본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EA%B3%BC%ED%95%99%EA%B8%B0%EC%88%A0%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%EB%B6%80
최신순
조회순
최성율 교수, 뉴로모픽 칩의 시냅스 구현
〈 최성율 교수 〉 우리 대학 전기및전자공학부 최성율 교수 연구팀이 멤리스터(Memristor) 소자의 구동 방식을 아날로그 형태로 변화해 뉴로모픽 칩의 시냅스로 활용할 수 있는 기술을 개발했다. 이 기술을 통해 기존의 디지털 비휘발성 메모리로만 이용되던 멤리스터를 아날로그 형태로 활용함으로써 인간의 뇌를 모사한 인공지능 컴퓨팅 칩인 뉴로모픽 칩의 상용화에 기여할 수 있을 것으로 기대된다. 장병철 박사(현 삼성전자 연구원), 김성규 박사(현 노스웨스턴대학), 양상윤 연구교수가 공동 1 저자로 참여하고 美 노스웨스턴 대학, KAIST 임성갑 교수가 공동으로 수행한 이번 연구는 나노과학 분야 국제 학술지 ‘나노 레터스 (Nano Letters)’ 1월 4일 온라인판에 게재됐다. 사람 뇌를 닮은 반도체로 알려진 뉴로모픽 칩은 기존의 반도체 칩이 갖는 전력 확보 문제를 해결할 수 있고 데이터 처리 과정을 통합할 수 있어 차세대 기술로 주목받고 있다. 멤리스터는 메모리와 레지스터의 합성어로, 메모리와 프로세스가 통합된 기능을 수행할 수 있다. 특히 뉴로모픽 칩 내부에 물리적 인공신경망을 가장 효과적으로 구현할 수 있는 크로스바 어레이(crossbar array) 제작에 최적인 소자로 알려져 있다. 물리적 인공신경망은 뉴런 회로와 이들의 연결부인 시냅스 소자로 구성되는데 뉴로모픽 칩 기반의 인공지능 연산을 수행할 때 각 시냅스 소자에서는 뉴런 간의 연결 강도를 나타내는 전도도 가중치가 아날로그 데이터로 저장 및 갱신돼야 한다. 그러나 기존 멤리스터들은 대부분 비휘발성 메모리 구현에 적합한 디지털의 특성을 가져 아날로그 방식의 구동에 한계가 있었고, 이로 인해 시냅스 소자로 응용하기 어려웠다. 최 교수 연구팀은 플라스틱 기판 위에 고분자 소재 기반의 유연 멤리스터를 제작하면서 소자 내부에 형성되는 전도성 금속 필라멘트 크기를 금속 원자 수준으로 얇게 조절하면 멤리스터의 동작이 디지털에서 아날로그 방식으로 변화하는 것을 발견했다. 연구팀은 이러한 현상을 이용해 멤리스터의 전도도 가중치를 연속적, 선형적으로 갱신할 수 있고 구부림 등의 기계적 변형 상태에서도 정상 동작하는 유연 멤리스터 시냅스 소자를 구현했다. 유연 멤리스터 시냅스로 구성된 인공신경망은 학습을 통해 사람의 얼굴을 효과적으로 인식해 분류할 수 있고 손상된 얼굴 이미지도 인식할 수 있음을 확인했다. 이를 통해 얼굴, 숫자, 사물 등의 인식을 효율적으로 수행할 수 있는 유연 뉴로모픽 칩 개발의 가능성을 확보했다. 최 교수는 “멤리스터 소자의 구동 방식이 디지털에서 아날로그로 변화되는 주요 원리를 밝힘으로써 다양한 멤리스터 소자들을 디지털 메모리 또는 시냅스 소자로 응용할 수 있는 길을 열었다”라며 “고성능 뉴로모픽 칩 개발의 가속화에 기여할 수 있을 것이다” 라고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단 글로벌프론티어사업 중 (재)나노기판소프트일렉트로닉스 연구단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 플라스틱 기판 위에 제작된 유연 멤리스터 시냅스 소자 모식도
2019.02.11
조회수 9795
홍승범, 스티브박 교수, 에너지 수확과 인정 변형률 감지 가능한 섬유 개발
