본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%84%A4%EC%9D%B4%EC%B2%98
최신순
조회순
이정호 교수, 이주호 박사, 악성 뇌종양의 근본적 원인 밝혀
〈 이 주 호 박사 〉 악성 뇌종양인 교모세포종은 미디어에서 주요 소재로 나올 만큼 인간에게 치명적인 질병으로 일반 대중에게 낯설지 않은 질병이다. 실제로 악성 뇌종양으로 인한 미국 암 관련 사망률은 4위에 달하며 미국의 에드워드 케네디, 존 매케인 상원의원 등이 이 질병으로 사망했거나 투병 중이다. 우리 대학 의과학대학원 이정호 교수 연구팀이 세브란스병원 신경외과 강석구 교수와의 공동 연구를 통해 악성 뇌종양인 교모세포종 돌연변이 발생이 암 부위가 아닌 암에서 멀리 떨어진 뇌실하영역에서 발생한다는 사실을 규명했다. 이는 교모세포종 발병의 원인이 암 발생 부위일 것이라는 기존의 학설을 뒤집는 연구 결과로, 악성도가 가장 높은 종양인 교모세포종의 치료법 개발에 새로운 방향을 제시할 것으로 기대된다. 또한 그동안 암 조직만을 대상으로 이뤄진 암 연구가 암의 기원이 되는 조직에 대한 연구로 발전하면서 교모세포종 뿐 아니라 다른 암에 대해서도 치료의 실마리를 찾을 수 있는 기반이 될 것으로 보인다. 의과학대학원 졸업생 이주호 박사가 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처(Nature)’ 8월 1일자 온라인 판에 게재됐다. 교모세포종은 가장 예후가 좋지 않은 종양이다. 암 발생의 근본적인 원인에 대한 이해가 부족해 수술을 하더라도 재발 가능성이 매우 높기 때문이다. 수술만으로 치료가 불가능해 항암치료, 방사선치료, 표적항암제 등을 병행하지만 아직도 그 치료법이 명확하지 않다. 이정호 교수 연구팀은 암 발생 부위가 아닌 종양과 떨어져 있는 뇌실하영역이라는 곳에 주목했다. 교모세포종이 수술 이후에도 재발률이 높다는 점에서 원인이 다른 곳에 있을 것이라고 판단한 것이다. 이 교수는“교모세포종은 종양을 떼어내도 1~2년 후에 재발률이 높다. 암은 돌연변이인데 돌연변이가 발생하는 곳이 종양이 아닌 다른 부위라고 생각했고 그곳이 바로 뇌실하영역(subventricular zone : SVZ)이라는 사실을 밝혀냈다”고 말했다. 연구팀은 2013년부터 2017년 사이에 수술을 한 뇌종양 환자 28명을 대상으로 종양조직 외에 수술 중 제거되는 종양조직, 정상조직, 뇌실주변의 조직 3가지를 조합해 분석했다. 딥 시퀀싱, 단일세포시퀀싱 등을 통해 교모세포종의 시작이 뇌실하영역에서 발생한 낮은 빈도의 종양을 유발하는 돌연변이에 의한 것임을 밝혔다. 특히 유전자 편집 동물 모델을 통해 뇌실하영역에서 돌연변이가 생기면 이 돌연변이를 가진 세포가 뇌실하영역을 떠나 뇌의 다른 부위로 이동해 교모세포종이 되는 사실 또한 확인했다. 돌연변이 세포가 마치 불꽃놀이처럼 곳곳으로 퍼진 뒤 시간이 지나자 다른 부위에서 종양으로 진화한 것이다. 연구팀은 KAIST 교원창업(소바젠, 대표 김병태)을 통해 이번 연구결과를 바탕으로 뇌실하영역의 세포가 교모세포종으로 진화되는 과정을 막기 위한 치료약 개발에 나설 예정이다. 1저자인 이주호 박사는 “암 중 예후가 가장 좋지 않은 교모세포종에 대한 발암의 비밀을 국내 연구진이 풀어냈다는 것에 큰 의미가 있다”며 “악성 뇌종양의 연구와 치료의 획기적 전환점을 최초로 증명하고 제시한 것이다”고 말했다. 이정호 교수는 “암 중 가장 예후가 좋지 않은 교모세포종의 원인을 파악하고 동물 모델 제작까지 성공했다는 점에서 큰 의미가 있다. 환자에게서 찾은 것을 동물에 그대로 반영했기 때문에 여기서 치료를 할 수 있다면 임상까지 가능할 것이다.”고 말했다. 이정호 교수 연구팀은 후천성 뇌 돌연변이에 의한 난치성 뇌전증의 원리와 치료법을 최초로 규명한 바 있다. 이를 토대로 글로벌 제약회사와 함께 임상 2상이 진행될 정도로 난치성 뇌질환의 진단 및 치료법 개발을 세계적으로 리드하고 있다. 이 교수는 한국인으로서는 처음으로 난치성 뇌전증의 유전 병리학적 진단 기준을 세우는 세계 뇌전증학회 핵심 위원으로 참여해 국제 기준을 제정 중이다. 이번 연구는 서경배과학재단, 보건복지부 세계선도의과학자육성사업, 한국연구재단, 보건산업진흥원 사업을 통해 수행됐다. □ 그림 설명 그림1. 교모세포종의 발암의 시작을 불꽃놀이에 비유한 그림 그림2. 동물 실험을 통해 뇌실하영역이 발암의 시발점임을 증명
2018.08.02
