-
이상엽 특훈교수, 김현욱 교수, 인공지능 이용한 효소기능 예측 기술 개발
우리 대학 생명화학공학과 이상엽 특훈교수와 김현욱 교수의 초세대 협업연구실 공동연구팀이 딥러닝(deep learning) 기술을 이용해 효소의 기능을 신속하고 정확하게 예측할 수 있는 컴퓨터 방법론 DeepEC를 개발했다.
공동연구팀의 류재용 박사가 1 저자로 참여한 이번 연구결과는 국제학술지 ‘미국 국립과학원 회보(PNAS)’ 6월 20일 자 온라인판에 게재됐다. (논문명 : Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers)
효소는 세포 내의 생화학반응들을 촉진하는 단백질 촉매로 이들의 기능을 정확히 이해하는 것은 세포의 대사(metabolism) 과정을 이해하는 데에 매우 중요하다.
특히 효소들은 다양한 질병 발생 원리 및 산업 생명공학과 밀접한 연관이 있어 방대한 게놈 정보에서 효소들의 기능을 빠르고 정확하게 예측하는 기술은 응용기술 측면에서도 중요하다.
효소의 기능을 표기하는 시스템 중 대표적인 것이 EC 번호(enzyme commission number)이다. EC 번호는 ‘EC 3.4.11.4’처럼 효소가 매개하는 생화학반응들의 종류에 따라 총 4개의 숫자로 구성돼 있다.
중요한 것은 특정 효소에 주어진 EC 번호를 통해서 해당 효소가 어떠한 종류의 생화학반응을 매개하는지 알 수 있다는 것이다. 따라서 게놈으로부터 얻을 수 있는 효소 단백질 서열의 EC 번호를 빠르고 정확하게 예측할 수 있는 기술은 효소 및 대사 관련 문제를 해결하는 데 중요한 역할을 한다.
작년까지 여러 해에 걸쳐 EC 번호를 예측해주는 컴퓨터 방법론들이 최소 10개 이상 개발됐다. 그러나 이들 모두 예측 속도, 예측 정확성 및 예측 가능 범위 측면에서 발전 필요성이 있었다. 특히 현대 생명과학 및 생명공학에서 이뤄지는 연구의 속도와 규모를 고려했을 때 이러한 방법론의 성능은 충분하지 않았다.
공동연구팀은 1,388,606개의 단백질 서열과 이들에게 신뢰성 있게 부여된 EC 번호를 담고 있는 바이오 빅데이터에 딥러닝 기술을 적용해 EC 번호를 빠르고 정확하게 예측할 수 있는 DeepEC를 개발했다.
DeepEC는 주어진 단백질 서열의 EC 번호를 예측하기 위해서 3개의 합성곱 신경망(Convolutional neural network)을 주요 예측기술로 사용하며, 합성곱 신경망으로 EC 번호를 예측하지 못했을 경우 서열정렬(sequence alignment)을 통해서 EC 번호를 예측한다.
연구팀은 더 나아가 단백질 서열의 도메인(domain)과 기질 결합 부위 잔기(binding site residue)에 변이를 인위적으로 주었을 때, DeepEC가 가장 민감하게 해당 변이의 영향을 감지하는 것을 확인했다.
김현욱 교수는 “DeepEC의 성능을 평가하기 위해서 이전에 발표된 5개의 대표적인 EC 번호 예측 방법론과 비교해보니 DeepEC가 가장 빠르고 정확하게 주어진 단백질의 EC 번호를 예측하는 것으로 나타났다”라며 “효소 기능 연구에 크게 이바지할 것으로 기대한다”라고 말했다.
이상엽 특훈교수는 “이번에 개발한 DeepEC를 통해서 지속해서 재생되는 게놈 및 메타 게놈에 존재하는 방대한 효소 단백질 서열의 기능을 보다 효율적이고 정확하게 알아내는 것이 가능해졌다”라고 말했다.
이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제 및 바이오·의료기술 개발 Korea Bio Grand Challenge 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 인공지능 기반의 DeepEC를 이용한 효소 기능 EC 번호 예측
2019.07.03
조회수 11026
-
이병주 교수, 게임의 랙 현상 해소 기술 개발
〈 이병주 교수, 이인정 박사과정 〉
우리 대학 문화기술대학원 이병주 교수와 핀란드 알토 대학교(Aalto Univ) 공동 연구팀이 게임의 겉보기 형태를 변화시켜 게임 내 레이턴시 효과, 일명 랙(lag)을 없앨 수 있는 기술을 개발했다.