〈 스티브박 교수, 류정재 박사과정, 홍승범 교수 〉 우리 대학 신소재공학과 홍승범 교수, 스티브 박 교수 연구팀이 공동으로 에너지 수확은 물론 인장 변형률도 감지할 수 있는 섬유를 개발했다. 류정재 박사과정이 1 저자로 참여한 이번 연구는 국제 학술지 ‘나노 에너지(Nano Energy)에 게재됐다. 웨어러블 기기에 대한 관심이 커짐에 따라 인간의 움직임과 신체 신호를 포착할 수 있는 센서 및 인간의 기계적 움직임으로부터 에너지를 수확할 수 있는 기기에 대한 수요가 많아지고 있다. 웨어러블 기기는 기계적 피로에 대한 우수성, 높은 유연성 그리고 피부 호흡을 방해하지 않아야 하며 섬유는 이러한 특성을 구현하기에 유리한 구조를 지니고 있다. 이번에 개발된 섬유는 탄소나노튜브와 전도성 고분자층의 크랙 형성을 통해 기존의 섬유 형태의 인장 센서보다 높은 민감도를 구현함은 물론 뛰어난 안정성으로 반복된 인장에도 강한 특성을 나타냈다. 유기압전소재 입자를 폴리디메틸실록산에 분산시킨 방법을 활용해 개발된 이 섬유는 인간 신체에서 발생하는 다양한 기계적 에너지도 압전효과를 이용해 수확할 수 있으며, 섬유 내부에서의 압력 변화에 대해서도 에너지를 수확할 수 있다. 홍승범 교수는 “개발된 신축성이 있는 섬유는 다양한 기능을 갖춰 기기의 집적화 측면에서 유리하다”며 “인간의 신체 신호나 움직임을 감지하면서도 에너지를 수확할 수 있는 웨어러블 기기의 초석을 다진 원천기술이다”라고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단 기초연구사업의 지원을 통해 수행됐다. □ 그림 설명 그림1. 신축성 있는 섬유의 모식도 및 에너지 하베스터와 스트레인 센서로서의 성능 그림2. 다양한 기계적 변형에 대한 섬유의 모습
2019.01.24
조회수 9913
김학성 교수, 세포 내 단백질 전달 효율 높이는 DNA 기반 나노구조체 개발
우리 대학 생명과학과 김학성 교수, 류이슬 박사 연구팀이 강원대 이중재 교수, 한국원자력연구원 강정애 박사와의 공동 연구를 통해 DNA를 기반으로 나노 구조체를 개발해 세포 속으로의 단백질 전달 효율을 높이는 기술을 개발했다. 이번 연구 결과는 국제 학술지 ‘스몰(Small)’에 2018년 12월 28일일자 표지논문으로 게재됐다. 단백질 치료제는 저분자 화합물에 비해 반응 부위를 구별해내는 특이성이 우수해 차세대 의약품으로 활발히 개발되고 있다. 단백질 치료제가 탁월한 효과를 내기 위해서는 치료용 단백질이 세포 내로 효율적으로 전달되는 기술이 선행돼야 한다. 지금까지는 화학적 합성법 등으로 단백질 전달체를 제작해 왔지만 생체 독성, 낮은 전달 효율, 복잡한 제조공정과 효과가 일관적이지 않은 재현성 등이 해결돼야 할 과제로 남아있다. 연구팀은 생체 분자인 DNA를 기반으로 나노 구조체를 제작해 생체 친화적이면서 특정 세포로의 높은 전달 효율을 보였다. 특히 다양한 단백질을 전달할 수 있는 범용적인 기술로서 폐암 동물 모델에서도 항암 물질을 전달해 높은 항암 효과를 입증했다. 제조공정도 복잡하지 않다. 먼저 금 나노입자 표면에 DNA를 부착한다. 다음으로 징크 핑거를 이용해 각 DNA 가닥에 암세포를 표적하는 생체 분자와 항암 단백질을 결합해 제작했다. DNA와 징크 핑거 간의 상호작용을 이용하므로 DNA 서열과 길이를 조절해 나노 구조체에 탑재되는 단백질의 양을 손쉽게 조절할 수 있다. 김학성 교수는 “생체 적합한 소재인 DNA와 단백질의 상호작용을 이용해 세포 내로 단백질을 효율적으로 전달하는 새로운 나노 구조체를 개발한 것이다”라며, “세포 내 단백질 치료제의 전달뿐 아니라 동반 진단용으로 광범위하게 활용될 것으로 기대된다”라고 말했다. 이번 연구 성과는 과학기술정보통신부‧한국연구재단 기초연구사업(글로벌연구실, 중견연구, 생애첫연구) 지원으로 수행됐다. □ 그림 설명 그림1. small 표지 그림2. 나노 구조체 제조 과정 모식도 그림3. 나노 구조체의 세포 내 단백질 전달 효과 그림4. 나노 구조체의 현미경 관찰 사진
2019.01.21
조회수 11375
KAIST 아프리카 봉사단 과학기술부장관 상 수상
〈2018 월드프렌즈 ICT 봉사단 성과보고대회 우수활동 팀 부분 대상을 수상한 KAIST 음펨바 이펙트 팀〉 우리 대학 아프리카 봉사단이 ‘2018 월드프렌즈 ICT 봉사단 성과보고대회’에서 총 다섯 개의 상을 받아 전체 수상 분야를 석권했다. ‘월드프렌즈 ICT 봉사단’은 과학기술정보통신부와 한국정보화진흥원이 2011년부터 파견해온 해외 봉사단으로 국가 간 정보 격차를 줄이기 위해 개도국에 ICT 기술을 전수하는 활동을 수행한다. 우리 대학은 2015년부터 글로벌리더십센터(센터장 김영걸) 주관으로 아프리카에서 ICT 교육 봉사 프로그램을 진행해왔다. 