조회수 16862
재료·생명화학공학 분야 세계적 석학들 KAIST에 모인다
재료과학 분야 세계적인 학술지인 네이처 머티리얼스(Nature Materials)誌 빈센트 두사스테(Vincent Dusastre) 편집장 등 국제 학술지 에디터들을 포함해 미국 MIT·스탠포드대학 신소재 및 화학과 교수 등 관련 분야의 세계적인 석학 9명이 한 자리에 동시 집결한다. KAIST(총장 신성철)는 다음달 7일(화) 대전 본원 KI빌딩 퓨전홀에서 신소재·화학공학·생명공학 분야 전문가 500여 명이 참석해 미래 선도 기술에 대한 최신 트렌드와 학제 간 협력 강화 등을 논의하기 위해‘2018 KAIST 재료/생명화학공학 국제 워크숍’을 개최한다고 25일 밝혔다. ‘유망 소재분야의 빅 아이디어들’이란 주제로 열리는 이번 국제 워크숍에는 재료공학·화학공학·생명공학 분야의 국제 학술지 에디터와 미국 MIT·스탠포드(Stanford)대 교수, 그리고 2015년 세계 최고 응용생명과학자 20인에 선정(2015년 Nature Biotechnology 발표)된 이상엽 KAIST 특훈교수(생명화학공학과) 등이 강연자로 참여해 발표와 토론을 진행한다. 이 국제 워크숍은 KAIST 신소재공학과(학과장 이혁모)와 생명화학공학과(학과장 이재우)가 공동으로 주관, 개최한다. 신성철 KAIST 총장의 개회사를 시작으로 내달 7일 열리는 이번 국제 워크숍에서 우선 네이처 머티리얼스(Nature Materials)誌 편집장 빈센트 두사스테(Vincent Dusastre) 박사는 ‘에너지 소재의 연구동향 및 미래’를 주제로, 미국 화학회가 발행하는 나노분야의 대표적 학술지인 나노학술지(ACS Nano) 편집장인 폴 웨이즈(Paul S. Weiss) UCLA 교수(화학-바이오화학 및 재료공학과)는 ‘나노과학과 나노기술의 미래’를 주제로 각각 발표에 나선다. 재료화학 학회지(Chemistry of Materials) 편집장인 질리안 뷰리악(Jillian M. Buriak) 알버타대 교수(화학과)는 ‘유기 태양전지용 기계학습과 간이 예측모델의 최적화를 위한 응용’을 주제로, 악타 머티리얼리아(Acta Materialia)지 편집장인 크리스토퍼 슈(Christopher A. Schuh) MIT 교수(신소재공학과)는 ‘결정립계(grain boundary) 분리를 통한 나노구조 금속의 3차원 인쇄기술’을 주제로 각각 발표를 진행한다. 이와 함께 매크로몰리큘스(Macromolecules) 부편집장인 티모시 스와거(Timothy M. Swager) MIT 교수(화학과)는 ‘화학반응 및 촉매를 이용한 나노-전자 센서’를 주제로, 제프리 그로스만(Jeffrey C. Grossman) MIT 교수(신소재공학과)와 제난 바오(Zhenan Bao) 스탠포드대 교수(화학과)는 각각 ‘원자크기의 재료설계 기술’과 ‘생체 피부모방 고분자 전자재료 및 디바이스’를 주제로 발표 및 토론에 참여할 예정이다. 이밖에 국내 전문가로는 바이오테크놀리지 저널(Biotechnology Journal) 및 메타볼릭 엔지니어링(Metabolic Engineering)의 편집장인 이상엽 KAIST 교수(생명화학공학과 특훈교수)와 에너지 스토리지 머티리얼스(Energy Storage Materials)지 부편집장인 김상욱 KAIST 교수(신소재공학과)가 각각 발표자로 나선다. 이번 국제 워크숍은 △차세대 기능성 나노구조체 △환경 및 산업용 화학생명공학 소재 △미래 에너지 소재 기술 등 모두 3개 세션으로 나눠 진행되는데 신소재 및 생명화공 분야 세계적인 석학들의 강연 외에도 미래 선도 기술에 대한 최신 트렌드 소개도 함께 이뤄진다. KAIST는 이번 워크숍을 계기로 국내·외 저명한 석학들과 정보교류를 강화하고 공동 연구를 실시해 세계 최고의 소재기술을 개발하는 기회로 적극 활용할 방침이다. 이번 워크숍의 의장 자격으로 전체 행사를 총괄하는 김일두 KAIST 교수(신소재공학과)는 “내달 7일 열리게 될 이번 국제 워크숍은 재료 및 화학생명공학 분야에서 세계적인 석학들이 한자리에 모이는 국제학술 교류의 장”이라며 “전 세계 나노 신소재 및 화학생명공학 분야의 미래기술을 알 수 있는 소중한 기회가 될 것”이라고 말했다. 한편, KAIST 신소재공학과는 ‘2018 QS 세계대학평가 학과별 순위’에서 전 세계 대학 중 13위(국내 1위), KAIST 생명화학공학과는 ‘2018 QS 세계대학평가 학과별 순위’에서 전 세계 대학 중 14위(국내 1위)를 각각 차지했다.