이인정 박사과정이 1 저자로 참여하고 알토대학교 김선준 연구원이 공동으로 개발한 이번 연구는 지난 5월 4일 열린 인간-컴퓨터 상호작용 분야 최고권위 국제 학술대회 CHI 2019(The ACM CHI Conference on Human Factors in Computing Systems)에서 풀 페이퍼로 발표됐다. (논문명 : Geometrically Compensating Effects of End-to-End Latency in Moving-Target Selection Games)
레이턴시는 장치, 네트워크, 프로세싱 등 다양한 이유로 인해 발생하는 지연(delay) 현상을 말한다. 사용자가 명령을 입력했을 때부터 출력 결과가 모니터 화면에 나타날 때까지 걸리는 지연을 엔드-투-엔드 레이턴시(end-to-end latency)라 한다.
상호작용의 실시간성이 중요한 요소인 게임 환경에서는 이러한 현상이 플레이어의 능력에 부정적 영향을 미치는 것으로 알려져 있다.
연구팀은 레이턴시가 있는 게임 환경에서도 플레이어의 본래 실력으로 게임을 할 수 있도록 돕는 레이턴시 보정 기술을 개발했다. 이 기술은 레이턴시의 양에 따라 게임의 디자인 요소, 즉 장애물의 크기 등의 형태를 변화시킴으로써, 레이턴시가 있음에도 레이턴시가 없는 것처럼 느껴지는 환경에서 플레이할 수 있다.
연구팀은 레이턴시가 플레이어에 미치는 영향을 분석해 플레이어의 행동을 예측하는 수학적 모델을 제시했다. 시간제한이 있는 상황에서 게임 플레이를 위해 버튼 입력을 해야 하는 ‘움직이는 타겟 선택’ 과업에 레이턴시가 있을 때 사용자의 성공률을 예측할 수 있는 인지 모델이다.
이후에는 이 모델을 활용해 게임 환경에 레이턴시가 발생할 경우의 플레이어 과업 성공률을 예측한다. 이를 통해 레이턴시가 없는 환경에서의 플레이어 성공률과 비슷한 수준으로 만들기 위해 게임의 디자인 요소를 변형한다.
연구팀은 ‘플래피 버드(Flappy Bird)’라는 게임에서 기둥의 높이를 변형해 레이턴시가 추가됐음에도 기존 환경에서의 플레이 실력을 유지함을 확인했다. 연구팀은 후속 연구를 통해 게임 속 장애물 등의 크기를 변형함으로써 레이턴시를 없애는 등의 확장 연구를 기대하고 있다.
이 교수는 “이번 기술은 비 간섭적 레이턴시의 보정 기술로, 레이턴시의 양만큼 게임 시계를 되돌려 보상하는 기존의 랙 보상 방법과는 다르게 플레이어의 게임 흐름을 방해하지 않는 장점이 있다”라고 말했다.
이번 연구는 한국연구재단 신진연구자지원사업(프로게이머 역량 극대화를 위한 게임 입력장치의 설계 최적화) 및 KAIST 자체 연구사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 게임의 겉보기 형태를 변화시킴으로써, 플레이어가 제로 레이턴시 환경과 레이턴시가 있는 환경에서 같은 실력을 유지
2019.07.02
조회수 9290
-
윤동기 , 김형수 교수, DNA 마이크로패치 제작 기술 개발
〈 윤동기 교수, 김형수 교수, 박순모 연구원 〉
우리 대학 화학과/나노과학기술대학원 윤동기, 기계공학과 김형수 교수 공동 연구팀이 마이크로 크기의 DNA 2차원 마이크로패치 구조체를 제작하고 이를 제어, 응용하는 기술을 개발했다.
윤 교수 연구팀은 커피가 종이에 떨어지고 물이 마르면 동그랗게 환 모양이 생기는 이른바 ‘커피링 효과’라 불리는 현상을 DNA 수용액에 적용해 세계 최초로 DNA 기반의 마이크로패치를 제작했다.
차윤정 박사, 박순모 박사과정 학생이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6월 7일 자 온라인판에 게재됐다. (논문명 : Microstructure arrays of DNA using topographic control)
유전 정보를 저장하는 기능을 하는 DNA는 이중나선 구조와 나노미터 주기의 규칙적인 모양을 가져 소재 분야에서 일반적인 합성방법으로는 구현하기 힘든 정밀한 구조재료이다. 정밀한 DNA 합성과 오리가미(Origami) 기술을 이용해 스마일 패치(smile patch) 등의 재미있는 모양을 구현해 왔지만, 재료의 가격이 높아 실제 응용에 어려움을 겪었다.