올해는 전국 각 대학 소속 110개 팀, 400여 명이 아시아와 중남미, 아프리카 등 전 세계 23개국에 파견돼 자원봉사를 펼쳤으며, 지난 22일 세종문화회관에서 ‘2018 월드프렌즈 ICT 봉사단 성과보고대회’를 개최해 우수활동 팀 및 UCC·사진 부문 공모전 시상식을 진행했다. 이 시상식에서 탄자니아로 봉사 활동을 떠난 음펨바 이펙트 팀(Mpemba Effect, 정유리·이동은/생명과학과 16학번, 이현직/전기및전자공학부 17학번, 김다빈/화학과 15학번)이 우수활동 팀 부분 대상으로 선정돼 과학기술정보통신부 장관상과 부상을 수상했다. 탄자니아에서 함께 봉사 활동을 한 브이티에스 팀(VTS, 윤유상/기계공학과 16학번, 최지원·이상효/전기및전자공학부 17학번)도 같은 부분 우수상에 선정돼 한국정보화진흥원장상 및 부상을 수상했다. 또한, 사진 공모전에서 에티오피아에 파견된 조하연(물리학과 15학번) 학생이 대상을, 탄자니아에 파견된 이동은(생명과학과 16학번) 학생이 최우수상을 받았다. 이 외에도 음펨바 이펙트 팀은 UCC 공모전 우수상까지 차지하며 3관왕을 달성해 전체 수상 분야 모두를 석권하는 영예를 안았다. 총 35명의 학생으로 구성된 KAIST 월드프렌즈 ICT 봉사단은 에티오피아 및 탄자니아로 각각 파견됐다. 탄자니아에서는 지난 6월 30일부터 7월 26일까지 한 달 동안 아루샤市에 위치한 ‘넬슨 만델라 공과대학(NM-AIST)’과 ‘스타 고등학교’에서 현지 적정기술 프로젝트와 ICT 교육 및 사이언스 페어 준비 등 봉사 활동을 진행했다. 에티오피아에서는 7월 4일부터 8월 3일까지 아디스아바바市에 있는 ‘아디스아바바 과학기술원(AAiT)’에서 안드로이드 어플리케이션 개발, 이미지 프로세싱, 파이썬(Python), C언어 및 아두이노 등 ICT 교육과 K-POP, 한국어 교육, 전통문화 전수 등 한국문화 교육 등 봉사 활동을 진행했다. 〈2018 월드프렌즈 ICT 봉사단 성과보고대회 우수활동 팀 부분 대상을 수상한 KAIST VTS 팀〉 〈2018 월드프렌즈 ICT 봉사단 성과보고대회 사진 부분 대상을 수상한 물리학과 조하연(중앙) 최우수상을 수상한 생명과학과 이동연(맨 우측)〉 〈2018 월드프렌즈 ICT 봉사단 성과보고대회 UCC 부분 대상을 수상한KAIST 음펨바 이펙트 팀(중앙)〉 〈2018 월드프렌즈 ICT 봉사단 성과보고대회 사진 부분 대상 수상작(물리학과 15 조하연)〉
2018.12.26
조회수 9788
민남기 박사과정, 〈도전!K-스타트업 2018〉 국방부장관상 수상
〈 민남기 박사과정, 유은혜 장관 〉 우리 대학 생명화학공학과 민남기 박사과정(지도교수 김신현)이 지난 12월 10일 서울 영등포구 콘래드 호텔에서 열린 ‘도전! K-스타트업 2018’ 시상식에서 국방부 장관상과 상금 1억 원을 수상했다. 창업 잠재력을 가진 예비 또는 초기 창업자를 발굴해 성공적인 사업화 기회를 제공하는 이 상은 교육부, 과학기술정보통신부, 국방부, 중소벤처기업부가 주최하고 한국연구재단, 한국청년기업가정신재단, 사단법인 스파크, 정보통신산업진흥원, 창업진흥원, 창조경제혁신센터, 한국방송통신전파진흥원, 한국과학창의재단이 주관했다. 이번 대회는 총 108개국 5천 770개 팀이 참여했으며 부처별 예선을 통해 135개 팀이 본선에 진출했다. 이후 3개월에 거친 발표 심사를 통해 최종 수상 10개 팀을 선정했다. 선정 과정은 JTBC의 ‘창업 신들의 배틀 스타트업 빅뱅’ 프로그램을 통해 지난 10월 31일부터 12월 19일까지 총 8부작으로 방송됐다. 민남기 박사과정은 이번 대회에서 ‘오팔레트’ 예비 창업자로 출전해 최종 탑텐에 이름을 올렸다. 사업화 아이템으로는 나노구조체를 이용한 무색소 컬러 콘택트렌즈을 출품했다. 기존의 화학 색소로는 낼 수 없는 색감을 냈다는 점과 내부의 나노 구조체를 통해 렌즈의 산, 투과율을 높인 점을 인정받았다. 이날 행사에는 유은혜 부총리 겸 교육부장관, 홍종학 중소벤처기업부 장관, 이목희 일자리위원회 부위원장이 참석해 시상과 좌담회를 열었다. 민남기 박사과정은 “연구실에서 개발하던 기술이 외부 투자자 및 많은 사람들에게 인정받게 돼 매우 기쁘다”며 “앞으로 본격적인 사업화를 통해 시장을 선도하는 렌즈 회사로 거듭나고 싶다”라고 밝혔다.
