본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%82%98%EB%85%B8+%EB%A0%88%ED%84%B0%EC%8A%A4
최신순
조회순
장기주 교수, 불순물도핑없는 반도체나노선 양전하 생성원인규명
물리학과 장기주(張基柱, 56) 교수팀이 게르마늄-실리콘 나노선에서 불순물 도핑 없이도 양전하가 생성되는 원인을 최근 규명했다. 이 연구는 KAIST 박지상, 류병기 연구원, 연세대 문창연 박사와 함께 나노미터(nm=10억분의 1m)단위의 직경을 가진 코어-쉘(core-shell) 구조의 게르마늄-실리콘 나노선의 전기전도 특성을 조사해 이뤄졌다. 이번 연구결과는 나노과학기술 분야 최고 권위지인 ‘나노 레터스(Nano Letters)" 온라인판에 게르마늄-실리콘 코어-쉘 나노선의 양전하 정공 가스를 일으키는 결함(Defects Responsible for the Hole Gas in Ge/Si Core−Shell Nanowires)라는 제목으로 지난 17일 게재됐다. 반도체 기술이 소형화의 한계에 직면하면서 탄소나노튜브, 그래핀(graphene), 반도체 나노선 등 나노 소재를 이용한 새로운 반도체 소자 연구가 널리 수행되고 있다. 특히 실리콘 및 게르마늄 나노선은 기존 반도체 기술과 접목이 가능하기 때문에 큰 기대를 모으고 있다. 반도체 나노선의 소자 응용은 불순물을 첨가하여 양전하 혹은 음전하를 띤 정공(hole)이나 전자 운반자를 만들어 전류가 흐를 수 있게 해야 한다. 그러나 나노선의 직경이 작아져 나노미터 수준이 되면 불순물 첨가가 어려워 전기전도의 조절이 매우 어려워진다. 이에 반해 게르마늄 나노선을 얇은 실리콘 껍질로 둘러싼 코어-쉘(core-shell) 구조를 갖는 나노선을 만들면 불순물을 도핑하지 않아도 게르마늄 코어에 정공이 만들어지고 전하 이동도는 크게 증가한다. 연구진은 제일원리 전자구조 계산을 통해 게르마늄 코어와 실리콘 쉘의 밴드구조가 어긋나 있고, 이러한 이유로 게르마늄 코어의 전자가 실리콘 쉘에 있는 표면 결함으로 전하 이동이 가능하여 코어에 양공이 생성됨을 최초로 규명했다. 또한 반도체 나노선을 만드는 과정에서 촉매로 쓰이는 금(Au) 원자들이 실리콘 쉘에 남아 게르마늄 코어의 전자를 빼앗는다는 사실도 처음 밝혔다. 張 교수는 “이번 연구 결과는 그동안 수수께끼로 남아있던 게르마늄-실리콘 나노선의 양전하 생성 원인과 산란과정을 거치지 않는 정공의 높은 전하 이동도에 대한 이론적 모델을 확립하고, 이를 토대로 불순물 도핑 없는 나노선의 소자 응용과 개발에 크게 기여할 것으로 기대된다.” 고 말했다. * 용어설명○ 제일원리 전자구조 계산 : 실험 데이터 없이 순전히 양자이론에 기초하여 물질의 전자구조와 물성을 기술하는 최고급(state-of-the-art) 전자구조 계산방법. (그림1) 실리콘 나노선 및 게르마늄-실리콘 코어-쉘 나노선의 원자구조. (그림2) 게르마늄-실리콘 코어-쉘 나노선의 전자의 상태밀도 분포.