2018.07.25
조회수 17280
박병국, 김갑진 교수, 고효율 스핀 신소재 개발
〈 박 병 국 교수, 김 갑 진 교수 〉 우리 대학 신소재공학과 박병국 교수와 물리학과 김갑진 교수 연구팀이 자성메모리(Magnetic Random Access Memory, MRAM) 구동의 핵심인 스핀전류를 효율적으로 생성하는 새로운 소재를 개발했다. 이번 연구는 ‘네이처 머티리얼즈(Nature Materials)’ 3월 19일자 온라인 판에 게재됐다. 이 연구는 고려대 이경진 교수, 미국국립표준연구소(NIST)의 Mark Stiles 박사 연구팀 등과 공동으로 수행됐다. 자성메모리는 외부 전원 공급이 없는 상태에서 정보를 유지할 수 있고 집적도가 높으며 고속 동작이 가능해 차세대 메모리로 주목받고 있다. 자성메모리의 동작은 스핀전류를 자성소재에 주입해 발생하는 스핀토크로 이뤄지기 때문에 스핀전류의 생성 효율이 자성메모리의 소모 전력을 결정하는 핵심 기술이다. 이번 연구에서는 강자성-전이금속 이중층이라는 새로운 소재 구조에서 스핀전류를 효과적으로 생성할 수 있음을 이론 및 실험을 통해 규명했다. 특히 이 구조는 기존 기술과 달리 생성된 스핀전류의 스핀 방향을 임의로 제어할 수 있다. 이 소재를 차세대 메모리로 주목받는 스핀궤도토크 기반 자성메모리에 적용하면 스핀토크 효율이 높아지고 외부자기장 없이 동작이 가능해 스핀궤도토크 자성메모리의 실용화를 앞당길 수 있을 것으로 기대된다. 스핀궤도토크 자성메모리는 고속 동작 및 비휘발성 특성으로 S램(D램에 대응하는 반도체 기억소자로 전원만 공급하면 기억된 정보가 계속 소멸하지 않는 램) 대비 대기전력을 획기적으로 감소시켜 모바일, 웨어러블, 사물인터넷용 메모리로 활용 가능하다. 이번 연구성과는 과학기술정보통신부 미래소재디스커버리사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 강자성-전이금속 이중층에서 스핀전류 생성 개략도
2018.04.13
조회수 15168
변혜령 교수, 빠른 충전 가능한 리튬-산소전지 개발
〈 변 혜 령 교수 〉 우리 대학 화학과 변혜령 교수 연구팀과 EEWS 정유성 교수 연구팀이 높은 충전 속도에서도 약 80%의 전지 효율 성능(round-trip efficiency)을 갖는 리튬-산소 전지를 개발했다. 기존에 개발된 리튬-산소 전지는 충전 속도가 높아지면 전지 효율 성능이 급속히 저하되는 단점이 있었다. 이번 연구에서는 방전 생성물인 리튬과산화물의 형상 및 구조를 조절해 난제였던 충전 과전위를 낮추고 전지 효율 성능을 향상시킬 수 있음을 증명했다. 특히 값비싼 촉매를 사용하지 않고도 높은 성능을 가지는 리튬-산소 전지를 제작할 수 있어 차세대 전지의 실용화에 기여할 것으로 보인다. 이번 연구결과는 네이처 커뮤니케이션즈(Nature Communications) 2월 14일자 온라인 판에 게재됐다. 리튬-산소 전지는 리튬-이온 전지보다 3~5배 높은 에너지 밀도를 가지고 있어 한 번 충전에 장거리 주행을 할 수 있는, 즉 장시간 사용이 요구되는 전기차 및 드론 등의 사용에 적합한 차세대 전지로 주목받고 있다. 하지만 방전 시 생성되는 리튬과산화물이 충전 시 쉽게 분해되지 않기 때문에 과전위가 상승하고 전지의 사이클 성능이 낮은 문제점을 갖고 있다. 리튬과산화물의 낮은 이온 전도성과 전기 전도성이 전기화학적 분해를 느리게 만드는 것이다. 리튬과산화물의 전도성을 향상시키고 리튬-산소 전지의 성능을 높이기 위해 연구팀은 메조 다공성 탄소물질인 CMK-3를 전극으로 사용해 일차원 나노구조체를 갖는 비결정질 리튬과산화물을 생성하는 데 성공했다. 전극을 따라 생성되는 비표면적이 큰 비결정질의 리튬과산화물은 충전 시 빠르게 분해돼 과전위의 상승을 막고 충전 속도를 향상시킬 수 있다. 이는 기존의 결정성을 갖는 벌크(bulk) 리튬과산화물과 달리 높은 전도성을 갖기 때문이다. 이번 결과는 촉매나 첨가제의 사용 없이도 리튬과산화물의 크기 및 구조를 제어해 리튬-산소 전지의 근본적 문제를 해결할 수 있는 방법을 제시했다는 의의를 갖는다. 변혜령 교수는 “리튬과산화물의 형상, 구조 및 크기를 제어해 전기화학 특성을 변화시킬 수 있음을 증명함으로써 리튬-산소 전지뿐만이 아닌 다른 차세대 전지의 공통된 난제를 해결할 수 있는 실마리를 찾았다”고 말했다. 이론 해석을 제공한 정유성 교수는 “이번 연구 결과로 기존에 절연체로 여겨진 리튬과산화물이 빠르게 분해될 수 있는 반응 원리를 이해할 수 있었다”고 말했다. 이번 연구는 한국연구재단의 지원을 받아 수행됐으며 일본의 리츠메이칸(Ritsumeikan) 대학 가속기 센터와 공동연구로 진행됐다. □ 그림 설명 그림1. 리튬과산화물 도식 및 투과전자현미경 사진 그림2. 충전 속도 특성 비교 그림3. DFT 계산을 통한 (a) 결정질 및 (b) 비결정질 리튬과산화물의 충방전 에너지 다이어그램
2018.03.29
조회수 16701
