-
변혜령 교수, 빠른 충전 가능한 리튬-산소전지 개발
〈 변 혜 령 교수 〉
우리 대학 화학과 변혜령 교수 연구팀과 EEWS 정유성 교수 연구팀이 높은 충전 속도에서도 약 80%의 전지 효율 성능(round-trip efficiency)을 갖는 리튬-산소 전지를 개발했다.
기존에 개발된 리튬-산소 전지는 충전 속도가 높아지면 전지 효율 성능이 급속히 저하되는 단점이 있었다. 이번 연구에서는 방전 생성물인 리튬과산화물의 형상 및 구조를 조절해 난제였던 충전 과전위를 낮추고 전지 효율 성능을 향상시킬 수 있음을 증명했다.
특히 값비싼 촉매를 사용하지 않고도 높은 성능을 가지는 리튬-산소 전지를 제작할 수 있어 차세대 전지의 실용화에 기여할 것으로 보인다.
이번 연구결과는 네이처 커뮤니케이션즈(Nature Communications) 2월 14일자 온라인 판에 게재됐다.
리튬-산소 전지는 리튬-이온 전지보다 3~5배 높은 에너지 밀도를 가지고 있어 한 번 충전에 장거리 주행을 할 수 있는, 즉 장시간 사용이 요구되는 전기차 및 드론 등의 사용에 적합한 차세대 전지로 주목받고 있다.
하지만 방전 시 생성되는 리튬과산화물이 충전 시 쉽게 분해되지 않기 때문에 과전위가 상승하고 전지의 사이클 성능이 낮은 문제점을 갖고 있다. 리튬과산화물의 낮은 이온 전도성과 전기 전도성이 전기화학적 분해를 느리게 만드는 것이다.
리튬과산화물의 전도성을 향상시키고 리튬-산소 전지의 성능을 높이기 위해 연구팀은 메조 다공성 탄소물질인 CMK-3를 전극으로 사용해 일차원 나노구조체를 갖는 비결정질 리튬과산화물을 생성하는 데 성공했다.
전극을 따라 생성되는 비표면적이 큰 비결정질의 리튬과산화물은 충전 시 빠르게 분해돼 과전위의 상승을 막고 충전 속도를 향상시킬 수 있다. 이는 기존의 결정성을 갖는 벌크(bulk) 리튬과산화물과 달리 높은 전도성을 갖기 때문이다.
이번 결과는 촉매나 첨가제의 사용 없이도 리튬과산화물의 크기 및 구조를 제어해 리튬-산소 전지의 근본적 문제를 해결할 수 있는 방법을 제시했다는 의의를 갖는다.
변혜령 교수는 “리튬과산화물의 형상, 구조 및 크기를 제어해 전기화학 특성을 변화시킬 수 있음을 증명함으로써 리튬-산소 전지뿐만이 아닌 다른 차세대 전지의 공통된 난제를 해결할 수 있는 실마리를 찾았다”고 말했다.
이론 해석을 제공한 정유성 교수는 “이번 연구 결과로 기존에 절연체로 여겨진 리튬과산화물이 빠르게 분해될 수 있는 반응 원리를 이해할 수 있었다”고 말했다.
이번 연구는 한국연구재단의 지원을 받아 수행됐으며 일본의 리츠메이칸(Ritsumeikan) 대학 가속기 센터와 공동연구로 진행됐다.
□ 그림 설명
그림1. 리튬과산화물 도식 및 투과전자현미경 사진
그림2. 충전 속도 특성 비교
그림3. DFT 계산을 통한 (a) 결정질 및 (b) 비결정질 리튬과산화물의 충방전 에너지 다이어그램
2018.03.29
조회수 12013
-
KAIST-UAE 칼리파대학, 4차산업혁명 공동연구 협약 체결
〈 원광연 NST 이사장, 신성철 총장, KU 토드라우슨 총장, 후사인 알 하마디 교육부 장관〉
우리 대학이 아랍에미레이트(이하 UAE) 칼리파대학(총장 토드 라우슨)과 4차 산업혁명 관련 공동연구를 위한 협약(MOU)을 체결했다.
이번 협약은 하루 전인 25일 오후 6시(현지시간) UAE 아부다비 칼리파대학(KU)에서 우리 대학과 한국원자력연구원(원장 하재주), 칼리파대학이 한-UAE 양국의 우호증진을 위해 공동으로 마련한 행사 중간에 이뤄졌다. 양 대학은 이날 협약을 계기로 그간의 우호협력 및 교류를 더욱 심화, 증진시켜 양국의 공동발전을 이뤄나간다는 데 의견을 같이 했다.
이날 행사에 우리나라는 신성철 총장, 국가과학기술연구회 원광연 이사장, 한국원자력연구원 하재주 원장 등이, UAE측에서는 후세인 알 하마디 교육부 장관을 비롯해, 사라 알 아미리 첨단과학기술부 장관, 크리스터 빅터슨 원자력규제청(FANR)청장, 토드 라우슨 칼리파대학(KU) 총장 등 양국 과학기술계 고위관계자 100여명이 참석해 큰 성황을 이뤘다.
한국과 UAE 양국의 과학기술 발전과 교류확대에 기여한 공로를 인정받아 지난 2010년 5월 우리 대학으로터 명예 과학기술학 박사학위를 받은 모하메드 빈 자이드 알 나흐얀 UAE 아부다비 왕세제(General H.H. Sheikh Mohammed bin Zayed Al Nahyan)는 문재인 대통령의 UAE 방문(24일~27일)에 따른 바쁜 일정으로 이날 행사에는 불참했다.