윤 교수 연구팀은 이를 극복하기 위해 연어에서 추출한 DNA 물질을 이용해 기존보다 1천 배 이상 저렴한 비용으로 잘 정렬된 뜨개질(knit) 혹은 아이스크림콘 모양의 기존에 없던 마이크로패치 구조체를 대면적에서 구현했다.
연구팀은 DNA가 물에 녹으면 마치 물풀과 끈적끈적해지면서 서로 적당한 힘으로 끌어당기며 일정한 방향으로 정렬하는 액정상(liquid crystal phase)을 보인다는 점에 주목했다.
액정 표시장치(LC display 혹은 LCD)에서 액정분자들이 전기장을 통해 방향성이 제어되는 것처럼 수용액 상태의 DNA 액정상이 두 기판 사이에서 문질러지며 물의 증발이 이뤄질 때 DNA 나노 구조체들이 원하는 방향으로 정렬하게 된다. 과일 잼을 식빵에 바르면 과일 알맹이(pulp)가 한 방향으로 잘 펴 발라지면서 마르는 현상과 유사하다.
연구팀은 DNA가 한 방향으로 문질러져서 마를 때 바닥에 평평한 기판 대신 일정한 모양을 갖는 수 마이크론 크기의 기둥(혹은 요철)들이 있는 기판을 사용하면 2차원의 뜨개질 모양, 아이스크림콘 모양 등 좀 더 흥미로운 들을 제작할 수 있음을 확인했다.
또한, 금 나노막대와 같은 플라즈몬 공명(plasmon resonance)을 나타내는 소재와 결합해 디스플레이 소자에 응용을 시도했다. 플라스몬 공명은 금속으로 만들어진 기판에 빛을 쪼일 때 그 표면 위에서 전자가 일정하게 진동하면서 자신의 에너지와 일치하는 빛에만 반응하는 현상으로 특정한 색만 반사하여 선명도와 표현력을 높이는 데 사용된다.
이 방식에서 가장 중요한 점은 어떤 방향으로 금 나노막대가 정렬하는지를 나타내는 배향(orientation)이다. 즉 막대들이 한 방향으로 나란히 정렬될 때 광학·전기 특성이 극대화된다. 윤 교수 연구팀은 이러한 점에 착안해 DNA 마이크로패치를 일종의 틀로 삼아 금 나노막대들을 독특한 형태로 배향하고 플라즈몬 컬러 기판을 제작하는 데 성공했다.
연구팀이 개발한 DNA 2차원 마이크로패치 제작 기술은 DNA를 구조재료 및 전자소재로써 활용할 수 있는 단서를 마련했을 뿐 아니라 증발 현상과 DNA 액정물질이 접목될 때 나타나는 독특한 형태의 복잡한 분자 거동 해석에 대한 단서를 제공할 것으로 기대된다.
윤 교수는 “연구를 통해 밝힌 것처럼 DNA가 금 나노막대와 같은 광학 소재와 복합체를 쉽게 만들 수 있는 만큼, 자연계에 무한히 존재하는 DNA를 디스플레이 관련 분야의 신소재로서 응용할 수 있을 것으로 기대한다”라고 말했다.
이번 연구는 과학기술정보통신부-한국연구재단의 전략과제, 멀티스케일 카이랄 구조체 연구센터, 미래유망 융합기술 파이오니아사업과 신진연구 과제의 지원을 받아 수행됐다.
□ 그림 설명
그림1. DNA 분자 배향 모식도
그림2. DNA-금 막대 입자 복합체의 배향 양상과 나타나는 플라즈모닉 광학 현상
2019.06.18
조회수 9448
-
이재우 교수, 수소-천연가스 기반 하이드레이트 개발
우리 대학 생명화학공학과 이재우 교수 연구팀이 고온, 저압 조건에서도 수소를 안정적으로 하이드레이트에 저장할 수 있는 기술을 개발했다.
연구팀의 기술은 천연가스를 열역학적 촉진제로 사용하는 방식으로 수소-천연가스 하이드레이트는 에너지 가스 저장에 크게 기여할 수 있을 것으로 기대된다.