육종민, 이정용 교수, 나트륨 기반의 이차전지 음극 소재 개발
우리 대학 신소재공학과 육종민 교수와 이정용 명예교수(前 기초과학연구원 나노물질 및 화학반응연구단) 공동 연구팀이 리튬 기반 이차전지 음극재료에 비해 저렴하고 수명이 긴 나트륨 기반 이온 전지용 음극 소재를 개발했다. 기존의 이차전지 음극재료 대비 1.5배 수명이 길고 약 40% 저렴한 나트륨 이온 전지용 음극 소재 개발을 통해 나트륨 이온 전지의 상용화에 기여할 것으로 기대된다. 박재열 박사과정과 기초과학연구원 김성주 박사가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 3월 2일자 온라인 판에 게재됐다. 현재 리튬 이온 전지는 휴대폰, 전기차 등 일상생활과 밀접한 다양한 곳에 사용되고 있다. 그런데 리튬은 매장지역이 한정돼 있고 수요가 급등해 공급량이 부족한 상황이다. 2015년과 대비해 현재 리튬의 가격은 3배 이상 상승했다. 이런 문제를 해결하기 위해 리튬 이온 전지의 대안으로 나트륨 이온 전지가 주목받고 있다. 리튬이 지구 지표면에 0.005%만 존재하는 반면 나트륨은 그 500배 이상인 2.6% 존재하기 때문에 공급 문제가 해결된다. 따라서 나트륨 이온 전지는 기존 리튬 이온 전지에 비해 40% 저렴한 가격으로 같은 용량의 에너지를 저장할 수 있을 것으로 전망된다. 그러나 리튬 이온 전지의 음극 재료인 흑연은 나트륨의 저장에 적합하지 않다. 흑연 간의 층 사이에 리튬 이온들이 삽입(intercalation)되며 저장이 이뤄지는데 나트륨 이온을 저장하기에는 흑연 층간 거리가 너무 좁기 때문이다. 이러한 이유로 나트륨 이온 전지 상용화를 위해서는 이에 적합한 음극 소재를 개발하는 것이 필수적이다. 연구팀은 흑연의 대안을 나노판상 구조를 가진 황화구리에서 찾았다. 황화구리는 높은 전기전도도와 이론용량을 갖는다. 또한 황화구리에 나트륨이 저장되는 과정을 원자단위에서 실시간 분석한 결과 황화구리의 결정 구조가 유동적으로 변화하며 안정적으로 나트륨 이온을 저장하는 것을 확인했다. 그 결과로 황화구리의 나트륨 저장 성능이 흑연 이론용량(~370mAh/g)의 1.5배(~560mAh/g)에 달하는 것을 확인했고 충, 방전을 250회 반복한 이후에도 이론용량의 90% 이상이 유지됨을 증명했다. 이번 연구로 나트륨 이온전지가 상용화되면 지구 표면의 약 70%를 차지하는 바다에 무궁무진하게 존재하는 나트륨을 활용할 수 있다. 이는 배터리 원가 절감으로 이어지고 휴대폰, 전기 자동차, 노트북 등의 단가를 약 30% 정도 낮출 수 있을 것으로 기대된다. 이정용 교수는“이번 연구결과가 차세대 고성능 나트륨 이온 전지 개발에 크게 기여할 것으로 기대된다”고 말했다. 육종민 교수는 “요즘 미세먼지 등의 환경오염 문제로 특히 신재생 에너지 상품에 관심이 많은데 이번 연구 결과를 통해 우리나라가 관련 제품에 대한 우위를 점할 수 있는 토대를 한 단계 다졌다고 생각한다”고 말했다. 이번 연구는 한국연구재단의 생애첫연구사업 및 나노, 소재기술개발사업과 기초과학연구원의 지원을 받아 수행됐다. □ 그림 설명 그림1. 판상구조 황화구리 촬영 사진 그림2. 황화구리 내 나트륨이 저장되면서 나타나는 결정구조 변화 양상 그림3. 황화구리 내 나트륨 충방전 횟수별 저장 용량
2018.03.08
조회수 16025
최민기 교수, 산화 내성 비약적으로 높인 CO2 흡착제 개발
우리 대학 생명화학공학과 최민기 교수 연구팀이 산화 내성을 크게 높인 아민 기반의 이산화탄소 흡착제 개발에 성공했다. 이번 연구에서 개발한 이산화탄소 흡착제는 기존 아민 기반 흡착제들의 문제점인 산화를 통한 비활성화 문제를 해결함으로써 실용화가 가능한 정도로 안정성을 끌어 올렸다는 의의를 갖는다. 이번 연구 성과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 2월 20일자 온라인 판에 게재됐다. 지구온난화의 주범인 이산화탄소의 포집을 위해 이산화탄소 흡착제 연구가 활발히 진행되고 있다. 그 중 재생에 필요한 에너지 소요가 적고 무해한 고체 흡착제에 대한 관심이 커지고 있는데 그 중 기공이 발달한 고체 내부에 고분자 형태의 아민을 도입한 종류의 흡착제들이 주목받고 있다. 그러나 기존의 아민 기반 고체 흡착제는 뛰어난 이산화탄소 흡착 성능에도 불구하고 반복적인 사용에 따른 화력발전소의 배기가스 내 산소로 인한 아민의 산화 분해 현상이 발생해 성능이 떨어지는 심각한 안정성 문제가 있다. 연구팀은 상용 고분자 아민에 존재하는 극소량의 철, 구리와 같은 금속 불순물들이 아민의 산화 분해를 가속하는 촉매로 작용하는 것을 발견했다. 연구팀은 이 불순물의 활성을 억제할 수 있는 킬레이트제(chelator)라 불리는 소량의 촉매 독을 주입해 산화 안정성을 비약적으로 높였다. 개발된 흡착제는 92% 이상의 대부분의 흡착성능을 유지했으며 이는 기존 흡착제에 비해 약 50배 이상 증진된 산화 안정성이다. 