이날 열린 KAIST-UAE 동문회 행사는 UAE 교육부장관과 첨단과학기술부 장관 및 양국 주요 인사들의 축사에 이어 인력양성 협력을 통해 우리 대학에 재학 중인 UAE 학생들의 경험담 소개, UAE와의 교육·연구협력 활동소개 등의 순으로 진행됐다.
우리 대학은 이번 동문회 행사를 계기로 한-UAE 교육·연구 협력성과에 대한 관심과 이해를 증진시켜 양국 간 미래 먹거리 창출을 위한 4차 산업혁명 관련 분야의 연구·교육협력으로까지 대폭 확대될 뿐만 아니라 향후 원자력 및 다른 산업분야로의 경제협력에도 크게 기여할 것으로 기대하고 있다.
이에 앞서 세계경제포럼(WEF) 산하 글로벌대학리더포럼(GULF)의 국내 유일의 회원대학인 우리 대학은 지난 2월 스위스 다보스에서 열린 WEF 연차총회(일명 다보스포럼)에 참석하던 중 UAE 정부요청에 따라 사라 알 아미리 첨단과학기술부 장관을 만나 양국의 4차 산업혁명 관련 협력확대를 위해 KAIST와의 교육 및 연구협력을 강화하길 원한다는 의지를 확인한 바 있다.
우리 대학은 이어 동문회 행사 중에 칼리파대학과 양국 간 신성장 동력발굴을 목적으로 4차 산업혁명 핵심기술 개발과 관련, 기존의 공동 연구협력을 확대하고 이를 촉진키로 하는 내용의 협약을 체결했다.
양 대학은 2009년 12월 양국정부 간에 맺은 협약의 성실한 이행에 따른 교육·연구 협력사업 성과와 신뢰관계를 바탕으로 향후 4차 산업혁명 관련 공동연구를 대폭 확대해 나갈 계획이다.
우리 대학은 또 이를 ‘제2단계 KAIST-KU 교육·연구 협력’사업으로 발전시켜 두 나라간 과학기술 발전은 물론 한-UAE 고급 연구인력 양성에도 기여할 방침이다.
한편 양국 간 원자력연구개발 및 인력양성의 우호적 협력을 더욱 강화하기 위해 ‘한-UAE 원자력 친선의 밤’행사도 이날 함께 열렸는데 이 행사는 우리나라가 수출한 바라카 원전 1호기의 건설 완료를 기념하고 원전의 효율적 운영 지원 등을 위해 마련됐다.
이 행사는 특히 UAE가 ‘미래비전을 위한 국가인재 양성’과 ‘에너지 안보를 위한 원자력 진흥’을 최우선 현안 과제로 추진하고 있는 점에 착안해, KAIST와 한국원자력연구원이 함께 문재인 대통령의 UAE 공식방문 일정에 맞춰 처음 개최한 행사다.
‘친선의 밤’행사는 양국 간 우호증진 및 원자력 분야의 협력을 시작으로 과학기술 분야에서의 포괄적인 교류협력 추진을 위한 첫 걸음을 뗐다는 점에서 큰 의미를 갖는다.
신성철 총장은 “KAIST의 세계적 수준의 연구역량과 글로벌 교육환경을 기반으로 쌓은 한국의 우수한 지식과 경험을 더욱 많은 UAE 학생들과 공유할 수 있기를 바란다”며 “앞으로도 칼리파대학과 공동 연구기관 설립, 교수·연구원·학생 교류, 공동 심포지엄 개최 등 다양한 분야에서 협력을 적극적으로 확대해 나갈 방침”이라고 강조했다.
2018.03.26
조회수 9623
-
육종민, 이정용 교수, 나트륨 기반의 이차전지 음극 소재 개발
우리 대학 신소재공학과 육종민 교수와 이정용 명예교수(前 기초과학연구원 나노물질 및 화학반응연구단) 공동 연구팀이 리튬 기반 이차전지 음극재료에 비해 저렴하고 수명이 긴 나트륨 기반 이온 전지용 음극 소재를 개발했다.
기존의 이차전지 음극재료 대비 1.5배 수명이 길고 약 40% 저렴한 나트륨 이온 전지용 음극 소재 개발을 통해 나트륨 이온 전지의 상용화에 기여할 것으로 기대된다.
박재열 박사과정과 기초과학연구원 김성주 박사가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 3월 2일자 온라인 판에 게재됐다.
현재 리튬 이온 전지는 휴대폰, 전기차 등 일상생활과 밀접한 다양한 곳에 사용되고 있다. 그런데 리튬은 매장지역이 한정돼 있고 수요가 급등해 공급량이 부족한 상황이다. 2015년과 대비해 현재 리튬의 가격은 3배 이상 상승했다.
이런 문제를 해결하기 위해 리튬 이온 전지의 대안으로 나트륨 이온 전지가 주목받고 있다. 리튬이 지구 지표면에 0.005%만 존재하는 반면 나트륨은 그 500배 이상인 2.6% 존재하기 때문에 공급 문제가 해결된다.
따라서 나트륨 이온 전지는 기존 리튬 이온 전지에 비해 40% 저렴한 가격으로 같은 용량의 에너지를 저장할 수 있을 것으로 전망된다.
그러나 리튬 이온 전지의 음극 재료인 흑연은 나트륨의 저장에 적합하지 않다. 흑연 간의 층 사이에 리튬 이온들이 삽입(intercalation)되며 저장이 이뤄지는데 나트륨 이온을 저장하기에는 흑연 층간 거리가 너무 좁기 때문이다. 이러한 이유로 나트륨 이온 전지 상용화를 위해서는 이에 적합한 음극 소재를 개발하는 것이 필수적이다.