2018.12.24
조회수 10667
2018년 올해의 젊은과학자상 수상
우리 학교 이지운 교수(수리과학과)와 변혜령 교수(화학과), 김호민 교수(의과학대학원)가 과학기술정보통신부로부터 2018년 올해의 젊은과학자상 수상자로, 그리고 이해신 교수(화학과)는 올 10월 ‘이달의 과학기술인상’ 수상자로 각각 선정돼 지난 14일 국립과천과학관에서 열린 ‘2018 우수 과학자 포상’ 통합시상식에서 수상했다. 올해의 젊은과학자상을 수상한 이지운 교수는 랜덤행렬 이론 분야에서 지난 수십 년 간 연구돼온 난제를 해결했고, 변혜령 교수는 표면·계면에서 발생하는 전기화학반응을 통해 에너지 저장시스템 분야에서 성과를 냈으며, 김호민 교수는 패혈증 발병기전과 치료제 개발에 기여했다. 이와 함께 이해신(화학과) 교수는 세계 최초로 ‘무출혈 주사바늘’을 개발해 에이즈, 에볼라, 간염 바이러스 등 환자 혈액에 따른 2차 감염 문제를 근본적으로 방지하는데 기여한 공로를 인정받아 이달의 '과학기술인상' 10월 수상자로 선정돼 14일 열린 통합시상식을 통해 함께 수상했다.
2018.12.20
조회수 9574
김일두 교수, 에이씨에스 나노(ACS Nano) 紙 부편집장 선임
〈 김일두 교수 〉 우리 대학 신소재공학과 김일두 교수가 나노과학분야 권위 학술지인 ‘에이씨에스 나노(ACS Nano)’ 지 부편집장으로 선임됐다. 김 교수는 부편집장 임무를 통해 투고 논문의 심사 여부를 판단하고 심사하기로 결정된 논문의 심사자(reviewer) 선정 및 게재 승인 여부를 결정하게 된다. KI 첨단나노센서 연구센터장을 맡고 있는 김 교수는 2018년 43편 (평균 Impact Factor: 8.8)의 SCI 논문 발표를 포함해 지금까지 242편 이상의 논문을 전문 학술지에 발표했고, 200여 편에 달하는 특허 출원 등 탁월한 연구 성과를 낸 업적을 인정받았다. 김 교수는 2018년도 송곡과학기술상을 수상을 비롯해 2018 국가연구개발 우수성과 100선에서 ‘자기조립 유기체 복합촉매 커플링 기반 초고감도 가스센서 플랫폼소재 개발’로 과학기술정보통신부 최우수 과제로 선정된 바 있다. 김 교수는 현재 세라믹 분야의 학술지인 저널오브 일렉트로세라믹스(Journal of Electroceramics) 의 부편집장 (Deputy Editor)도 맡고 있다. 김 교수는 “2017년도 13.709의 피인용지수와 134,596회에 달하는 인용횟수를 갖는 세계적인 권위 학술지 ACS Nano의 부편집장으로 선임돼 영광이다”라며 “나노센서 및 에너지 분야에 투고된 논문들에 대한 에디터 활동을 통해 우리 대학의 위상을 높이고, 연구실에서 주력으로 연구하는 나노섬유 응용 기술의 다변화 및 실용화 기여를 통해 과학발전에 기여하겠다”라고 말했다.