연구팀은 우수한 이산화탄소 흡, 탈착 특성 뿐 아니라 기존 흡착제들의 고질적 문제점이었던 산화 안정성까지 모두 확보했기 때문에 현재까지 개발된 다른 고체 흡착제들보다 실용화에 가깝다고 밝혔다. 1저자인 최우성 박사과정은 “이번 연구는 고체 이산화탄소 흡착제의 산화 분해 문제점을 획기적으로 개선하여 상용화 수준까지 발전시켰다는 점에서 큰 의미가 있다”고 말했다. 최민기 교수는 “연구팀이 개발하는 이산화탄소 흡착제는 상용화 초기 단계에 진입했고 이미 흡착제를 구성하고 있는 각 요소 기술이 세계를 리드하고 있다”며 “연구 역사가 짧은 만큼 앞으로도 개선할 부분이 많지만 흡착제를 더 발전시켜 세계 최고의 이산화탄소 포집용 흡착제를 개발하겠다”고 말했다. 이번 연구는 과학기술정보통신부의 Korea CCS 2020 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1.흡착제 합성 모식도 그림2. 연구에서 개발한 신규 흡착제와 기존 흡착제의 성능 비교
2018.03.07
조회수 14233
최원호 교수, 전기바람 발생 원리 규명
우리 대학 물리학과 최원호 교수가 전북대 문세연 교수와의 공동 연구를 통해 전기 바람(Electric wind)이라 불리는 플라즈마 내 중성기체 흐름의 주요 원리를 규명했다. 이는 플라즈마 내 존재하는 전자나 이온과 중성입자 사이의 상호작용에 대한 기초 연구로 플라즈마를 이용하는 유체 제어기술 등 플라즈마 응용 기술의 발전에 기여할 것으로 기대된다. 박상후 박사가 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 25일자 온라인 판에 게재됐다. 두 개의 서로 다른 입자 무리로 구성된 유체역학 문제는 수세기 동안 뉴턴을 포함한 많은 과학자들의 관심을 지속적으로 받아 온 연구주제이다. 전자나 이온과 중성입자 간의 충돌로 인한 상호작용은 지구나 금성의 대기에서도 일어나는 여러 자연현상의 기초 작용으로 흔히 알려져 있다. 플라즈마에서의 전기바람은 이 상호작용을 통해 나온 결과의 대표적인 예다. 전기바람이란 전하를 띈 전자나 이온이 가속 후 중성기체 입자와 충돌해 발생하는 중성기체의 흐름을 말한다. 선풍기 날개와 같이 기계적인 움직임 없이 공기의 움직임을 일으킬 수 있는 방법으로 기존의 팬을 대체할 수 있는 차세대 기술로 주목받고 있다. 최근에는 이와 같은 플라즈마 기술을 적용해 트럭 및 선박에서 발생하는 공기저항을 감소시켜 연료효율의 증가와 미세먼지 발생 감소, 풍력발전기 날개 표면의 유체 분리(flow separation)의 완화, 도로 터널 내 공기저항 및 미세먼지 축적 감소, 초고층 건물의 풍진동 감소와 같은 응용기술 개발이 여러 나라에서 활발히 시도되고 있다. 대기압 플라즈마 내에 전기장이 강하게 존재하는 공간에서 전자나 이온이 불균일하게 분포되면 전기바람이 발생한다. 전기바람의 주요 발생 원인은 현재까지도 명확하게 밝혀지지 않아 유체 제어와 관련한 여러 응용분야에 적용하는데 어려움이 있었다. 연구팀은 대기압 플라즈마를 이용해 전기바람 발생의 전기 유체역학적 원리를 밝히는데 성공했다. 전기 유체역학적 힘에 의한 스트리머 전파와 공간전하 이동의 효과를 정성적으로 비교하는 데 성공했다. 연구팀은 스트리머 전파는 전기바람 발생에 큰 영향을 주지 못하고 오히려 스트리머 전파 이후 발생하는 공간전하의 이동이 주요 원인임을 밝혔다. 특정 플라즈마에서는 음이온이 아닌 전자가 전기바람 발생의 핵심 요소임을 확인했다. 또한 헬륨 플라즈마에서 최고 초속 4m 속력의 전기바람이 발생했는데 이는 일반적인 태풍 속력의 4분의 1 정도이다. 이러한 결과를 통해 전기바람의 속력을 효율적으로 제어할 수 있는 기초 원리를 제공할 수 있을 것으로 보인다. 이번 연구는 하전입자와의 상호작용으로 인해 중성기체 흐름이 발생하는 원리를 실험을 통해 설명했고 정확한 분석법과 설득력을 갖췄다는 평을 받는다. 최 교수는 “이번 결과는 대기압 플라즈마와 같이 약하게 이온화된 플라즈마에서 나타나는 전자나 이온과 중성입자 사이의 상호작용을 학문적으로 이해하는데 유용한 기반이 될 것이다”며 “ 이를 통해 경제적이고 산업적 활용이 가능한 플라즈마 유체제어 분야를 확대하고 다양한 활용을 가속화하는데 큰 역할을 할 것으로 기대된다”고 말했다. 이번 연구는 국가핵융합연구소의 미래선도플라즈마-농식품융합기술개발사업과 산업통상자원부의 사업화연계기술개발사업(R&BD)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 약전리 대기압 제트 플라즈마 사진 그림2. 대기압 헬륨 제트 플라즈마의 고전압 펄스 폭 및 높이에 따른 전기바람 속력의 변화
2018.02.19
조회수 17052
양찬호 교수, 전기적 위상 결함 제어기술 개발