연구팀은 흑연의 대안을 나노판상 구조를 가진 황화구리에서 찾았다. 황화구리는 높은 전기전도도와 이론용량을 갖는다. 또한 황화구리에 나트륨이 저장되는 과정을 원자단위에서 실시간 분석한 결과 황화구리의 결정 구조가 유동적으로 변화하며 안정적으로 나트륨 이온을 저장하는 것을 확인했다.
그 결과로 황화구리의 나트륨 저장 성능이 흑연 이론용량(~370mAh/g)의 1.5배(~560mAh/g)에 달하는 것을 확인했고 충, 방전을 250회 반복한 이후에도 이론용량의 90% 이상이 유지됨을 증명했다.
이번 연구로 나트륨 이온전지가 상용화되면 지구 표면의 약 70%를 차지하는 바다에 무궁무진하게 존재하는 나트륨을 활용할 수 있다. 이는 배터리 원가 절감으로 이어지고 휴대폰, 전기 자동차, 노트북 등의 단가를 약 30% 정도 낮출 수 있을 것으로 기대된다.
이정용 교수는“이번 연구결과가 차세대 고성능 나트륨 이온 전지 개발에 크게 기여할 것으로 기대된다”고 말했다.
육종민 교수는 “요즘 미세먼지 등의 환경오염 문제로 특히 신재생 에너지 상품에 관심이 많은데 이번 연구 결과를 통해 우리나라가 관련 제품에 대한 우위를 점할 수 있는 토대를 한 단계 다졌다고 생각한다”고 말했다.
이번 연구는 한국연구재단의 생애첫연구사업 및 나노, 소재기술개발사업과 기초과학연구원의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 판상구조 황화구리 촬영 사진
그림2. 황화구리 내 나트륨이 저장되면서 나타나는 결정구조 변화 양상
그림3. 황화구리 내 나트륨 충방전 횟수별 저장 용량
2018.03.08
조회수 11123
-
장석복, 백무현 교수, 상온 감마-락탐 합성 성공해 사이언스 紙 게재
석유, 천연가스 등 자연에 풍부한 탄화수소로부터 의약품이나 화학소재의 원료가 되는 락탐을 합성할 수 있는 방법이 나왔다.
우리 대학 화학과 장석복 교수, 백무현 교수 공동 연구팀이 반응 효율이 높은 이리듐 촉매를 개발해 상온에서 감마-락탐을 합성하는데 성공했다.
이번 연구성과는 세계적 권위의 학술지 사이언스(Science) 3월 2일자 온라인 판에 게재됐다.
감마-락탐은 뇌전증 치료제(레비티라세탐)나 혈관형성 억제제(아자스파이렌)와 같이 복잡한 유기분자의 핵심 구성성분으로 의약품, 합성화학, 소재 등에 폭넓게 활용된다.
자연에 풍부한 탄화수소로부터 감마-락탐을 만들기 위해 많은 연구가 있었지만 탄화수소는 상온에서 반응성이 낮아 합성하는데 큰 어려움이 있었다.
탄화수소에서 감마-락탐을 합성하기 위해서는 탄소-수소 결합을 탄소-질소 결합으로 변환하는 질소화반응이 필요한데 이 과정에서 중간체인 카보닐나이트렌(carbonylnitrene)이 상온에서 너무 쉽게 부산물로 분해돼 합성이 불가능했기 때문이다.
연구팀은 최적화된 촉매를 계산화학으로 분석해 예측하고 실험에 돌입하는 방식으로 중간체 분해 문제를 해결할 수 있었다.
이론 연구팀은 밀도범 함수를 활용한 계산화학으로 어떤 촉매가 탄화수소에 효율적인 반응을 일으킬지 분석하고 시뮬레이션을 통해 완성도 높은 촉매를 개발했다.
이를 바탕으로 실험 연구팀이 중간체 분해 및 부산물 형성을 억제하는 이리듐 촉매를 개발하고 탄화수소에 적용해 감마-락탐 합성에 성공했다.
장석복 교수는 “이번 연구는 질소화 반응의 중간체 분해 문제를 해결함으로써 탄화수소로 감마-락탐을 합성하는 계기를 만들 수 있었다”며 “새로운 금속 촉매를 설계하고 합성해 성공적으로 적용시키는 모든 과정에 열정적으로 임해준 참여 학생들에게 깊이 감사한다”고 말했다.
또한 “이번에 개발한 촉매반응의 확장연구를 통해 학문적인 진보는 물론 합성된 물질의 생리활성 및 임상 연구를 통한 의약품과 신소재 개발 등 산업적인 면에서도 큰 기여할 수 있게 되기를 바란다”고 말했다.
□ 그림 설명
그림1. 연구진이 개발한 새로운 이리듐 촉매로 만든 질소화 반응 메커니즘
그림2. 밀도범함수를 활용한 계산화학으로 예측한 반응 경로와 에너지 장벽
그림3. 본 연구에서 개발한 질소화 촉매반응의 메커니즘과 합성한 다양한 질소고리 화합물
2018.03.02
조회수 8381
-
신의철, 박수형 교수, 방관자 면역세포의 인체 손상 원리 발견
우리 대학 의과학대학원 신의철, 박수형 교수, 중앙대학교병원 김형준, 이현웅 교수 공동 연구팀이 바이러스 질환에서 방관자 면역세포에 의해 인체 조직이 손상되는 과정을 발견했다.
이번 연구를 통해 바이러스 질환, 면역 질환이 인체를 손상시키는 원리를 이해하고 이를 신약 개발에 적용할 수 있을 것으로 기대된다.
이번 연구 결과는 면역학 분야 국제 학술지 ‘이뮤니티(Immunity)’ 1월자 최신호에 게재됐다.
