가능성을 획기적으로 높였다. 우리 대학 전기및전자공학부 한준규 박사과정이 제1 저자로, 같은 학부 오정엽 박사과정이 제2 저자로 참여한 이번 연구는 저명 국제 학술지 `사이언스 어드벤시스(Science Advances)' 8월 온라인판에 출판됐다. (논문명 : Co-integration of single transistor neurons and synapses by nanoscale CMOS fabrication for highly scalable neuromorphic hardware). 뉴로모픽 하드웨어를 구현하기 위해서는, 생물학적 뇌와 동일하게 일정 신호가 통합되었을 때 스파이크를 발생하는 뉴런과 두 뉴런 사이의 연결성을 기억하는 시냅스가 필요하다. 하지만, 디지털 또는 아날로그 회로를 기반으로 구성된 뉴런과 시냅스는 큰 면적을 차지하기 때문에 집적도 측면에서 한계가 있다. 인간의 뇌가 약 천억 개(1011)의 뉴런과 백조 개(1014)의 시냅스로 구성된다는 점에서, 실제 모바일 및 사물인터넷(IoT) 장치에 사용되기 위해서는 집적도를 개선할 필요가 있다. 이를 개선하기 위해 다양한 소재 및 구조 기반의 뉴런과 시냅스가 제안되었지만, 대부분 표준 실리콘 미세 공정 기술로 제작될 수 없어 상용화가 어렵고 양산 적용에 문제가 많았다. 연구팀은 문제 해결을 위해 이미 널리 쓰이고 있는 표준 실리콘 미세 공정 기술로 제작될 수 있는 단일 트랜지스터로 생물학적 뉴런과 시냅스의 동작을 모방했으며, 이를 동일 웨이퍼(8 인치) 상에 동시 집적해 뉴로모픽 반도체를 제작했다. 제작된 뉴로모픽 트랜지스터는 현재 양산되고 있는 메모리 및 시스템 반도체용 트랜지스터와 같은 구조로, 트랜지스터가 메모리 기능 및 논리 연산을 수행하는 것은 물론, 새로운 뉴로모픽 동작이 가능함을 실험적으로 보여 준 것에 가장 큰 의미가 있다. 기존 양산 트랜지스터에 새로운 동작원리를 적용해, 구조는 같으나 기능이 전혀 다른 뉴로모픽 트랜지스터를 제작했다. 뉴로모픽 트랜지스터는 마치 동전에 앞면과 뒷면이 동시에 있는 것처럼, 뉴런 기능도 하고 시냅스 기능도 수행하는 야누스(Janus) 구조로 구현 가능함을 세계 최초로 입증했다. 연구팀의 기술은 복잡한 디지털 및 아날로그 회로를 기반으로 구성되던 뉴런을 단일 트랜지스터로 대체 구현해 집적도를 획기적으로 높였고, 더 나아가 같은 구조의 시냅스와 함께 집적해 공정 단순화에 따른 비용 절감을 할 수 있는 신기술이다. 기존 뉴런 회로 구성에 필요한 평면적이 21,000 단위인 반면, 새로 개발된 뉴로모픽 트랜지스터는 6 단위 이하이므로 집적도가 약 3,500 배 이상 높다. 연구팀은 제작된 뉴로모픽 반도체를 바탕으로 증폭 이득 조절, 동시성 판단 등의 뇌의 기능을 일부 모방했고, 글자 이미지 및 얼굴 이미지 인식이 가능함을 보였다. 연구팀이 개발한 뉴로모픽 반도체는 집적도 개선과 비용 절감 등에 이바지하며, 뉴로모픽 하드웨어의 상용화를 앞당길 수 있을 것으로 기대된다. 한준규 박사과정은 "상보성 금속 산화막 반도체(CMOS) 기반 단일 트랜지스터를 이용해 뉴런과 시냅스 동작이 가능함을 보였다ˮ 라며 "상용화된 CMOS 공정을 이용해 뉴런, 시냅스, 그리고 부가적인 신호 처리 회로를 동일 웨이퍼 상에 동시에 집적함으로써, 뉴로모픽 반도체의 집적도를 개선했고, 이는 뉴로모픽 하드웨어의 상용화를 한 단계 앞당길 수 있을 것이다ˮ 라고 말했다. 한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업, 중견연구사업, 미래반도체사업 및 반도체설계교육센터의 지원을 받아 수행됐다.