안윤호 박사가 1 저자로 참여하고 생명화학공학과 이 흔 교수, 고동연 교수, GIST 지구환경공학부 박영준 교수팀과 공동으로 연구한 이번 연구 결과는 국제 학술지 ‘에너지 스토리지 머티리얼즈(Energy Storage Materials)’ 6월 6일 자 온라인판에 게재됐다. (논문명 : One-step formation of hydrogen clusters in clathrate hydrates stabilized via natural gas blending)
유럽 등에서는 대기 중 이산화탄소의 농도를 줄이기 위해 천연가스에 수소를 일부 혼합해 사용하는 대체 연료 시스템을 개발하고 있다. 불타는 얼음이라고 알려진 가스 하이드레이트는 물로 이루어진 친환경적인 물질임과 동시에 폭발 위험이 없어 현재의 탄소 경제 시대와 도래할 수소 경제 시대의 전환점에서 중요한 에너지 가스 저장 매체로 활용될 수 있다.
수소를 하이드레이트에 저장하기 위해 기존에 사용되던 테트라하이드로퓨란과 같은 유기 화합물 기반 열역학적 안정제는 휘발성이 강해 하이드레이트 해리 후에 가스상에 남아 있어 별도의 분리 공정이 필요하고, 수소가 저장될 수 있는 하이드레이트 동공을 차지해 하이드레이트 내의 에너지 저장 밀도를 낮추는 문제가 있다.
이를 해결하기 위해 하이드레이트를 튜닝해 하이드레이트의 동공 중 일부를 비우고 하나의 동공에 여러 개의 수소분자를 저장하려는 노력 등이 있었지만 여전히 유기 화합물 기반의 열역학적 안정제가 필요하다는 문제가 있었다.
연구팀은 천연가스의 주성분인 메탄과 에탄의 하이드레이트 상의 평형 조건이 수소에 비해 낮은 점에 주목해 메탄과 에탄을 열역학적 촉진제로 사용했다. 그 결과 수소-천연가스 혼합물을 하이드레이트에 안정적으로 저장하는 데 성공했다.
메탄과 에탄의 구성 비율에 따라 구조 I 또는 구조 II 하이드레이트가 형성될 수 있는데 두 구조 모두 저압 조건에서도 수소-천연가스가 안정적으로 저장됨을 확인했다.
연구팀은 얼음으로부터 직접 하이드레이트를 만드는 방법과 객체 치환법(용어설명)을 이용해 수소-천연가스 하이드레이트를 제작했고, 수소가 처음부터 하이드레이트 형성에 참여할 때만 두 구조의 하이드레이트에서 모두 튜닝 현상이 일어나는 것을 관찰하는 데 성공했다.
연구팀은 튜닝된 구조 I 하이드레이트에서는 작은 동공에만 2개의 수소가 저장되는 반면 튜닝된 구조 II 하이드레이트에서는 작은 동공뿐 아니라 큰 동공에서도 최대 3개의 수소분자가 저장될 수 있음을 확인했다.
하이드레이트는 부피의 약 170배에 달하는 가스를 저장할 수 있는 특성을 가지며, 연구에서 사용한 열역학적 촉진제인 천연가스는 그 자체로 에너지원으로 활용될 수 있어 다양한 분야에 활용할 수 있을 것으로 기대된다.
1 저자인 안윤호 박사는 “기존의 열역학적 촉진제들과는 달리 하이드레이트에 저장된 모든 물질을 에너지원으로 사용할 수 있다는 의의가 있다”라고 말했다.
이재우 교수는 “수소-천연가스 혼합 연료는 기존의 천연가스 운송 인프라를 그대로 활용해 보급 및 이용될 수 있다는 점에서 연구팀의 수소-천연가스 하이드레이트 시스템은 상용화 가능성이 크다”라며 “에너지 가스가 열역학적 안정제로 사용될 가능성을 처음 확인한 만큼, 하이드레이트 내의 가스 저장량을 늘리기 위해 추가적인 연구를 진행 중이다”라고 말했다.
이번 연구는 연구재단의 중견 연구자 지원사업과 BK21 plus 프로그램을 통해 수행됐다.
□ 그림 설명
그림1. 객체 치환법을 이용하여 천연가스 하이드레이트에 수소를 저장하는 방법과 얼음으로부터 직접 수소-천연가스 하이드레이트를 저장하는 방법
2019.06.17
조회수 6430
-
임성갑 교수, 새로운 다층 금속 상호연결 기술 개발
우리 대학 생명화학공학과 임성갑 교수와 POSTECH(총장 김도연) 창의IT융합공학과 김재준 교수 공동 연구팀이 비아홀(via-hole, vertical interconnect access hole) 공정 없이도 금속을 다중으로 상호 연결할 수 있는 기술을 개발했고, 이를 통해 5층 이상의 3차원 고성능 유기 집적회로를 구현했다.