바이러스에 감염되면 바이러스 증식 자체로 인해 인체 세포가 파괴되지만, 바이러스가 증식해도 직접적으로 인체 세포를 파괴하지 않기도 한다.
하지만 이러한 경우에도 인체 조직은 손상돼 질병을 일으키게 되는데 그 원인이나 과정은 상세히 밝혀지지 않았다. 다만 간염 바이러스에 감염됐을 때 이와 같은 현상이 잘 발생한다는 사실만 알려져 있었다.
면역계의 가장 중요한 특성은 특이성(specificity)으로 바이러스에 감염되면 해당 바이러스에 특이적인 면역세포만 활성화돼 작동을 하고 다른 바이러스들에 특이적인 면역세포들은 활성화되지 않는 것이 일반적이다.
감염된 바이러스가 아닌 다른 바이러스와 관련된 면역세포들이 활성화되는 경우도 있다. 이런 현상은 흔히 ‘방관자 면역세포의 활성화’라는 이름으로 오래 전부터 알려진 현상이다. 하지만 이 현상의 의학적 의미는 불투명했다.
공동 연구팀은 A형 간염 바이러스에 감염된 환자를 분석했다. 연구팀은 해당 바이러스에 특이적인 면역세포뿐 아니라 다른 바이러스에 특이적인 엉뚱한 면역세포들까지 활성화되는 것을 발견했고 이러한 엉뚱한 면역세포에 의해 간 조직이 손상되고 간염이 유발되는 것을 확인했다.
연구팀의 발견은 방관자 면역세포가 인체 손상을 일으키는 데 관여한다는 점을 규명했다는 의의를 갖는다.
이번 발견의 핵심은 바이러스에 감염되면 감염된 인체 조직에서 과다하게 생성되는 면역 사이토카인 물질인 IL-15가 방관자 면역세포들을 활성화시키고, 활성화된 면역세포들은 NKG2D 및 NKp30이라는 수용체를 통해 인체 세포들을 무작위로 파괴할 수 있다는 것이다.
이러한 결과는 IL-15 사이토카인, NKG2D, NKp30 수용체와 결합하는 항체 치료제를 신약 개발하면 바이러스 및 면역 질환에서 발생하는 인체 손상을 막을 수 있다는 중요한 의미를 갖는다.
이번 연구는 중앙대학교 병원 임상 연구팀과 KAIST 의과학대학원이 동물 모델이 아닌 인체에서 새로운 면역학적 원리를 직접 밝히기 위해 협동 연구를 한 것으로 중개 연구(translational research)의 주요 성과이다.
신 교수는 “면역학에서 불투명했던 방관자 면역세포 활성화의 의학적 의미를 새롭게 발견한 첫 연구사례이다”며 “향후 바이러스 질환 및 면역질환의 인체 손상을 막기 위한 치료제 연구를 계속하겠다”고 말했다.
이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 방관자 면역세포에 의한 인체 손상 과정 개념도
2018.02.21
조회수 10182
-
KAIST-한화시스템, 국방 인공지능 융합연구센터 개소
우리 대학과 한화시스템이 20일 낮 12시 대전 본원에서 신성철 총장, 한화 장시권 대표이사 참석 하에 국방인공지능 융합연구센터(센터장 : 김정호 교수) 개소식을 가졌다.
이번 개소식을 통해 우리 대학과 방산전자 기업인 한화시스템이 힘을 합쳐 4차 산업혁명에서 핵심 기술로 떠오르는 인공지능(AI)기술과 국방을 접목하는 계기가 될 것으로 기대된다.
우리 대학과 한화시스템은 센터의 공동 운영을 통해 ▲국방 인공지능 융합과제 발굴, 연구 및 기술자문 ▲연구 인력 상호교류 및 교육 등을 통한 협력체계를 구축할 예정이다.
현재 국방 분야는 네트워크 중심의 미래 전장에 효과적으로 대응하기 위해 4차 산업혁명 기술의 활용 방안을 활발히 모색 중이다. 특히 미국 등의 선진국은 인공지능 기술을 적용한 신 무기체계를 개발하고 있다.
국방 인공지능 융합연구센터는 ▲인공지능 기반 지휘결심지원체계 ▲대형급 무인 잠수정 복합항법 알고리즘 ▲인공지능 기반 지능형 항공기 훈련시스템 ▲인공지능 기반 지능형 물체추적 및 인식기술 개발 등 4개 과제를 우선적으로 선정했고, 산학협동연구개발 방식을 통해 인공지능 기술의 국방 융합 연구를 진행할 예정이다.
신성철 총장은 “KAIST는 인공지능 분야 교수진이 60여 명에 이를 만큼 세계적인 인공지능 연구개발 능력을 갖추고 있다”며 “이번 연구센터 설립을 통해 한화시스템과 함께 국방 기술 발전에 기여할 수 있는 계기가 될 것으로 기대한다”고 말했다.
2018.02.20
조회수 8668
-
강정구 교수, 수십 초 내 충전가능한 물 기반 저장소자 개발
우리 대학 EEWS대학원 강정구 교수 연구팀이 수십 초 내 급속충전이 가능한 물 기반의 융합에너지 저장소자를 개발했다.
이 기술은 그래핀 기반의 고분자 음극 및 나노 금속 산화물 양극 개발을 통한 높은 에너지 밀도를 가지며 급속 충전이 가능한 융합 에너지 저장소자로 향후 휴대용 전자기기에 적용 가능할 것으로 기대된다.
옥일우 박사과정이 1저자로 참여한 이번 연구 결과는 에너지재료분야 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 1월 15일자에 게재됐다.
기존의 물 기반 에너지 저장장치는 낮은 구동전압과 음극재료의 부족으로 에너지 밀도가 낮고 급속 충전에 한계가 있었다.