2021.08.06
조회수 15368
유회준 교수, 아시아 교수 최초 ISSCC 기조연설
우리 대학 전기및전자공학부 유회준 석좌교수가 반도체 올림픽이라 불리는 국제고체회로학회(ISSCC)에서 아시아 교수로서는 최초로 기조연설자로 선정돼 개막 연설을 진행했다. 유 교수는 2월 18일(현지시간) 미국 샌프란시스코 메리어트 호텔에서 열린 제62회 ISSCC에서 세계 각국의 반도체 기술자 3천여 명을 대상으로 ‘지능을 실리콘 상에(Intelligence on Silicon), 부제 : 심층 신경망 가속기부터 뇌 모방 인공지능 시스템 온 칩까지(From Deep-Neural-Network Accelerators to Brain Mimicking AI-SoCs)’ 라는 주제로 인공지능 칩의 현황과 미래에 대한 기조연설을 했다. 유 교수는 실생활에서 인공지능 적용을 가능하게 하는 인공지능 칩 분야에서 세계의 기술을 주도하고 있다는 공을 인정받아 이번 기조연설자로 선정됐다. 유 교수는 학회 개최에 앞서 2월 17일에 열린 전기전자엔지니어협회(IEEE) 국제고체회로학회 운영회의에서 ISSCC의 자매 학회인 아시아고체회로학회(ASSCC)의 차기 학회장으로 선출되기도 했다. 유 교수 연구실의 최성필, 이진묵 박사과정은 2개의 ISSCC 최우수 시연상을 수상하기도 했다. 유 교수는 기조연설을 통해 세계적으로 경쟁이 치열한 인공지능 반도체 칩 연구 중 최첨단을 달리는 우리나라의 새 기술들을 소개하고 세계 기술이 나아가야 할 미래 방향을 제시했다. 먼저 우리 대학에서 연이어 발표하고 있는 가변형 인공지능 컴퓨팅(Reconfigurable AI Computing)을 소개했다. 이 기술은 칩의 구조를 실시간으로 변화하고 연산에 사용되는 데이터 범위를 바꿀 수 있어 한 개의 칩으로 다양한 인공지능 알고리즘을 가속할 수 있다. 이를 통해 여러 상황에서 저전력의 고속처리가 가능하다. 둘째로 그동안 불가능했던 모바일용 인공지능 칩에서의 학습 (Training)이 가능함을 보였다. 기존 인식(Inference)용 가속기는 원격 서버에서 학습을 진행한 후 완료된 모델을 내려받아 칩에서 인식만 수행해 진정한 인공지능을 구현할 수는 없었다. 유 교수는 모바일용 칩에서도 개인정보보호 및 보안 등의 이유로 기기에서의 학습이 필수적이라 예측하며 저전력 및 고속처리가 가능한 학습용 칩을 공개했다. 이를 통해 시시각각으로 변하는 상황을 스스로 감지하고 학습해 최적의 행동을 할 수 있는 로봇이나 자동차 등의 예시를 제시했다. 유회준 교수는 학습용 칩을 통해 로봇 또는 자동차가 마치 반려동물처럼 사용자의 감정을 알아차리고 이에 맞춰 행동하는 ‘휴머니스틱 인텔리전스(Humanistic Intelligence)’라는 새 개념을 주창했고, 이는 미래 인공지능 응용에 핵심적일 요소가 될 것이라 주장했다. 인공지능 칩의 미래는 크게 2가지 방향으로 예측했다. 첫째는 미시적 뇌 신경의 동작을 모방하는 뉴로모픽(Neuromorphic) 칩이며 둘째는 거시적인 뇌인지 기능을 모방한 칩이다. 뉴로모픽 칩은 RRAM, PRAM 및 MRAM과 같은 비휘발성 메모리(Nonvolatile Memory)를 시냅스 및 뉴런으로 구현하는 방식이 주류를 이룰 것으로 주장했다. 거시적 인지 기능 모방 칩은 뇌의 기능을 모방한 연산 블록들이 커넥톰(Connectome)과 같은 형태의 회로로 연결되는 방식으로 발전하리라 예측했다. 특히 시각 인지 모델을 활용한 인공지능 칩 개발 사례들을 제시하며 이러한 접근이 저전력화 및 고속화에 유리함을 주장했다. 유회준 교수는 “뇌의 해부학적 및 기능적 연구의 진보에서 힌트를 얻어 인공지능 알고리즘 및 인공지능 칩의 발전도 계속될 것이다”고 말했다. 한편 기조연설자로 페이스북의 인공지능 총괄과 뉴욕 대학의 교수를 역임하며 인공지능의 개척자로 불리는 얀 러쿤(Yann LeCun)교수도 이번에 개막연설자로 초청돼 인공지능의 알고리즘 발전에 대해 발표했다. 알고리즘 분야에서는 해외 기업들이 강세를 보이지만 인공지능 칩에 대해서는 반도체 기술이 앞선 대한민국의 유회준 교수가 세계 기술발전을 주도하고 있다는 의견이 주를 이루었다. 유 교수는 창립 기념일인 2월 18일에 인공지능 칩 연구 성과에 대한 우수성을 인정받아 KAIST 학술대상을 수상하기도 했다.