〈 양 찬 호 교수, 김 광 은 박사과정 〉 우리 대학 물리학과 양찬호 교수 연구팀이 강유전체 나노구조에서 전기적인 위상 결함을 만들고 지울 수 있는 기술을 개발했다. 이 기술을 통해 전기적 위상 결함 기반의 저장 매체를 개발한다면 대용량의 정보를 안정적으로 저장할 수 있을 것으로 기대된다. 이번 연구는 포스텍 최시영 교수, 포항 가속기연구소 구태영 박사, 펜실베니아 주립대학 첸(Long-Qing Chen) 교수, 캘리포니아 대학 라메쉬 교수 등과 공동으로 수행됐다. 김광은 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 26일자에 게재됐다. 위상학은 물체를 변형시켰을 때 물체가 가지는 성질에 대한 연구를 하는 학문으로, 원과 삼각형은 위상학적으로 동일한 물질이라고 할 수 있다. 2016년도 노벨 물리학상 발표 기자회견에서 노벨위원회는 위상학의 개념을 구멍이 한 개 뚫린 베이글 빵, 구멍이 없는 시나몬 빵, 유리컵 등에 비유했다. 시나몬 빵과 유리컵은 다르게 보이지만 구멍이 없다는 점만 따지면 위상학적으로 같은 물질이 된다. 하지만 구멍의 개수가 다른 베이글과 시나몬 빵은 위상학적으로 다른 물질이 되는 식이다. 즉 물질에서 위상학적이라 함은 연속적인 변형으로는 그 특성을 변화시킬 수 없는 절대적인 보존량을 말한다. 이러한 위상학적 특징을 이용해 정보저장 매체를 만들면 외부의 자극으로부터 보존되며 사용자의 의도대로 쓰고 지울 수 있는 이상적인 비휘발성 메모리를 제작할 수 있다. 강유전체와 달리 강자성체(자기적 균형이 깨진 상태, 외부 자기장을 제거해도 자기장이 그대로 남아있음)의 경우는 소용돌이 형태의 위상학적 결함 구조가 이미 구현됐다. 반면 외부 전기장 없이도 스스로 분극을 갖는 강유전체는 자성체에 비해 위상학적 결함 구조를 더 작은 크기로 안정시키고 더 적은 에너지를 이용해 조절할 수 있다는 장점이 있음에도 불구하고 초보적인 연구 단계에 머물러 있었다. 실험적으로 위상학적 결함 구조를 어떻게 안정화시키며 어떠한 방식으로 조절할 것인지에 대한 연구가 부족했기 때문이다. 연구팀은 문제 해결을 위해 강유전체 나노구조에서 비균일한 변형을 줘 위상학적 결함 구조를 안정시키는 데 성공했다. 연구팀은 강유전체 나노접시(ferroelectric nanoplate) 구조를 특정 기판 위에 제작해 접시의 바닥면에는 강한 압축 변형을 주는 동시에 옆면과 윗면은 변형에서 자유로운 구조를 만들었다. 이러한 구조는 방사형으로 압축변형 완화(Compressive strain relaxation)가 일어나 격자의 변형이 오히려 강유전체의 소용돌이 구조를 안정화시키게 된다. 연구팀은 이번 연구가 고밀도, 고효율, 고안정성을 갖춘 위상학적 결함기반 강유전 메모리에 핵심적인 원리를 제시했다고 말했다. 양 교수는 “강유전체는 부도체이지만 위상학적 강유전 준입자가 국소적으로 전자 전도성을 수반할 수 있어 새로운 양자소자 연구로 확대될 수 있을 것이다”고 말했다. 이번 연구는 한국연구재단의 창의연구지원사업, 선도연구센터지원사업, 글로벌프론티어사업 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. 전기적 위상 결함 개수를 조절하여 만든 5가지의 다른 위상 구조
2018.02.08
조회수 28993
2017년 올해의 KAIST인에 물리학과 박용근 교수 선정
우리대학은 물리학과 박용근(사진·37세)교수를 ‘2017년 올해의 KAIST인’으로 선정, 2일 오전 대강당에서 열린 시무식 자리에서 시상했다. ‘올해의 KAIST인 상’은 한 해 동안 국내외에서 KAIST 발전을 위해 노력하고 교육과 연구 실적이 탁월한 인물에게 수여하는 상으로 지난 2001년에 처음 제정됐다. 17번째 수상의 영예를 거머쥔 박용근 교수는 홀로그래픽 측정과 제어기술을 개발하고 새로운 응용분야 정립을 통해 KAIST의 위상을 높였다는 평가를 받았다. 박 교수는 특히 작년 국제학술지인 네이처 포토닉스(Nature Photonics)지에 ‘3차원 디스플레이’를, 네이처 커뮤니케이션즈(Nature Communications)지에는 ‘세포 광조작’을, 그리고 사이언스 어드밴시스(Science Advances)지에 ‘탄저균 진단’과 관련한 연구 성과를 각각 게재함으로써 뉴스위크(NewsWeek)와 포브스(Forbes) 등 다수의 해외 유명 언론으로부터 주목을 받았다. 박 교수는 또 이 같은 기초연구 성과를 바탕으로 벤처기업인 ‘Tomocube’사를 설립해 차세대 세포현미경인 3차원 홀로그래픽 현미경을 출시하는데 성공, 작년 말 현재 미국·일본을 비롯한 여러 국가에 수출하고 있다. 이밖에 박테리아 신속 진단 기술을 보유한 스타트업 ‘더웨이브톡(THE WAVE TALK)’의 공동창업자로서 신성장 동력 기반을 확보하는 등 KAIST의 위상을 높인 공로를 인정받았다. 박용근 교수는 “KAIST인이라면 누구나 최고의 명예로 생각하는 이 상을 받게 돼 개인적으로는 매우 큰 영광이며 동시에 무거운 책임감을 느낀다”며“앞으로도 연구와 교육에 매진하여 국내외에서 KAIST의 위상을 높이는데 기여 하겠다”고 소감을 밝혔다.