에너지 저장장치는 두 전극에 의해 에너지 저장 용량이 정해지며 양극, 음극의 균형이 이뤄져야 고안정성을 갖는다. 일반적으로 두 전극은 전기적 특성에 차이를 보이고 이온 저장 과정이 다르기 때문에 불균형에 의한 낮은 용량 및 안정성을 보이곤 한다.
연구팀은 전극의 표면에서 빠른 속도로 에너지 교환을 이루게 하고 양극 사이의 에너지 손실을 최소화시킴으로써 고성능 에너지 저장장치를 구현하는 데 성공했다.
연구팀이 개발한 음극소재는 전도성 고분자 물질로 배터리, 슈퍼커패시터 전극 재료로 활용 가능하다. 그래핀 표면과 층 사이에서 그물 모양의 최적화된 외형으로 기존 음극소재에 비해 높은 에너지 저장용량을 갖는다.
양극소재는 나노크기 이하의 금속 산화물이 그래핀 표면에 분산된 외형을 이루고 원자와 이온이 일대일로 저장되는 형식이다.
두 전극을 기반으로 한 연구팀의 에너지 저장 소자는 고용량과 함께 높은 에너지 및 출력 밀도를 보이며 음극과 양극의 물리적 균형을 통해 매우 안정적인 충, 방전 결과를 보였다.
연구팀이 개발한 물 기반 융합에너지 저장소자는 기존의 물 기반 배터리에 비해 100배 이상으로 높은 최대 출력 밀도를 보이며 급속 충전이 가능하다. 또한 10만 번 이상의 높은 충, 방전 전류에서도 용량이 100퍼센트 유지되는 고 안정성을 보였다.
연구팀의 에너지 저장 소자는 USB 충전기나 소형태양전지 등의 저전력 충전 시스템을 통해서도 2~30초 내에 충전이 가능하다.
강 교수는 “친환경적인 이 기술은 제작이 쉽고 활용성이 뛰어나다. 특히 기존 기술 이상의 고용량, 고안정성은 물 기반 에너지 저장장치의 상용화에 기여할 것이다”며 “저전력 충전 시스템을 통해 급속 충전이 가능하기 때문에 휴대 가능한 전자 기기에 적용할 수 있을 것이다”고 말했다.
강원대학교 정형모 교수와 공동으로 진행한 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반미래소재연구단(단장 김광호)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 실험을 통해 구동된 저장소자 사진
그림2. 물 기반 융합 에너지 저장소자 모식도
그림3. 고분자 사슬 음극 및 금속 산화물 양극 표면 이미지
2018.02.20
조회수 10464
-
최원호 교수, 전기바람 발생 원리 규명
우리 대학 물리학과 최원호 교수가 전북대 문세연 교수와의 공동 연구를 통해 전기 바람(Electric wind)이라 불리는 플라즈마 내 중성기체 흐름의 주요 원리를 규명했다.
이는 플라즈마 내 존재하는 전자나 이온과 중성입자 사이의 상호작용에 대한 기초 연구로 플라즈마를 이용하는 유체 제어기술 등 플라즈마 응용 기술의 발전에 기여할 것으로 기대된다.
박상후 박사가 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 25일자 온라인 판에 게재됐다.
두 개의 서로 다른 입자 무리로 구성된 유체역학 문제는 수세기 동안 뉴턴을 포함한 많은 과학자들의 관심을 지속적으로 받아 온 연구주제이다.
전자나 이온과 중성입자 간의 충돌로 인한 상호작용은 지구나 금성의 대기에서도 일어나는 여러 자연현상의 기초 작용으로 흔히 알려져 있다. 플라즈마에서의 전기바람은 이 상호작용을 통해 나온 결과의 대표적인 예다.
전기바람이란 전하를 띈 전자나 이온이 가속 후 중성기체 입자와 충돌해 발생하는 중성기체의 흐름을 말한다. 선풍기 날개와 같이 기계적인 움직임 없이 공기의 움직임을 일으킬 수 있는 방법으로 기존의 팬을 대체할 수 있는 차세대 기술로 주목받고 있다.
최근에는 이와 같은 플라즈마 기술을 적용해 트럭 및 선박에서 발생하는 공기저항을 감소시켜 연료효율의 증가와 미세먼지 발생 감소, 풍력발전기 날개 표면의 유체 분리(flow separation)의 완화, 도로 터널 내 공기저항 및 미세먼지 축적 감소, 초고층 건물의 풍진동 감소와 같은 응용기술 개발이 여러 나라에서 활발히 시도되고 있다.
대기압 플라즈마 내에 전기장이 강하게 존재하는 공간에서 전자나 이온이 불균일하게 분포되면 전기바람이 발생한다. 전기바람의 주요 발생 원인은 현재까지도 명확하게 밝혀지지 않아 유체 제어와 관련한 여러 응용분야에 적용하는데 어려움이 있었다.
연구팀은 대기압 플라즈마를 이용해 전기바람 발생의 전기 유체역학적 원리를 밝히는데 성공했다. 전기 유체역학적 힘에 의한 스트리머 전파와 공간전하 이동의 효과를 정성적으로 비교하는 데 성공했다.
연구팀은 스트리머 전파는 전기바람 발생에 큰 영향을 주지 못하고 오히려 스트리머 전파 이후 발생하는 공간전하의 이동이 주요 원인임을 밝혔다. 특정 플라즈마에서는 음이온이 아닌 전자가 전기바람 발생의 핵심 요소임을 확인했다.