2019.02.19
조회수 13549
최성율 교수, 뉴로모픽 칩의 시냅스 구현
〈 최성율 교수 〉 우리 대학 전기및전자공학부 최성율 교수 연구팀이 멤리스터(Memristor) 소자의 구동 방식을 아날로그 형태로 변화해 뉴로모픽 칩의 시냅스로 활용할 수 있는 기술을 개발했다. 이 기술을 통해 기존의 디지털 비휘발성 메모리로만 이용되던 멤리스터를 아날로그 형태로 활용함으로써 인간의 뇌를 모사한 인공지능 컴퓨팅 칩인 뉴로모픽 칩의 상용화에 기여할 수 있을 것으로 기대된다. 장병철 박사(현 삼성전자 연구원), 김성규 박사(현 노스웨스턴대학), 양상윤 연구교수가 공동 1 저자로 참여하고 美 노스웨스턴 대학, KAIST 임성갑 교수가 공동으로 수행한 이번 연구는 나노과학 분야 국제 학술지 ‘나노 레터스 (Nano Letters)’ 1월 4일 온라인판에 게재됐다. 사람 뇌를 닮은 반도체로 알려진 뉴로모픽 칩은 기존의 반도체 칩이 갖는 전력 확보 문제를 해결할 수 있고 데이터 처리 과정을 통합할 수 있어 차세대 기술로 주목받고 있다. 멤리스터는 메모리와 레지스터의 합성어로, 메모리와 프로세스가 통합된 기능을 수행할 수 있다. 특히 뉴로모픽 칩 내부에 물리적 인공신경망을 가장 효과적으로 구현할 수 있는 크로스바 어레이(crossbar array) 제작에 최적인 소자로 알려져 있다. 물리적 인공신경망은 뉴런 회로와 이들의 연결부인 시냅스 소자로 구성되는데 뉴로모픽 칩 기반의 인공지능 연산을 수행할 때 각 시냅스 소자에서는 뉴런 간의 연결 강도를 나타내는 전도도 가중치가 아날로그 데이터로 저장 및 갱신돼야 한다. 그러나 기존 멤리스터들은 대부분 비휘발성 메모리 구현에 적합한 디지털의 특성을 가져 아날로그 방식의 구동에 한계가 있었고, 이로 인해 시냅스 소자로 응용하기 어려웠다. 최 교수 연구팀은 플라스틱 기판 위에 고분자 소재 기반의 유연 멤리스터를 제작하면서 소자 내부에 형성되는 전도성 금속 필라멘트 크기를 금속 원자 수준으로 얇게 조절하면 멤리스터의 동작이 디지털에서 아날로그 방식으로 변화하는 것을 발견했다. 연구팀은 이러한 현상을 이용해 멤리스터의 전도도 가중치를 연속적, 선형적으로 갱신할 수 있고 구부림 등의 기계적 변형 상태에서도 정상 동작하는 유연 멤리스터 시냅스 소자를 구현했다. 유연 멤리스터 시냅스로 구성된 인공신경망은 학습을 통해 사람의 얼굴을 효과적으로 인식해 분류할 수 있고 손상된 얼굴 이미지도 인식할 수 있음을 확인했다. 이를 통해 얼굴, 숫자, 사물 등의 인식을 효율적으로 수행할 수 있는 유연 뉴로모픽 칩 개발의 가능성을 확보했다. 최 교수는 “멤리스터 소자의 구동 방식이 디지털에서 아날로그로 변화되는 주요 원리를 밝힘으로써 다양한 멤리스터 소자들을 디지털 메모리 또는 시냅스 소자로 응용할 수 있는 길을 열었다”라며 “고성능 뉴로모픽 칩 개발의 가속화에 기여할 수 있을 것이다” 라고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단 글로벌프론티어사업 중 (재)나노기판소프트일렉트로닉스 연구단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 플라스틱 기판 위에 제작된 유연 멤리스터 시냅스 소자 모식도
2019.02.11
조회수 13318
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2