2018.11.21
조회수 10216
조광현 교수, 뇌파 생성, 변조 담당하는 신경회로 원리 규명
〈 조광현 교수 연구팀 〉 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 뇌파의 생성 및 변조를 담당하는 핵심 신경회로를 규명하는 데 성공했다. 이를 통해 뇌의 동작원리를 밝힐 뿐 아니라 향후 여러 뇌질환 환자에게서 발생하는 비정상적 뇌파활동을 신경세포 네트워크 수준에서 규명하는 데 활용 가능할 것으로 기대된다. 이번 연구는 4차 산업혁명의 핵심기술로 주목받는 IT와 BT의 융합연구인 시스템생물학 연구로 규명했다는 의미를 갖는다. 이병욱 박사과정, 신동관 박사, 스티븐 그로스 박사가 함께 참여한 이번 연구는 국제 학술지 ‘셀 리포트(Cell Reports)’ 11월 6일자 온라인 판에 게재됐다. 뇌의 다양한 기능은 신경세포(뉴런) 사이의 복잡한 상호작용을 통해 이뤄진다. 특히 뉴런들의 동시다발적인 발화에 의해 형성되는 뇌파는 뇌의 활동 상태를 측정하는 가장 중요한 지표이며, 특정 기능을 수행하기 위해 영역 간 선택적 통신의 매개체 역할을 하는 것으로 알려져 있다. 또한 뇌파의 비정상적인 생성 및 변조 현상은 다양한 뇌질환과 밀접한 관계를 갖는 것으로 밝혀지고 있다. 이에 따라 전 세계 신경생물학 연구자들은 뇌파의 생성 및 변조 원리를 파악하기 위해 노력해 왔다. 그러나 뇌파의 생성 및 변조는 수많은 뉴런 사이의 복잡한 상호작용을 통해 발생하는 예측할 수 없는 창발적 특성(emergent property)을 갖기 때문에 기존의 신경 생물학 실험을 통해 그 원리를 규명하기에는 한계가 있었다. 조 교수 연구팀은 시스템생물학 기반의 연구방법을 통해 뇌파의 생성 및 변조 원리를 분석했다. 연구팀은 여러 뇌 영역 중 특히 감각 피질(sensory cortex)에 주목했다. 감각 피질은 외부 감각 정보를 처리하고 통합, 조절하는 핵심 영역으로 여러 주파수 대역의 뇌파와 변조를 관측할 수 있다. 연구팀은 최근 커넥토믹스 (connectomics) 연구를 통해 밝혀진 쥐의 감각피질 내 뉴런의 종류 및 뉴런 간 연결성 정보를 이용해 감각피질을 구성하는 뉴런들과 이들을 연결하는 시냅스를 수학 모델을 통해 표현하고 이로부터 신경회로를 구축해 뇌파의 생성 및 변조 과정을 분석했다. 연구팀은 대규모 컴퓨터 시뮬레이션 분석을 통해 흥분성 뉴런과 억제성 뉴런으로 구성된 양성피드백과 음성피드백의 중첩된 구조(interlinked positive and negative feedback)가 뇌파의 생성 및 주파수 변조 현상의 핵심회로임을 최초로 규명했다. 특히 연구팀은 기존의 전기생리학 실험을 통해 측정된 뉴런 간 시냅스의 특정 연결강도가 신경회로의 뇌파 생성 및 변조 기능을 극대화시킬 수 있는 최적의 조합임을 밝혀냈다. 이번에 개발한 수학모형을 활용하면 전통적 생물학 실험을 통해 파악이 어려웠던 뉴런들 간의 다양한 상호작용을 이해하고 신경회로의 복잡한 설계원리를 파악할 수 있을 것으로 기대된다. 또한 여러 뇌질환 환자의 뇌에서 관측되는 비정상적인 뇌파 활동을 신경네트워크 차원에서 분석하고 규명할 수 있을 것으로 예상된다. 시스템생물학 접근을 통한 신경회로의 구조 및 기능 분석은 인공지능의 발전에도 기여할 것으로 기대된다. 두뇌 신경회로의 작동원리에 대한 이해를 높인다면 컴퓨터 과학자들이 이를 이용해 새로운 인공지능 기술을 개발할 수 있다. 자폐증이나 집중력 조절장애 등과 관련된 신경회로 규명, 두뇌 치료 기술 개발 등의 원천 의료기술 개발에도 혁신으로 이어질 수 있다. 조 교수는 “지금껏 뇌파의 생성 및 변조를 담당하는 핵심 신경회로가 밝혀진 바가 없었다”며 “이번 연구에서는 최근 커넥토믹스 (connectomcis) 연구를 통해 점차 밝혀지고 있는 뉴런간의 복잡한 연결성에 숨겨진 설계원리를 시스템생물학 연구를 통해 찾아냄으로써 뇌의 동작원리를 파악할 수 있는 새로운 가능성을 제시했다”고 말했다. 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업과 바이오의료기술개발사업, 그리고 삼성전자 미래기술육성센터의 지원을 받아 수행됐다. □ 그림 설명 그림1. 뉴런 간 연결 강도에 내제된 기능적 설계원리 파악 그림2. 뇌파의 생성 및 변조를 담당하는 핵심 신경회로