또한 헬륨 플라즈마에서 최고 초속 4m 속력의 전기바람이 발생했는데 이는 일반적인 태풍 속력의 4분의 1 정도이다. 이러한 결과를 통해 전기바람의 속력을 효율적으로 제어할 수 있는 기초 원리를 제공할 수 있을 것으로 보인다.
이번 연구는 하전입자와의 상호작용으로 인해 중성기체 흐름이 발생하는 원리를 실험을 통해 설명했고 정확한 분석법과 설득력을 갖췄다는 평을 받는다.
최 교수는 “이번 결과는 대기압 플라즈마와 같이 약하게 이온화된 플라즈마에서 나타나는 전자나 이온과 중성입자 사이의 상호작용을 학문적으로 이해하는데 유용한 기반이 될 것이다”며 “ 이를 통해 경제적이고 산업적 활용이 가능한 플라즈마 유체제어 분야를 확대하고 다양한 활용을 가속화하는데 큰 역할을 할 것으로 기대된다”고 말했다.
이번 연구는 국가핵융합연구소의 미래선도플라즈마-농식품융합기술개발사업과 산업통상자원부의 사업화연계기술개발사업(R&BD)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 약전리 대기압 제트 플라즈마 사진
그림2. 대기압 헬륨 제트 플라즈마의 고전압 펄스 폭 및 높이에 따른 전기바람 속력의 변화
2018.02.19
조회수 10889
-
양찬호 교수, 전기적 위상 결함 제어기술 개발
〈 양 찬 호 교수, 김 광 은 박사과정 〉
우리 대학 물리학과 양찬호 교수 연구팀이 강유전체 나노구조에서 전기적인 위상 결함을 만들고 지울 수 있는 기술을 개발했다.
이 기술을 통해 전기적 위상 결함 기반의 저장 매체를 개발한다면 대용량의 정보를 안정적으로 저장할 수 있을 것으로 기대된다.
이번 연구는 포스텍 최시영 교수, 포항 가속기연구소 구태영 박사, 펜실베니아 주립대학 첸(Long-Qing Chen) 교수, 캘리포니아 대학 라메쉬 교수 등과 공동으로 수행됐다. 김광은 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 26일자에 게재됐다.
위상학은 물체를 변형시켰을 때 물체가 가지는 성질에 대한 연구를 하는 학문으로, 원과 삼각형은 위상학적으로 동일한 물질이라고 할 수 있다.
2016년도 노벨 물리학상 발표 기자회견에서 노벨위원회는 위상학의 개념을 구멍이 한 개 뚫린 베이글 빵, 구멍이 없는 시나몬 빵, 유리컵 등에 비유했다. 시나몬 빵과 유리컵은 다르게 보이지만 구멍이 없다는 점만 따지면 위상학적으로 같은 물질이 된다. 하지만 구멍의 개수가 다른 베이글과 시나몬 빵은 위상학적으로 다른 물질이 되는 식이다.
즉 물질에서 위상학적이라 함은 연속적인 변형으로는 그 특성을 변화시킬 수 없는 절대적인 보존량을 말한다. 이러한 위상학적 특징을 이용해 정보저장 매체를 만들면 외부의 자극으로부터 보존되며 사용자의 의도대로 쓰고 지울 수 있는 이상적인 비휘발성 메모리를 제작할 수 있다.
강유전체와 달리 강자성체(자기적 균형이 깨진 상태, 외부 자기장을 제거해도 자기장이 그대로 남아있음)의 경우는 소용돌이 형태의 위상학적 결함 구조가 이미 구현됐다.
반면 외부 전기장 없이도 스스로 분극을 갖는 강유전체는 자성체에 비해 위상학적 결함 구조를 더 작은 크기로 안정시키고 더 적은 에너지를 이용해 조절할 수 있다는 장점이 있음에도 불구하고 초보적인 연구 단계에 머물러 있었다. 실험적으로 위상학적 결함 구조를 어떻게 안정화시키며 어떠한 방식으로 조절할 것인지에 대한 연구가 부족했기 때문이다.
연구팀은 문제 해결을 위해 강유전체 나노구조에서 비균일한 변형을 줘 위상학적 결함 구조를 안정시키는 데 성공했다. 연구팀은 강유전체 나노접시(ferroelectric nanoplate) 구조를 특정 기판 위에 제작해 접시의 바닥면에는 강한 압축 변형을 주는 동시에 옆면과 윗면은 변형에서 자유로운 구조를 만들었다.
이러한 구조는 방사형으로 압축변형 완화(Compressive strain relaxation)가 일어나 격자의 변형이 오히려 강유전체의 소용돌이 구조를 안정화시키게 된다. 연구팀은 이번 연구가 고밀도, 고효율, 고안정성을 갖춘 위상학적 결함기반 강유전 메모리에 핵심적인 원리를 제시했다고 말했다.
양 교수는 “강유전체는 부도체이지만 위상학적 강유전 준입자가 국소적으로 전자 전도성을 수반할 수 있어 새로운 양자소자 연구로 확대될 수 있을 것이다”고 말했다.
이번 연구는 한국연구재단의 창의연구지원사업, 선도연구센터지원사업, 글로벌프론티어사업 등의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 전기적 위상 결함 개수를 조절하여 만든 5가지의 다른 위상 구조
2018.02.08
조회수 20693
-
최원호 교수, 플라즈마로 바이오필름 제거 기술 개발
〈 박 주 영 박사과정, 최 원 호 교수, 박 상 후 박사 〉
우리 대학 물리학과 최원호 교수, 서울대 조철훈 교수 공동 연구팀이 대기압 저온 플라즈마를 통해 페트병 등 식품 보관 용기 표면에 존재하는 대장균, 박테리아 등 일명 바이오필름을 손쉽게 제거할 수 있는 기술을 개발했다.
