본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EA%B4%91%EC%9C%A0%EC%A0%84
최신순
조회순
허원도 교수, 빛으로 단백질군집형성 속도 10배 높이는 새 광유전학 기술 개발
〈 허 원 도 교수 〉 우리 대학 생명과학과 허원도 교수 연구팀이 청색광 수용 단백질인 크립토크롬2(Cryptochrome2)를 변형한 크립토크롬2 클러스트(CRY2clust)를 개발했다. 이를 통해 기존에 비해 약 10배 더 빠른 반응속도로 단백질 군집을 형성하는 데 성공했다. 이번 연구결과는 네이처 자매지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 23일자에 게재됐다. 세포막 단백질이나 신호전달 단백질, 효소 등 많은 단백질은 자신들끼리 서로 군집을 이룰 때 제 기능이 활성화된다. 그 동안 화학물질을 이용해 단백질 군집 형성을 유도하려는 노력이 이뤄져왔으나 부작용과 시간적 제약 등 한계가 있었다. 광유전학 분야 연구자들은 화학물질을 사용하지 않는 대신 빛을 이용해 단백질 군집을 형성하고자 식물의 청색광 수용 단백질인 크립토크롬2를 활용했다. 허원도 교수 연구팀은 크립토크롬2의 일부 구조를 변형해 기존 크립토크롬2를 활용한 광유전학 기술보다 단백질 군집을 더 빠르게 만들 수 있는 방법을 찾았다. 크립토크롬2의 단백질 사슬 C말단(C-terminal)에 9개의 아미노산 잔기로 구성된 매우 짧은 펩티드(Peptide)를 부착하자 일반 크립토크롬2보다 빛에 10배 이상 더 빠르게 반응한다는 사실을 관찰한 것이다. 연구진은 이 기술을 CRY2clust라 이름 붙였다. 연구팀은 과거 자체 개발한 광유전학 기술에 CRY2clust를 접목해 CRY2을 이용한 기존 시스템과의 단백질 활성 효율의 차이를 확인했다. CRY2clust를 사용하면 빛으로 세포막의 칼슘이온채널을 훨씬 빠르게 끄고 켜거나(광유도 칼슘이온채널 활성 시스템 ; OptoSTIM1) 신경세포의 분화를 더욱 효율적으로 조절(광유도 신경성장인자 수용체 활성 시스템 ; OptoTrkB)할 수 있었다. 연구진은 더 나아가 실험실에서 단백질 군집 형성에 주로 활용하는 여러 형광단백질(Fluorescent protein)과 크립토크롬2를 짝지어 결합해봄으로써 빛을 이용해 단백질 군집을 더 효율적으로 만들 수 있는 조합의 조건을 찾았다. 형광단백질이 하나보다는 여러 개가 결합한 형태일수록 빛을 비추었을 때 광유도 클러스트를 더욱 높은 비율로 형성했다. 또한 형광단백질을 크립토크롬2의 단백질 사슬 말단 중 N말단이 아닌 C말단에 붙이는 경우 광유도 클러스트 형성 효율이 더 높은 것으로 확인됐다. 단백질 군집이 잘 형성되는 조건을 찾았다는 점에서 연구자의 실험 선택의 폭을 넓혀준 데 의의가 있다. 허원도 교수 연구팀은 CRY2clust를 개발해 빛을 이용한 단백질의 활성을 훨씬 효율적으로 유도하는데 성공했다. 허원도 교수는 “이번 연구에서 개발한 CRY2clust는 향후 광유전학 분야의 실험에 유용한 도구가 될 것이다”며“다양한 형광단백질-CRY2 조합을 통해 찾은 단백질 군집 형성 성공 요인은 광유전학 시스템 개발에 길잡이 역할을 할 것이다”고 말했다. □ 그림 설명 그림1. 기존 크립토크롬2 대비 CRY2clust의 단백질 군집 형성 속도 그림2. CRY2clust 시스템을 적용한 광유도 단백질 기능 조절 그림3. 형광단백질을 이용한 다양한 단백질 군집 형성
2017.06.26
조회수 8457
허원도 교수, 이달의 과학기술인상 4월 수상자 선정