2018.01.02
조회수 16781
장석복, 백무현 교수, 상온에서 아릴기의 선택적 도입 반응 개발
우리 대학 화학과 장석복 교수와 백무현 교수 공동연구팀이 이리듐 촉매를 활용해 상온에서도 분자 내 원하는 위치에 아릴기를 선택적으로 도입하는 반응을 개발하는 데 성공했다. 또한 계산화학으로 반응 원리를 밝혀내 기존의 반응과 다른 경로로 이루어진다는 사실을 증명했다. 탄화수소는 자연상태에 많이 존재하지만 일반적 조건에서는 반응성이 낮아 합성의 원료로 사용되기 어렵다. 반응을 촉진시키기 위해 금속촉매를 활용하는 등 다양한 연구가 이루어지고 있다. 특히 의, 약학이나 재료화학 분야에서 중요하게 활용되는 대다수의 화합물들이 분자 내에 아릴기를 포함하고 있기 때문에 효율적이고 위치선택적으로 아릴기를 도입할 수 있는 반응의 개발은 유기화학 분야의 지속적인 연구주제이다. 안정적인 탄소-수소 결합에 아릴기 도입 반응을 유도하기 위해서는 탄소-수소 결합에 할로젠 원자나 유기금속을 붙여 사전활성화하거나 이 과정 없이 탄소-수소 결합을 직접 활성화(C-H functionalization)하는 과정을 거친다. 직접 활성화하는 방법이 효율성과 경제성이 뛰어나지만 개발된 반응 대부분이 고온의 반응온도, 과량의 첨가물이 필요한 격렬한 반응 조건을 필요로 하고 탄소-수소 결합이 분자 내에 많이 존재하므로 선택성 확보 역시 어려웠다. 연구진은 이리듐 촉매 하에서 아릴실레인(arylsilanes)을 반응제로 사용하여 탄소-수소 결합 활성화를 통한 아릴화 반응을 상온에서 구현하는 데 성공했다. 여태껏 전이금속 촉매를 사용하는 탄소-수소 결합 활성화를 통한 아릴화 반응이 대부분 높은 온도에서 이루어진 것과 달리 상온에서도 이 반응이 가능할 뿐 아니라, 분자 내에서 위치선택적으로 아릴기를 도입할 수 있다. 상온에서 아릴기 도입 반응에 성공할 수 있었던 것은 실험과 이론연구가 동시에 이루어졌기 때문이다. 기존에 알려진 아릴화 반응경로는 과정중 생성되는 금속교환반응 중간체(transmetallation intermediate)의 안정성 때문에 반응과정에서 높은 에너지가 요구됐다. 원리 연구를 통해 전이금속을 촉매로 하는 탄소-수소 결합 활성화를 통한 아릴화 반응에서 최초로 금속교환반응 중간체를 분리, 분석했다. 이를 바탕으로 금속교환반응 중간체만을 선택적으로 산화시키는 새로운 경로를 개발하여 에너지 장벽을 효과적으로 낮췄다. 또한 밀도범함수를 활용한 계산화학으로 실험 결과를 토대로 제안된 반응경로의 타당성을 검증했다. 장 교수는 “상온에서 위치 선택적 아릴화 반응을 이끌어 낸 것과 더불어 반응 메커니즘 연구를 통해 기존에 통상적으로 제안되어져 왔던 진행경과와는 다른 새로운 반응경로로 반응이 이루어짐을 규명했다”며 “이 반응경로를 알아내고 이를 바탕으로 고온이나 과량의 첨가물 없이도 선택적인 반응방법을 개발하였다는 점에서 그 의의가 크다”고 말했다. 연구결과는 국제학술지 네이처 케미스트리 12월 11일자 온라인 판에 게재됐다. □ 그림 설명 그림1. 금속교환반응 중간체(transmetallation intermediate)의 X-ray 결정구조 그림2. 밀도범함수를 활용한 계산화학으로 본 중간체의 산화상태와 중간체에서 일어나는 환원성 제거반응(reductive elimination)에 필요한 에너지장벽(energy barrier)간의 상관관계 그림3. 연구진이 제안한 이리듐 촉매를 활용한 아릴화 반응 메커니즘
2018.01.02
조회수 14135
조광현 교수, 암세포 유형별 최적 약물표적 발굴기술 개발
〈 최민수 박사, 조광현 교수 〉 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 암세포의 유형에 따라 최적의 약물 표적을 찾는 기술을 개발했다. 이는 시스템생물학을 이용해 암세포의 유전자변이가 반영된 분자네트워크의 다이나믹스(동역학)를 분석해 약물의 반응을 예측하는 기술로 향후 암 관련 신약 개발에 크게 기여할 것으로 기대된다. 최민수, 시 주 (Shi Jue), 주 양팅 (Zhu Yanting), 양 루젠 (Yang Ruizhen)이 참여한 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 12월 5일자 온라인 판에 게재됐다. 인간의 암세포는 유전자 돌연변이, 유전체 단위의 반복적 변이 등 여러 형태의 유전자 변이가 있다. 이러한 변이는 같은 암종에서도 암세포에 따라 많은 차이를 보이기 때문에 약물에 대한 반응도 다양하다. 암 연구자들은 암 환자에게서 빈번하게 발견되는 유전자변이를 파악하고 이 중 특정 약물의 지표로 사용될 수 있는 유전자변이를 찾기 위해 노력해 왔다. 이러한 연구는 단일 유전자변이의 발견 또는 유전자네트워크의 구조적 특징 분석에 초점이 맞춰져 있다. 하지만 이러한 접근 방법은 암세포 내 다양한 유전자 및 단백질의 상호작용에 의해 유발되는 암의 생물학적 특성과 이로 인한 약물반응의 차이를 설명하지 못하는 한계가 있다. 암세포의 유전자변이는 해당 유전자 기능 뿐 아니라 이 유전자와 상호작용하는 다른 유전자, 단백질에 영향을 미치기 때문에 결과적으로 분자네트워크의 다이나믹스(동역학) 특성에 변화를 일으킨다. 이로 인해 항암제에 대한 암세포의 반응이 변화하게 된다. 따라서 분자네트워크의 다이나믹스(동역학) 특성을 무시하고 소수의 암 관련 유전자를 표적으로 하는 현재의 치료법은 일부 환자에게만 유용하고 약물저항성을 갖는 대다수 환자에게는 효과적으로 적용되지 못한다. 조 교수 연구팀은 문제 해결을 위해 슈퍼컴퓨팅을 이용한 대규모 컴퓨터시뮬레이션과 세포 실험을 융합해 암세포 분자네트워크의 다이나믹스(동역학) 변화를 분석했다. 