이는 플라즈마를 물에 처리해 활성화시켜 발생하는 화학반응을 이용해 바이오필름을 제거하는 방식으로 기존 기술보다 안전하고 손쉬워 다양한 용도로 사용 가능할 것으로 기대된다.
박상후 박사, 박주영 박사과정이 공동 1저자로 참여한 이번 연구는 재료분야 국제 학술지 ‘미국화학회 어플라이드 머티리얼즈&인터페이시스(ACS Applied Materials & Interfaces)’ 2017년도 12월 20일자에 게재됐다.
대기압 플라즈마는 대기 중에서 여러 형태로 플라즈마 및 2차 생성물을 방출할 수 있는 장점을 갖는다. 번개도 플라즈마의 일종인데 번개를 통해 공기 중 질소가 질소화합물이 돼 땅 속에 스며들어 토양을 비옥하게 만드는 것이 대표적인 사례이다.
이런 장점을 활용해 플라즈마는 에너지 및 환경 분야부터 생의학 분야까지 다양한 연구와 산업분야에 응용되고 있으며 플라즈마의 반응성 및 활용성을 높이기 위한 연구들이 전 세계적으로 활발히 진행 중이다.
최근에는 의료기술, 식품, 농업 등 다양한 분야에 살균을 목적으로 한 활성화, 기능화 등 측면에서 대기압 플라즈마를 적용하고 있다.
그러나 대기압 플라즈마로부터 발생하는 활성종의 종류, 밀도, 역할 등은 현재까지도 명확하게 밝혀지지 않아 기술을 적용하는 데 큰 어려움이 있었다.
연구팀은 플라즈마를 물에 처리시켜 활성수로 만들어 대장균, 살모넬라, 리스테리아 등 유해한 미생물이 겹겹이 쌓여 막을 이룬 형태를 뜻하는 바이오필름을 제거하는 방법을 개발했다.
플라즈마를 처리할 때 발생하는 활성종은 수산기(하이드록시기, OH*), 오존, 과산화수소, 아질산이온, 활성산소 등이다. 연구팀은 그 중 수산기가 다른 활성종에 비해 100 배에서 1만 배 낮은 농도임에도 불구하고 산화력이 높아 바이오필름 제거에 큰 역할을 하는 것을 확인했다.
연구팀은 그 외에 발생된 오존, 과산화수소, 아질산 이온 등에 대해서도 바이오필름을 제거할 수 있는 기능이 있음을 정량적으로 증명했고 이를 통해 살균제로서 대기압 플라즈마의 역할을 규명했다.
연구팀은 향후 후속 연구를 통해 플라즈마로 수산기를 효율적으로 생산할 수 있는 기술을 개발할 예정이다.
최 교수는 2013년 플라즈마 발생이 가능한 포장재를 특허로 등록했고 지도학생 창업기업인 플라즈맵에 기술이전을 완료했다. 이번 연구를 통해 플라즈마 살균 기술의 상용화에 힘쓰는 중이다.
최 교수는 “이번 연구결과는 플라즈마 제어 기술과 플라즈마-미생물 간 물리화학적 상호작용을 이해하는데 유용한 기반이 될 것이다”며 “의학, 농업, 식품 분야에서의 플라즈마 기술의 활용이 가속화되는 계기가 될 것으로 기대한다”고 말했다.
이번 연구는 국가핵융합연구소의 미래선도 플라즈마-농식품 융합기술 개발 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1.플라즈마 발생이 가능한 포장재
그림2.대기압 플라즈마를 이용한 바이오필름 저감 실험 개략도
그림3.대기압 플라즈마 적용 개념도 및 핵심요소 평가 결과
그림4.스타트업 기업인 플라즈맵(Plasmapp)에서 시판중인 STERPACK 제품
2018.01.23
조회수 11521
-
신의철, 정민경 교수, 바이러스 간염 악화시키는 세포의 원리 규명
〈 신 의 철 교수, 정 민 경 교수 〉
우리 대학 의과학대학원 신의철 교수, 정민경 교수와 충남대 의대 최윤석 교수, 연세대 의대 박준용 교수로 이루어진 공동 연구팀이 바이러스 간염을 악화시키는 ‘조절 T 세포’의 염증성 변화를 발견했다.
이번 연구를 통해 다양한 염증성 질환을 이해하고 치료에 적용시킬 수 있을 것으로 기대된다.
이번 연구 결과는 국제 학술지 ‘소화기학(Gastroenterology)’ 2017년도 12월호 온라인 판에 게재됐다.
바이러스성 간염은 A형, B형, C형 등 다양한 간염 바이러스에 의해 발생하는 질환으로 간세포(hepatocyte)를 파괴시키는 특징을 갖는다.
이러한 간세포의 파괴는 바이러스에 의해 직접적으로 일어나는 것이 아닌 바이러스 감염으로 인해 활성화된 면역세포에 의한 것으로 알려져 있다. 그러나 그 상세한 작용 원리는 밝혀지지 않았다.
조절 T 세포는 다른 면역세포의 활성화를 억제해 인체 내 면역체계의 항상성을 유지하는 데 중요한 역할을 수행한다.
최근 연구에 따르면 염증이 유발된 상황에서는 조절 T 세포의 면역억제 기능이 약화되며 오히려 염증성 사이토카인 물질을 분비한다고 알려졌다. 그러나 A형, B형 등 바이러스성 간염에서는 이러한 현상이 과거에는 발견되지 않았다.