〈 허 원 도 교수 〉 우리 대학 생명과학과 허원도 교수가 이달의 과학기술인상 4월 수상자로 선정됐다. 미래창조과학부와 연구재단은 허원도 교수가 빛으로 생체 내 세포 기능을 제어하는 광유전학 원천기술을 개발해 수술이나 약물투여 없이 레이저나 LED 빛을 쏘아 알츠하이머, 암 등 칼슘이온 관련 질환의 발병원인을 연구할 기술개발과 다양한 차세대 광유전학 기술들을 개발해 새로운 생물학 연구방법을 제시한 공로가 높이 인정돼 이달의 과학기술인상 수상자에 선정됐다고 설명했다. 빛으로 생체 조직의 세포들을 조절하는 광유전학은 신경세포를 단순하게 활성화 또는 비활성화시키는 기술들이 일반적이다. 허원도 교수는 칼슘이온채널 활성화 기술(OptoSTIM1)을 개발해 빛을 이용해 생체 내 칼슘이온을 활성화시킬 뿐만 아니라 빛으로 칼슘농도를 올려 생쥐의 기억력을 2배로 향상시키는 데 성공했다. 이 기술로 빛의 강도와 노출 시간에 따라 원하는 만큼 칼슘이온을 유입시키고 잔류 시간도 조절할 수 있어, 단일세포나 살아있는 동물조직에서 다양한 세포들의 기능을 원격조정할 수 있게 된다. 실험 결과 칼슘이온의 영향을 받는 세포들 중 정상세포, 암세포, 인간 배아 줄기세포 등에 빛을 쐈을 때 칼슘이온 유입이 활성화되는 것이 확인됐다. 빛으로 칼슘이온의 농도를 제어함으로써 세포 성장, 신경물질 전달, 근육 수축, 호르몬 조절 등 생명현상의 조절이 가능해진 것이다. 허원도 교수는 “그동안 채널로돕신을 이용하여 신경세포를 활성화하는 광유전학이 일반적이었는데, 칼슘이온채널 활성화를 통한 새로운 광유전학 기술 개발로 다양한 생물학 연구뿐만 아니라 신경생물학 연구에서 필수적인 연구기법으로 적용할 수 있을 것으로 기대된다.”고 말했다. 이달의 과학기술인상은 과학기술인의 사기 진작과 과학기술 마인드 확산을 위해 우수한 연구개발 성과로 과학기술 발전에 공헌한 연구개발자를 매월 1명씩 선정해 미래부 장관상과 상금 1천만원을 수여하고 있다.
2017.04.07
조회수 8610
허원도 교수, 세포의 이동 방향 결정하는 방향타 단백질 발견
〈 허 원 도 교수 〉 우리 몸의 세포는 가만히 멈춰있는 것이 아니라 이동한다. 세포가 특정 방향으로 이동하는 과정은 배아 발달, 상처 치유, 면역 반응 등에 필수적이다. 우리 몸 여러 기관에 암이 전이되는 현상도 암 세포의 이동 때문에 발생한다고 볼 수 있는데 이처럼 세포의 이동은 다양한 생리 및 병리적 조건에서 중요한 역할을 담당한다. 세포 이동에는 여러 종류의 소형 GTP 결합 단백질과 이 단백질의 활성을 조절하는 GEF 단백질들이 관여한다. 세포는 진행 방향 부위의 소형 GTP 결합 단백질(Rac1, Cdc42)이 활성화되면서, 동력을 내는 액틴 섬유를 중합(polymerization)해 지느러미 같은 돌출부를 만들어 앞으로 나아갈 수 있다. 그러나 기존 연구에서는 세포 이동을 관장하는 여러 종류의 GEF 단백질을 세포에 발현시켜도 세포의 이동이 크게 증가하지 않는 한계가 있었고, 세포 이동의 구체적인 작동원리를 밝히지 못했다. 우리 대학 생명과학과 허원도 교수 연구진은 GEF 단백질 중 하나인 ‘PLEKHG3’ 단백질이 세포의 이동 방향을 결정하는 ‘방향타’ 역할을 담당한다는 사실을 처음으로 발견했다. 또한, 독자적으로 개발한 광유전학 기술(광유도 분자 올가미, LARIAT)을 접목, 빛으로 ‘방향타 단백질(PLEKHG3)’ 의 활성을 조절해 세포의 이동을 실시간으로 제어하는 데 성공했다. 연구진은 바이오이미징 기술로 세포 내 63개 GEF 단백질들의 분포양상을 분석해, 세포가 이동하는 동안 세포이동을 조절할 가능성이 높은 GEF 단백질들을 선별했다. 그 중 PLEKHG3가 세포의 진행 방향 부위로 빠르게 이동하는 현상을 확인했다. 방향타 역할을 하는 이 단백질은 해당 부위에서 소형 GTP 결합 단백질을 활성화해 세포 골격을 이루는 액틴 섬유를 형성한다. 액틴 섬유는 그물망을 이루며 지느러미 같은 돌출부를 형성,해 세포를 앞으로 나아가게 한다. 이 과정에서 방향타 단백질은 액틴 섬유 자체와도 매우 강하게 결합하는데, 이 결합이 소형 GTP결합 단백질의 활성을 더욱 촉진시킴으로써 세포의 이동 속도를 더 빠르게 한다는 사실을 발견했다. 또한 연구진은 광유전학 기술로 방향타 단백질의 활성을 조절해 세포가 움직이는 방향을 인위적으로 제어하는 데 성공했다. 청색광 수용체를 이용해 만든 융합 단백질이 발현된 세포에 청색광을 비추면 융합단백질이 PLEKHG3를 올가미처럼 붙잡아 PLEKHG3의 움직임을 방해하는 원리를 활용했다. 이에 따라 빛을 비추면 세포는 이동을 멈추고, 빛을 끄면 PLEKHG3의 활성이 다시 정상화돼, 세포는 움직인다. 빛을 비추는 부위를 조정해서, 세포의 이동방향도 제어할 수 있음을 확인했다. 본 연구는 방향타 단백질인 PLEKHG3가 세포를 움직이게 하는 핵심 단백질임을 밝히고, 광유전학 기술로 빛을 통해 세포의 이동을 자유롭게 제어한 데 의의가 있다. 허원도 교수는 “세포 이동을 극대화하는 새로운 메커니즘을 밝혀 암세포 전이 및 면역 세포 이동을 연구할 수 있을 것으로 기대된다”고 말했다. 이번 연구결과는 국제 학술지 미국국립과학원회보(PNAS) 8월 23일자 온라인 판에 게재됐다. □ 그림 설명 그림1. 세포내 PLEKHG3의 위치분석 그림2. 세포이동시 PLEKHG3의 세포내 위치추적 그림3. PLEKHG3에 의한 새로운 세포이동 메커니즘