2018.11.14
조회수 15829
유승협 교수, 초저전력 심박 및 산소포화도 센서 구현
〈 유승협 교수, 이현우 박사과정〉 우리 대학 전기및전자공학부 유승협 교수 연구팀이 유기발광다이오드(OLED)와 유기포토다이오드(OPD)를 이용해 초저전력 심박 및 산소포화도 센서 구현에 성공했다. 전기및전자공학부 유회준 교수 연구팀과의 협력을 통해 이뤄진 것으로 이 기술을 통해 심박 및 산소포화도 센서가 다양한 웨어러블 기기에 적용될 수 있는 계기가 될 것으로 기대된다. 이현우 박사과정이 1저자로 참여한 이번 연구는 ‘사이언스 어드밴스 (Science Advances)’11월 9일자 온라인 판에 게재됐다. (논문명 : Toward all-day wearable health monitoring: An ultralow-power, reflective organic pulse oximetry sensing patch) 심박 및 산소포화도 센서는 신체의 건강 상태를 나타내는 가장 중요한 생체 신호의 하나인 심장 박동과 혈액 내 산소와 결합한 헤모글로빈의 농도로서 신체 내 원활한 산소 공급 여부를 가늠할 수 있는 산소포화도를 측정하는 기기이다. 심박 및 산소포화도 센서에는 일반적으로 LED와 포토다이오드로 구성된 광학적 방법이 이용된다. 이 기술은 간단하고 소형화가 용이한 비 침습적 방법이면서 주요 생체신호의 모니터링이 가능하다는 이점이 있어 병원용 기기뿐 아니라 스마트 워치 등 웨어러블 기기에도 탑재되는 경우가 많다. 이러한 센서는 배터리 용량이 매우 제한적인 웨어러블 기기의 특성상 센서의 전력소모를 줄이는 것이 매우 중요하다. 그러나 현재 상용 심박 및 산소포화도 센서는 이산소자들의 배열로 구성돼 피부에서 산란으로 인해 전방위로 전달되는 빛을 효율적으로 감지하기 어렵다. 이러한 이유로 좀 더 강한 빛을 필요로 하기 때문에 장기간 실시간 모니터링에는 한계가 있다. 연구팀은 문제 해결을 위해 광원의 발광 파장에 따른 피부에서의 빛의 전달 형태를 실험과 피부 모델 시뮬레이션을 통해 검토했다. 유기소자의 경우 자유로운 패턴 구현이 용이한 점을 최대한 이용해 유기포토다이오드가 유기발광다이오드를 동심원 형태로 감싸 피부에서 전방위로 분포되는 빛을 효율적으로 감지하는 최적 구조를 갖는 유연 심박 및 산소포화도 센서를 구현했다. 이를 통해 평균소비전력 약 0.03밀리와트(mW)만으로도 심박 및 산소포화도를 측정할 수 있었다. 이는 LED와 PD가 일렬로 배치된 상용 센서가 갖는 통상 전력소모 양의 약 수십 분의 일에 해당하는 매우 작은 값으로 24시간 동작에도 1밀리와트시(mWh)가 채 되지 않는 양이다. 이 기술은 매우 낮은 전력 소모 외에도 유기소자가 갖는 유연 소자의 형태적 자유도도 그대로 갖는다. 따라서 스마트 워치부터 작게는 무선 이어폰, 스마트 반지, 인체 부착형 패치 등의 웨어러블 기기에서 배터리로 인한 제한을 최소화하면서 일상에 지장 없이 지속적인 생체 신호 모니터링을 가능하게 할 것으로 기대된다. 유승협 교수는 “생체 신호의 지속적인 모니터링은 건강의 이상 신호를 상시 검출 할 수 있게 할 뿐 아니라 향후 빅데이터 등과 연계하면 이들 생체신호의 특정 패턴과 질병 간의 상호 관계를 알아내는 등에도 활용될 수 있다.”고 말했다. 이번 연구는 과학기술정보통신부 한국연구재단-나노·소재원천기술개발사업 및 선도연구센터 사업의 지원을 받아 수행됐다. □ 사진 설명 사진1. 연구팀이 개발한 센서
2018.11.12
조회수 11281
한동수, 신진우 교수, 느린 인터넷 환경에서도 고화질 영상 감상 기술 개발
〈 (왼쪽부터) 김재홍, 정영목 석사과정, 여현호 박사과정, 한동수, 신진우 교수 〉 우리 대학 전기및전자공학부 신진우, 한동수 교수 연구팀이 딥러닝 기술을 이용한 인터넷 비디오 전송 기술을 개발했다. 여현호, 정영목, 김재홍 학생이 주도한 이번 연구 결과는 격년으로 개최되는 컴퓨터 시스템 분야의 유명 학술회의인 ‘유즈닉스 OSDI(USENIX OSDI)’에서 10월 10일 발표됐고 현재 국제 특허 출원을 완료했다. 이 기술은 유튜브, 넷플릭스 등에서 비디오를 사용자에게 전송할 때 사용하는 적응형 스트리밍(HTTP adaptive streaming) 비디오 전송기술과 딥러닝 기술인 심층 콘볼루션 신경망(CNN) 기반의 초해상화를 접목한 새로운 방식이다. 