연구팀은 바이러스성 간염 환자에게서 나타나는 조절 T 세포의 변화에 주목했다. 이 조절 T 세포가 염증성 변화를 일으켜 TNF라는 염증성 사이토카인(면역 세포에서 분비되는 단백질) 물질을 분비할 수 있다는 사실을 처음 발견했다. 그리고 이 TNF를 분비하는 조절 T 세포가 바이러스성 간염의 악화를 유발함을 증명했다.
연구팀은 급성 A형 간염 환자를 대상으로 분석을 실시해 환자의 조절 T 세포의 면역억제 기능이 저하된 상태임을 밝혔고 TNF를 분비하는 것을 확인했다. 이를 통해 조절 T 세포 변화의 분자적 작용 원리를 밝히고 이를 조절하는 전사인자를 규명했다.
또한 조절 T 세포의 이러한 변화가 B형 및 C형 간염환자에게도 나타남을 발견했다.
이번 연구는 동물 모델이 아닌 인체에서 원리를 직접 밝히기 위해 충남대, 연세대 의대 등 임상 연구팀과 의과학대학원의 면역학 연구팀과의 협동 연구로 이뤄져 중개 연구(translational research)의 모범 사례가 될 것으로 예상된다.
신 교수는 “바이러스성 간염에서 간 손상을 악화시키는 조절 T 세포 변화에 대한 첫 연구사례이다”며 “향후 바이러스성 간염에서 효과적 치료 표적으로 이용할 수 있는 세포와 분자를 규명했다는 의의를 갖는다”고 말했다.
이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 조절T세포에 의해 간손상이 악화되는 현상
그림2. 간염 환자와 정상인의 조절T세포 관찰 그래프
2018.01.08
조회수 9452
-
장석복, 백무현 교수, 상온에서 아릴기의 선택적 도입 반응 개발
우리 대학 화학과 장석복 교수와 백무현 교수 공동연구팀이 이리듐 촉매를 활용해 상온에서도 분자 내 원하는 위치에 아릴기를 선택적으로 도입하는 반응을 개발하는 데 성공했다. 또한 계산화학으로 반응 원리를 밝혀내 기존의 반응과 다른 경로로 이루어진다는 사실을 증명했다.
탄화수소는 자연상태에 많이 존재하지만 일반적 조건에서는 반응성이 낮아 합성의 원료로 사용되기 어렵다. 반응을 촉진시키기 위해 금속촉매를 활용하는 등 다양한 연구가 이루어지고 있다.
특히 의, 약학이나 재료화학 분야에서 중요하게 활용되는 대다수의 화합물들이 분자 내에 아릴기를 포함하고 있기 때문에 효율적이고 위치선택적으로 아릴기를 도입할 수 있는 반응의 개발은 유기화학 분야의 지속적인 연구주제이다.
안정적인 탄소-수소 결합에 아릴기 도입 반응을 유도하기 위해서는 탄소-수소 결합에 할로젠 원자나 유기금속을 붙여 사전활성화하거나 이 과정 없이 탄소-수소 결합을 직접 활성화(C-H functionalization)하는 과정을 거친다.
직접 활성화하는 방법이 효율성과 경제성이 뛰어나지만 개발된 반응 대부분이 고온의 반응온도, 과량의 첨가물이 필요한 격렬한 반응 조건을 필요로 하고 탄소-수소 결합이 분자 내에 많이 존재하므로 선택성 확보 역시 어려웠다.
연구진은 이리듐 촉매 하에서 아릴실레인(arylsilanes)을 반응제로 사용하여 탄소-수소 결합 활성화를 통한 아릴화 반응을 상온에서 구현하는 데 성공했다.
여태껏 전이금속 촉매를 사용하는 탄소-수소 결합 활성화를 통한 아릴화 반응이 대부분 높은 온도에서 이루어진 것과 달리 상온에서도 이 반응이 가능할 뿐 아니라, 분자 내에서 위치선택적으로 아릴기를 도입할 수 있다.
상온에서 아릴기 도입 반응에 성공할 수 있었던 것은 실험과 이론연구가 동시에 이루어졌기 때문이다. 기존에 알려진 아릴화 반응경로는 과정중 생성되는 금속교환반응 중간체(transmetallation intermediate)의 안정성 때문에 반응과정에서 높은 에너지가 요구됐다.
원리 연구를 통해 전이금속을 촉매로 하는 탄소-수소 결합 활성화를 통한 아릴화 반응에서 최초로 금속교환반응 중간체를 분리, 분석했다.
이를 바탕으로 금속교환반응 중간체만을 선택적으로 산화시키는 새로운 경로를 개발하여 에너지 장벽을 효과적으로 낮췄다. 또한 밀도범함수를 활용한 계산화학으로 실험 결과를 토대로 제안된 반응경로의 타당성을 검증했다.
장 교수는 “상온에서 위치 선택적 아릴화 반응을 이끌어 낸 것과 더불어 반응 메커니즘 연구를 통해 기존에 통상적으로 제안되어져 왔던 진행경과와는 다른 새로운 반응경로로 반응이 이루어짐을 규명했다”며 “이 반응경로를 알아내고 이를 바탕으로 고온이나 과량의 첨가물 없이도 선택적인 반응방법을 개발하였다는 점에서 그 의의가 크다”고 말했다.
연구결과는 국제학술지 네이처 케미스트리 12월 11일자 온라인 판에 게재됐다.
□ 그림 설명
그림1. 금속교환반응 중간체(transmetallation intermediate)의 X-ray 결정구조
그림2. 밀도범함수를 활용한 계산화학으로 본 중간체의 산화상태와 중간체에서 일어나는 환원성 제거반응(reductive elimination)에 필요한 에너지장벽(energy barrier)간의 상관관계
그림3. 연구진이 제안한 이리듐 촉매를 활용한 아릴화 반응 메커니즘
2018.01.02
조회수 9920