2009.12.30
조회수 19459
박정기 교수팀, 빛에 의해 움직이는 고분자를 이용한 나노광학소자 신기술 개발
- 빛으로 나노광학구조의 모양과 크기를 자유자재로 제어할 수 있는 리소그래피 방법 세계 최초 개발- 회절한계를 극복한 영역에서 빛을 다룰 수 있는 나노광학구조로 분자 탐지 및 양자컴퓨터의 실용화 길 열어 생명화학공학과 박정기(朴丁基, 58) 교수팀이 조사되는 빛의 조건을 정교하게 조절하여 모양과 크기가 자유자재로 제어될 수 있는 고분자 나노패턴을 만들고 이를 형틀로 이용해 회절한계를 극복한 영역에서 빛을 다룰 수 있는 나노광학구조를 모양과 크기를 자유롭게 조절하면서 대면적으로 손쉽게 만들 수 있는 방법을 최근 개발했다. 이번 연구결과는 ‘방향성 광유체화 리소그래피를 이용한 모양과 크기가 제어된 나노구조체 제작(Directional Photofluidization Lithography for Nanoarchitectures with controlled shapes and sizes)"이라는 제목으로 나노과학 및 기술 분야의 최고 권위지인 나노 레터스(Nano Letters) 온라인판에 17일 게재됐다. 현재 관련기술은 국내.외 특허 출원중이다. 이번 연구는 교육과학기술부의 21세기 프론티어연구사업단 산하 나노소재기술개발사업단의 지원을 받아 박정기교수 연구실의 주도하에 KAIST 물리학과 이용희 교수, 신종화 박사, 미국 스탠포드대 샨휘 판(Shanhui Fan)교수 등의 공동연구로 이뤄졌다. 지금까지 개발된 나노광학소자 제작 방법은 구조의 모양과 크기, 두 가지를 동시에 그리고 대면적으로 균일하게 제어하는 것이 어려웠다. 특히 10nm 이하의 초미세 영역에서 구조의 모양과 크기를 대면적으로 제어하는 것은 미세구조체 제작 연구 분야에서 달성하기 어려운 과제로 인식되어 왔다. 박교수팀은 빛을 받았을 때 움직이는 고분자를 이용해 이 문제를 해결했다. 고분자 선모양 패턴에 빛을 조사해주면 고분자의 광유체화 현상이 발생해 조사된 빛의 편광 방향에 평행하게 고분자가 이동을 한다. 따라서 고분자의 선패턴 사이의 간격을 나노영역까지 손쉽게 줄일 수 있다. 또한 빛을 부분적으로 조사해주면 원하는 지역에서만 고분자의 광유체화 현상을 발생시켜 원하는 모양의 고분자 나노구조체를 제작할 수 있다. (그림1 참조) 박교수팀은 이를 이용해 양끝이 뽀족한 유선형 모양의 나노안테나를 대면적으로 제작하는데 성공했다. 나노안테나는 현재 일반적으로 이용되고 있는 안테나를 나노크기로 줄인 소자이며 양 끝을 뾰족하게 처리해야만 빛 증폭 효과를 극대화시킬 수 있다. 나노안테나는 회절한계를 극복한 영역에서 빛을 증폭시킬 수 있는 소자로서 광자컴퓨터 및 광자 분자 탐지를 위한 센서와 같은 첨단 광학소자 개발을 위한 가장 핵심적인 요소로 인식되고 있는 기술 중의 하나다. 박교수팀은 같은 원리를 이용해 대면적에 고집적화된 나노선 제작에도 성공했으며 이를 이용한 나노트랜지스터, 양자메모리, 양자디스플레이 등 첨단전자 소자개발에도 새로운 가능성을 보여줬다. 박 교수는 “첨단 광학소자의 필수 요소인 나노안테나 및 나노선 뿐만 아니라 수나노 크기의 대면적 초미세 소자 가능성을 새롭게 열었기 때문에 그 동안 접근하지 못했던 분자 수준의 소자 제작을 가능하게 해줄 것으로 기대된다”며 “실용적 소자 제작과 더불어 초미세 영역의 기초 물리 및 화학 연구에도 새로운 전기가 될 것”이라고 말했다. 이 논문의 제1저자인 이승우(李承祐, 27)연구원은 “이번 연구결과를 토대로 앞으로 광자컴퓨터 및 메모리와 같은 나노광학소자 실용화를 앞당길 수 있는 실제 소자제작 연구를 진행할 것”이라고 말했다.
2009.12.21
조회수 19673
김상욱,이원종,이덕현 연구팀, 질소가 도핑된 전도성 탄소나노튜브의 고효율 제조공정 개발
- 세계적 학술지 나노 레터스지 3.13(금)일자 온라인판 발표 신소재공학과 김상욱(金尙郁, 37, 교신저자), 이원종(李元鐘, 52, 교신저자) 교수와 박사과정 이덕현(李德睍, 29, 제1저자) 연구팀이 분자조립(molecular self-assembly) 나노기술을 이용하여 질소가 도핑(doping)된 높은 전기전도성의 탄소나노튜브(Carbon Nanotube : CNT)를 탄소벽의 개수를 원하는 대로 조절하며 매우 빠른 속도로 합성할 수 있는 새로운 공정을 개발했다. 이 연구결과는 나노기술분야의 세계적 학술지인 나노 레터스(Nano Latters)지 최신호(3.13, 금) 온라인 판에 게재됐다. 탄소나노튜브는 전기적, 물리적 성질이 매우 우수하여 플렉서블 전자소자 등 다양한 미래기술에 적용될 것으로 예상된다. 