이는 열악한 인터넷 환경에서도 고품질, 고화질(HD)의 비디오 시청이 가능할 뿐 아니라 4K, AV/VR 등을 시청할 수 있는 새로운 기반 기술이 될 것으로 기대된다. 기존의 적응형 스트리밍은 시시각각 변화하는 인터넷 대역폭에 맞춰 스트리밍 중인 비디오 화질을 실시간으로 조절한다. 이를 위해 다양한 알고리즘이 연구되고 있으나 네트워크 환경이 좋지 않을 때는 어느 알고리즘이라도 고화질의 비디오를 감상할 수 없다는 한계가 있다. 연구팀은 적응형 스트리밍에 초해상화를 접목해 인터넷 대역폭에 의존하는 기존 적응형 스트리밍의 한계를 극복했다. 기존 기술은 비디오를 시청 시 긴 영상을 짧은 시간의 여러 비디오 조각으로 나눠 다운받는다. 이를 위해 비디오를 제공하는 서버에서는 비디오를 미리 일정 시간 길이로 나눠 준비해놓는 방식이다. 연구팀이 새롭게 개발한 시스템은 추가로 신경망 조각을 비디오 조각과 같이 다운받게 했다. 이를 위해 비디오 서버에서는 각 비디오에 대해 학습이 된 신경망을 제공하며 또 사용자 컴퓨터의 사양을 고려해 다양한 크기의 신경망을 제공한다. 제일 큰 신경망의 크기는 총 2메가바이트(MB)이며 비디오에 비해 상당히 작은 크기이다. 신경망을 사용자 비디오 플레이어에서 다운받을 때는 여러 개의 조각으로 나눠 다운받으며 신경망의 일부만 다운받아도 조금 떨어지는 성능의 초해상화 기술을 이용할 수 있도록 설계했다. 사용자의 컴퓨터에서는 동영상 시청과 함께 병렬적으로 심층 콘볼루션 신경망(CNN) 기반의 초해상화 기술을 사용해 비디오 플레이어 버퍼에 저장된 저화질 비디오를 고화질로 바꾸게 된다. 모든 과정은 실시간으로 이뤄지며 이를 통해 사용자들이 고화질의 비디오를 시청할 수 있다. 연구팀이 개발한 시스템을 이용하면 최대 26.9%의 적은 인터넷 대역폭으로도 최신 적응형 스트리밍과 같은 체감 품질(QoE, Quality of Experience)을 제공할 수 있다. 또한 같은 인터넷 대역폭이 주어진 경우에는 최신 적응형 스트리밍보다 평균 40% 높은 체감 품질을 제공할 수 있다. 이 시스템은 딥러닝 방식을 이용해 기존의 비디오 압축 방식보다 더 많은 압축을 이뤄낸 것으로 볼 수 있다. 연구팀의 기술은 콘볼루션 신경망 기반의 초해상화를 인터넷 비디오에 적용한 차세대 인터넷 비디오 시스템으로 권위 잇는 학회로부터 효용성을 인정받았다. 한 교수는 “지금은 데스크톱에서만 구현했지만 향후 모바일 기기에서도 작동하도록 발전시킬 예정이다”며 “이 기술은 현재 유튜브, 넷플릭스 등 스트리밍 기업에서 사용하는 비디오 전송 시스템에 적용한 것으로 실용성에 큰 의의가 있다”고 말했다. 이번 연구는 과학기술정보통신부 정보통신기술진흥센터(IITP) 방송통신연구개발 사업의 지원을 받아 수행됐다. 비디오 자료 링크 주소 1. https://www.dropbox.com/sh/z2hvw1iv1459698/AADk3NB5EBgDhv3J4aiZo9nta?dl=0&lst = □ 그림 설명 그림1. 기술이 적용되기 전 화질(좌)과 적용된 후 화질 비교(우) 그림2. 기술 개념도 그림3. 비디오 서버로부터 비디오가 전송된 후 저화질의 비디오가 고화질의 비디오로 변환되는 과정
2018.10.30
조회수 10496
김상욱 교수, 홍합접착제 이용해 성능 높인 그래핀 섬유 개발
〈 김인호 박사과정, 김상욱 교수〉 우리 대학 신소재공학과 김상욱 교수 연구팀이 흑연계 그래핀을 이용해 우수한 물성을 갖는 신개념의 탄소섬유를 개발했다. 연구팀이 개발한 탄소섬유는 홍합접착제로 잘 알려진 폴리도파민(poly-dopamine)을 이용해 그래핀 층간 접착력을 높여 고강도, 고전도도를 갖는다. 이 신소재는 직물형태의 다양한 웨어러블 장치용 원천소재로 활용 가능할 것으로 기대된다. 김인호 박사과정이 1저자로 참여한 이번 연구는 재료과학분야 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 10월 4일자 표지논문으로 선정됐다. (논문명 : Mussel-Inspired Defect Engineering of Graphene Liquid Crystalline Fibers for Synergistic Enhancement of Mechanical Strength and Electrical Conductivity, 홍합접착제를 이용한 구조적 결함 제어를 통한 고강도/고전도도의 그래핀 액정 섬유 제조) 김상욱 교수 연구팀은 그래핀이 액체에 분산됐을 때 액정을 형성하는 새로운 현상을 최초로 밝히고 관련 원천특허를 보유하고 있다. 