2016.08.24
조회수 8265
허원도 교수, 세포의 새로운 칼슘 신호 발견
〈 허 원 도 교수 〉 우리 대학 생명과학과 허원도 교수 연구팀이 세포이동 시 세포의 후방 부위에 새로운 칼슘신호가 있는 것을 발견하고 그 역할을 밝히는 데 성공했다. 허 교수 연구팀은 최근 독자적으로 개발한 광유전학 기법인 광활성세포성장인자수용체(OptoFGFR)와 그 하위 신호전달 단백질을 제어할 수 있는 다른 광유전학 기술을 조합하는 방법을 이용했다. 김진만 박사(의과학대학원), 이민지 박사과정 학생(생명과학과)이 주도한 이번 연구는 ‘미국국립과학원회보(PNAS)’ 온라인 판에 5월 17일자로 게재됐다. 우리 몸을 이루고 있는 세포들은 가만히 멈춰있는 것이 아니라 끊임없이 이동한다. 세포의 이동은 개체의 발달과 유지에 핵심적인 과정이며, 다양한 생리 및 암 전이와 같은 병리적 조건에서 중요한 역할을 담당한다. 특히 배아 발달, 상처 치유, 면역세포 이동 등에서는 세포가 특정 방향으로 이동하는 것이 중요하다. 방향성을 가진 세포는 주변 환경과 상호작용하며 이동하게 되는데 세포의 극성화(Polarization)와 액틴 섬유 등의 세포 골격의 재배열을 통해 이동한다. 방향성을 갖는 세포이동은 복잡한 신호와 신호전달단백질에 의해 매개되는데 신호전달과정은 매우 역동적이며 부위 특이적으로 일어난다. 따라서 이러한 세포의 생화학적인 변화에 중요한 요소와 그 분자적 기전을 밝히는 데에는 어려움이 따른다. 연구진은 원하는 특정 부위에만 자극을 줄 수 있고, 수용체와 같은 상위 신호전달 단백질부터 실제 세포가 움직이도록 작용하는 하위 단백질까지 활성을 각각 조절할 수 있는 광유전학 기술의 장점을 이용했다. 국소적인 빛 자극을 통해 세포의 이동을 유도하는 모델을 구축하고 이를 통해 방향성을 가지는 세포 이동을 개별 세포 수준에서 분석하는데 성공한 것이다. 연구진은 광유전학 기술의 적용을 통해 방향성을 가진 세포 이동시에 발생하는 부위 특이적인 칼슘신호(Ca²⁺ sparklet)를 발견했다. 기존 연구에서는 세포 이동시에 세포내 칼슘 농도 경사가 생기는 과정이 전혀 알려져 있지 않았다. 연구진은 세포전방부위에 빛을 비춰 세포성장인자수용체(FGFR)가 활성화돼 여러 신호전달과정이 진행되면서 세포막이 앞으로 팽창하고 세포가 전진하게 되는 것을 확인했다. 신호전달이 세포후방부위까지 전달되면서 세포후방에 있는 세포막칼슘채널의 국소적이고 반복적인 개방을 통해 칼슘이온 농도가 증가, 액틴(Actin)중합을 유도하여 세포후방부위가 수축, 세포이동이 이루어짐을 알게 됐다. 이번 연구는 신호전달 체계의 상, 하위에 있는 단백질들을 특이적으로 조절할 수 있는 다양한 광유전학 기술들을 효과적으로 적용하여 방향성을 가진 세포이동에서 칼슘이온의 새로운 역할을 밝혔다는 점에서 의의가 있다. 세포이동시 세포의 후방 부에 특이적이고 반복적으로 칼슘이 증가하는 현상을 확인, 증가한 칼슘이온이 세포 이동에서 세포의 전방부위와 후방부위의 신호전달단백질의 상호작용에 관여할 뿐만 아니라, 세포 내 전체적인 칼슘의 농도경사를 유지하는데 필수적으로 작용한다는 것을 밝혀낸 것이다. 이 기술은 광유전학 기술의 장점을 극대화한 생물학적 연구의 표본을 제시한다는 점에서 유용할 것으로 기대된다. □ 그림 설명 그림1. 청색광의 부분 자극에 의해 세포 내에서 발생하는 칼슘신호들 그림2. 광유전학 기술을 이용한 광유도 세포 이동 모델의 구축
2016.05.27
조회수 9908
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2