그러나 탄소나노튜브를 이용한 나노소자를 실용화하기 위해서는 탄소나노튜브의 전기 전도도를 높이고, 물리적 특성을 결정짓는 탄소나노튜브의 직경과 탄소벽의 개수를 원하는 대로 조절할 수 있는 기술의 개발이 필요하다. 일반적으로 탄소나노튜브의 전기 전도도를 향상시키기 위해서는 실리콘 등의 반도체 물질에 이용되는 방법과 같이 붕소(B)나 질소(N) 등의 소량의 불순물을 첨가시키는 도핑 기술이 필요하다. 또한 탄소나노튜브의 직경 및 탄소벽의 개수는 합성에 이용되는 금속 촉매의 크기에 의해 결정되므로 형태가 균일한 나노튜브를 대량으로 성장시키기 위해서는 균일한 크기의 촉매입자를 기판위에 대면적으로 제조할 수 있는 나노패턴 공정이 필요하다. 金 교수 연구팀은 고분자의 분자조립 나노패턴기술을 통해 탄소나노튜브의 성장에 필요한 금속 촉매의 크기를 대면적에서 수 옹스트롱 수준으로 균일하게 조절하고 이를 이용하여 탄소나노튜브의 직경 및 탄소벽의 개수를 원하는 대로 조절하는데 성공하였다. 또한, 질소가 도핑되어 높은 전기 전도도를 보이며, 화학적인 기능화가 용이한 탄소나노튜브를 분당 50마이크로미터의 높은 속도로 성장시키는데 성공하였다. 金 교수 연구팀은 그동안 ‘고분자 자기조립 나노기술’에 관련된 일련의 연구 결과들을 네이처지와 사이언스지 그리고 어드밴스드 머티리얼스지 등에 발표해 왔다. 이번 연구 결과로 고분자소재뿐만 아니라 유/무기 혼성소재공정 분야에서도 우수한 역량을 보여주게 됐다. 이번 연구는 金 교수와 李 교수의 공동 지도하에 박사과정 이덕현 씨가 진행했다. <용어설명> - 탄소나노튜브(carbon nanotube): 나노미터 수준의 직경을 가지는 일차원적 구조의 탄소소재로 높은 전하이동도와 전하 축척도를 가지며, 전 세계적으로 초미세/고효율 소자의 부품으로 활용하기 위한 연구가 활발하게 진행되고 있다. - 분자조립(molecular self-assembly): 분자들이 외부의 도움 없이 스스로 정렬되어 정형화된 구조를 형성하는 현상을 의미하며, 초미세 나노패턴구조를 형성시킬 수 있는 원리로 많은 관심을 모으고 있다.
2009.03.17
조회수 19806
김도경 교수, 탄화규소 세라믹 신소재의 특성 나타나는 근원 밝혀냈다.
- 美 화학회 나노레터스(Nano Letters)온라인판 최근호 발표- 고성능 세라믹 신소재 개발의 새로운 전기 마련 우리학교 신소재공학과 김도경(金渡炅, 49세, 입학본부장) 교수가 美 UC버클리대 리치(R. O. Ritchie) 교수 연구팀과 공동으로 희토류(비금속 미량원소)가 첨가된 탄화규소 세라믹 신소재에서 나노 스케일(수준, 단위) 인성(靭性, 깨지지 않는 성질)이 나타나는 근본 원인을 밝혀냈다. 金 교수 연구팀의 이번 연구 결과는 나노분야 최고 권위 국제학술지인 미국화학회 발행 "나노 레터스(Nano Letters)" 온라인판 최근호(9월호)에 발표됐다. 초고온에서 작동 가능한 터빈날개의 개발을 위해서는 기존의 초합금보다 훨씬 높은 온도에서 작동 가능한 신소재가 필수적이다. 이 신소재는 차세대 고효율 발전 및 초고속 비행체에 적용이 기대되고 있는데, 지난 30년 동안 질화규소 및 탄화규소 세라믹 신소재가 각국의 연구자들에 의해 지속적으로 연구 개발되고 있다. 이들 신소재의 제작에는 희토류 산화물의 첨가가 필수적인 것으로 알려져 있다. 희토류는 일반적으로 깨지기 쉬운 성질을 나타내는 세라믹 소재의 단점을 보완하여 특별히 높은 인성을 나타낼 수 있게 하며, 이는 신소재의 신뢰성을 높이는데 결정적 기여를 했다. 그러나, 희토류의 인성강화에 대한 궁극적인 근본 원리는 최근까지 미지수로 남아있어 고성능 세라믹 신소재의 발전을 가로 막고 있었다. 金 교수와 리치 교수 연구팀은 고성능 전자현미경내에서 세라믹 내에 나노스케일의 균열을 생성시키는데 성공했으며, 그 균열의 주위를 원자레벨의 이미징기법을 이용하여 원자들의 배열과 화학성분의 분포를 찾아냈다. 이 결과들을 바탕으로 서로 다른 특성을 가진 소재간의 경계인 나노계면에서 균열의 전파를 예측함으로써 세라믹 신소재의 인성이 나타나는 근본원인을 밝히는 성과를 거뒀다. 이 연구결과를 통해 인성이 나타나는 근본원인을 밝혀냈음은 물론이고, 희토류의 종류에 따라서 세라믹 신소재의 인성특성이 다르게 나타나는 현상을 정확히 예측할 수 있게 됨으로써 고성능 세라믹 신소재를 이용한 터빈 날개 개발에의 적용을 보다 앞당길 수 있을 것으로 기대된다. <용어설명>희토류(稀土類, Rare Earth): 지구상에 아주 희귀한 원소로, 화학적으로 매우 안정되면서도 열을 잘 전달하는 성질이 있다. 광학유리·전자제품 등 첨단산업의 소재로 활용된다. 주로 디스플레이 원료와 미사일 유도장치, 화학반응 촉매제에 사용된다.
2008.10.08
조회수 17594
<<
첫번째페이지
<
이전 페이지
1
2
3
>
다음 페이지
>>
마지막 페이지 3