이후 그래핀 액정을 기반으로 하는 다양한 신소재 관련 후속연구를 통해 해당 분야를 선도하고 있다. 최근에는 그래핀 액정을 이용한 값싼 습식 섬유공정을 통해 기존 탄소섬유보다 훨씬 저렴한 탄소섬유의 제조가 가능한 것으로 규명됐다. 그러나 현재까지의 공정으로는 섬유 형성 과정에서 그래핀 층의 접힘 현상이 발생해 공극이 발생한다는 고질적인 문제점이 있다. 이러한 구조적 결함은 탄소섬유의 기계적 물성 뿐 아니라 전기전도성도 취약하게 만든다. 김 교수 연구팀은 문제 해결을 위해 자연계의 홍합에서 영감을 얻어 개발된 고분자인 도파민의 접착 성질에 주목했다. 다양한 분야에서 연구되는 이 도파민을 이용하면 그래핀 층간의 접착력을 증가시켜 구조적 결함을 방지하는 효과를 기대할 수 있다. 연구팀은 이를 통해 구조적 결함이 제어된 고강도의 탄소섬유 제작에 성공했다. 또한 폴리도파민의 탄화과정을 통해 전기전도도 역시 향상된 섬유를 제조하는 데 성공했다. 연구팀은 도파민에 열처리를 가하면 그래핀과 유사한 구조를 갖는다는 이론을 바탕으로 그래핀 액정 상에서 도파민의 고분자화 조건을 최적화시켰고, 이를 섬유화해 기존 그래핀 섬유의 본질적인 결함 제어 문제를 해결했다. 또한 도파민의 구조 변환을 통해 기존 고분자의 근본적 한계인 전도도 측면에서 손해를 보지 않으면서, 도파민 분자에 존재하는 질소의 영향으로 전기전도도 측면에서도 물성이 향상됨을 확인했다. 연구를 주도한 김상욱 교수는 “그래핀 액정을 이용한 탄소섬유는 기술적 잠재성에도 불구하고 구조적 한계를 극복해야 하는 한계가 있었다”며 “이번 기술은 추후 복합섬유 제조 및 다양한 웨어러블 직물기반 응용소자에 활용 가능할 것이다”고 말했다. 신소재공학과 박정영 교수, KIST 정현수 박사의 지원을 받아 수행된 이번 연구는 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 글로벌프론티어사업(하이브리드인터페이스기반 미래소재연구단), 나노․소재원천기술개발 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 머티리얼즈 표지 그림2. (좌) 일반적인 그래핀 섬유의 단면과 (중), (우) 도파민을 이용하여 두단계로 결함 제어된 후의 그래핀 섬유의 단면의 전자현미경 이미지
2018.10.17
조회수 13801
2018 국가연구개발 우수성과 100선 선정
과학기술정보통신부와 한국과학기술기획평가원이 발표한 '2018년 국가연구개발 우수성과 100선'에 우리 대학 교수 6명이 선정됐다. 수상자는 신소재공학과 김일두, 박병국 교수, 의과학대학원 김호민 교수, 생명화학공학과 이재우 교수, 전산학부 김민혁 교수, 전기및전자공학부 최경철 교수이다. 김일두 교수는 기계·소재 분야 최우수 성과에 선정됐다. 자기조립 유기체 복합촉매 커플링 기반의 초고감도 가스센서 플랫폼소재를 개발한 공을 인정받았다. 박병국 교수도 기계·소재 분야 우수성과에 선정됐다. 열로 스핀전류를 얻는 소재기술을 개발했다. 의과학대학원 김호민 교수는 생명·해양 분야 최우수성과에 선정됐다. 시냅스형성을 조절하는 핵심단백질의 3차 구조와 분자기전을 규명했다. 이재우 교수는 에너지·환경 분야 우수성과에 선정됐다. 이산화탄소를 원료로 한 고부가가치 탄소 물질 합성 기술을 개발한 공을 인정받았다. 김민혁 교수와 최경철 교수는 정보·전자 분야 우수성과에 선정됐다. 각각 극사실적 영상 획득을 위한 고성능 영상처리 기술, 옷 위에 구현된 부드러운 디스플레이를 개발한 성과를 인정받았다. 우수성과로 선정된 성과는 과학기술정보통신부장관의 인증서와 현판이 수여된다. 선정된 6명의 교수에게는 국가연구개발 성과평가 유공포상(훈·포장, 대통령표창, 국무총리표창 등) 후보자로 추천되고, 신규 연구개발(R&D) 과제 선정에서 우대받게 된다.
2018.10.16
조회수 8750
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
>
다음 페이지
>>
마지막 페이지 8