이를 통해 약물반응을 예측해 유형별 암세포의 최적 약물 표적을 발굴하는 기술을 개발했다. 이 기술은 대다수 암 발생에 관여하는 것으로 알려진 암 억제 유전자 p53의 분자조절네트워크에 시범적으로 적용됐다. 연구팀은 국제 컨소시엄인 암 세포주 백과사전(CCLE : The Cancer Cell Line Encyclopedia)에 공개된 대규모 암세포 유전체 데이터를 분자네트워크에 반영해 구축했으며 유전변이의 특성에 따라 서로 다른 분자네트워크를 생성했다. 각 분자네트워크에 대해 약물반응을 모사한 섭동분석을 수행해 약물반응을 나타내는 암세포의 변화를 정량화하고 군집화했다. 그 후 컴퓨터시뮬레이션 분석을 통해 효능, 조합에 따른 시너지효과 등 약물반응정도를 예측했다. 이러한 컴퓨터시뮬레이션 결과를 토대로 폐암, 유방암, 골종양, 피부암, 신장암, 난소암 등 다양한 암세포주를 대상으로 약물반응 실험을 수행해 비교 검증했다. 이 기술은 임의의 분자네트워크에 대해서 동일한 방식으로 적용할 수 있고 최적의 약물 표적을 발굴해 개인 맞춤치료에 활용가능하다. 연구팀은 암세포의 이질성에 따른 다양한 약물반응의 원인을 특정 유전자나 단백질뿐만 아니라 상호조절작용을 종합적으로 고려해 분석할 수 있게 됐다고 밝혔다. 또한 약물저항성의 원인을 사전에 예측하고 이를 억제할 수 있는 최적의 약물 표적을 발굴할 수 있게 됐고 기존 약물의 새로운 적용대상을 찾는 약물재창출에 활용될 수 있는 핵심 원천기술을 확보하게 됐다고 말했다. 조 교수는 “암세포별 유전변이는 약물반응 다양성의 원인이지만 지금까지 이에 대한 총체적 분석이 이뤄지지 못했다”며 “시스템생물학을 통해 암세포 유형별 분자네트워크의 약물반응을 시뮬레이션으로 분석해 약물 반응의 근본적 원리를 파악하고 새로운 개념의 최적 약물 타겟을 발굴할 수 있게 됐다”고 말했다. 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업과 바이오의료기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 컴퓨터시뮬레이션을 통한 암세포 유형별 약물반응 예측 및 세포실험 비교 검증 그림2. 암세포별 분자네트워크의 동역학 분석에 기반한 약물반응 예측 및 군집화 그림3. 세포 분자네트워크 분석에 따른 암세포 유형별 약물타겟 발굴 및 암환자별 맞춤치료 전략 수립
2017.12.07
조회수 18232
송현준 교수, 이산화탄소를 99% 순수연료로 바꾸는 광촉매 개발
〈 송현준 교수, 김진모 박사과정, 임찬규 박사과정 〉 우리 대학 화학과 송현준 교수 연구팀이 탄산수에 포함된 이산화탄소를 99% 순수한 메탄 연료로 바꿔주는 금속산화물 혼성 광나노촉매를 개발했다. 태양광을 이용해 메탄으로 직접 변환하는 기술은 태양전지를 이용해 전기를 생산 후 이를 전지에 저장하는 방식보다 저장 가능한 에너지의 양 측면에서 매우 효율적이다. 이번 연구는 값싼 촉매 물질을 이용해 반응 효율과 선택성을 크게 높인 화학에너지 저장방법을 구현했다는 의의를 갖는다. 목포대 남기민 교수와 공동으로 연구하고 배경렬 박사, 김진모 박사과정이 공동 1저자로, 임찬규 박사과정이 3저자로 함께 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7일자 온라인 판에 게재됐다. 태양광은 차세대 에너지원으로 주목받고 있지만 해가 떠있는 동안에만 이용하고 발전량이 날씨에 따라 일정하지 않다는 단점이 있다. 태양광 에너지를 연료 등의 화학에너지로 직접 변환할 수 있다면 에너지 저장 및 이용에서의 문제점을 해결할 수 있다. 특히 온난화의 주범으로 지목되는 이산화탄소를 태양광을 이용해 변환하는 기술이 에너지와 환경 문제를 함께 해결할 수 있어 주목받고 있다. 하지만 이산화탄소는 매우 안정적인 물질이기 때문에 다른 분자로의 변환이 어려워, 이를 극복하기 위해 효율과 선택성이 좋은 촉매를 개발해야 한다. 송 교수 연구팀은 선크림에 주로 사용되는 아연산화물 나노입자를 합성한 뒤 표면에 구리산화물을 단결정으로 성장시켜 콜로이드 형태의 아연-구리산화물 혼성 나노구조체를 제작했다. 구리산화물은 빛을 받으면 높은 에너지를 가진 전자를 생성하며 이는 탄산수에 녹아있는 이산화탄소를 메탄으로 바꿔주는 역할을 한다. 또한 아연산화물도 빛을 받아 전자를 생성한 뒤 구리산화물로 전달해 주기 때문에 마치 나뭇잎에서 일어나는 광합성 현상과 유사한 원리를 통해 오랜시간 반응 시간을 유지했다. 그 결과 수용액에서 반응 실험을 실시했음에도 불구하고 이산화탄소에서 99%의 순수한 메탄을 얻을 수 있었다. 기존의 불균일 광촉매는 고체의 분말 형태이기 때문에 구조가 균일하지 않고 물에 분산되기 어려웠다. 송 교수 연구팀은 나노화학 합성 방법을 이용해 촉매 입자의 구조를 일정하게 조절하고 높은 표면적을 유지시켰다. 이를 통해 기존 촉매보다 수용액에서의 이산화탄소 변환 활성을 수백 배 증가시켰다. 송현준 교수는 “태양광을 이용한 이산화탄소의 직접 변환 반응의 상용화에는 많은 시간이 필요하다. 그러나 이번 연구처럼 나노 수준에서의 촉매 구조의 정밀한 조절은 광촉매 반응의 효율 향상 및 원리 연구에 큰 도움을 줄 것이다”며 “이를 다양한 광촉매에 접목시키면 촉매 특성의 최대화가 가능할 것이다”고 말했다. □ 그림 설명 그림1. 광나노촉매를 이용한 수용액에서의 이산화탄소 변환 반응 개념도 그림2. 아연-구리산화물 나노촉매의 구조와 이를 이용한 광촉매 CO2 변환 반응 및 안정성 테스트 결과
2017.11.09
조회수 17729
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 20