이번 기술은 금속의 수직 상호 연결을 위해 공간을 뚫는 작업인 비아홀 공정 대신 패턴된 절연막을 직접 쌓는 방식으로, 유기 반도체 집적회로를 형성하는데 적용할 수 있는 신개념의 공정이다.
유호천 박사와 박홍근 박사과정 학생이 공동 1 저자로 참여한 이번 연구 결과는 국제적인 학술지인 네이처 커뮤니케이션(Nature Communications) 6월 3일 자 온라인판에 게재됐다. (논문명: Highly stacked 3D organic integrated circuits with via-hole-less multilevel metal interconnects)
유기 트랜지스터는 구부리거나 접어도 그 특성을 그대로 유지할 수 있는 장점 덕분에 유연(flexible) 디스플레이 및 웨어러블 센서 등 다양한 분야에 적용할 수 있다.
그러나 이러한 유기물 반도체는 화학적 용매, 플라즈마, 고온 등에 의해 쉽게 손상되는 문제점 때문에 일반적인 식각 공정을 적용할 수 없어 유기 트랜지스터 기반 집적회로 구현의 걸림돌로 여겨졌다.
공동 연구팀은 유기물 반도체의 손상 없이 안정적인 금속 전극 접속을 위해 절연막에 비아홀을 뚫는 기존 방식에서 벗어나 패턴된 절연막을 직접 쌓는 방식을 택했다. 패턴된 절연막은 패턴 구조에 따라 반도체소자를 선택적으로 연결할 수 있도록 했다.
특히 연구팀은 ‘개시제를 이용한 화학 기상 증착법(iCVD: initiated chemical vapor deposition)’을 통해 얇고 균일한 절연막 패턴을 활용해 안정적인 트랜지스터 및 집적회로를 구현하는 데 성공했다.
공동 연구팀은 긴밀한 협력을 통해 개발한 금속 상호 연결 방법이 유기물 손상 없이 100%에 가까운 소자 수율로 유기 트랜지스터를 제작할 수 있음을 확인했다. 제작된 트랜지스터는 탁월한 소자 신뢰성 및 균일성을 보여 유기 집적회로 제작에 큰 역할을 했다.
연구팀은 수직적으로 분포된 트랜지스터들을 상호 연결해 인버터, 낸드, 노어 등 다양한 디지털 논리 회로를 구현하는 데 성공했다. 또한, 효과적인 금속 상호 연결을 위한 레이아웃 디자인 규칙을 제안했다. 이러한 성과는 향후 유기 반도체 기반 집적회로 구현 연구에 유용한 지침이 될 것으로 기대된다.
연구책임자인 POSTECH 김재준 교수는 “패턴된 절연막을 이용하는 발상의 전환이 유기 집적회로로 가기 위한 핵심 기술의 원천이 됐다”라며 “향후 유기 반도체 뿐 아니라 다양한 반도체 집적회로 구현의 핵심적인 역할을 할 것으로 기대한다”라고 말했다.
본 연구는 과학기술정보통신부, 한국연구재단과 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 제안된 금속 상호 연결 기술 모식도
그림2. 수직 집적된 디지털 회로 공정 모식도 및 이미지
2019.06.11
조회수 8746
-
주영석 교수, 흡연과 무관한 폐암유발 돌연변이 유년기부터 발생 사실 밝혀
〈 주영석 교수 〉
우리 대학 의과학대학원 주영석 교수와 서울대학교 의과대학(학장 신찬수) 흉부외과 김영태 교수 공동 연구팀이 폐암을 일으키는 융합유전자 유전체 돌연변이의 생성 원리를 규명했다.
이번 연구는 흡연과 무관한 환경에서도 융합유전자로 인해 폐 선암이 발생할 수 있다는 사실을 밝힌 것으로, 비흡연자의 폐암 발생 원인 규명과 더불어 정밀치료 시스템을 구축하는 데 적용 가능할 것으로 기대된다.
우리 대학 출신 이준구 박사(現 하버드 의과대학 박사후연구원)와 박성열 박사과정이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘셀(Cell)’ 5월 30일 자 온라인판에 게재됐다. (논문명 : Tracing Oncogene Rearrangements in the Mutational History of Lung Adenocarcinoma) 또한, 이번 연구에는 하버드 의과대학, 한국과학기술정보연구원, 국립암센터 연구자들도 함께 참여했다.
흡연은 폐 선암의 가장 큰 발병 인자로 잘 알려졌지만 암 융합유전자 돌연변이, 즉 ALK, RET, ROS1 등에 의한 암 발생은 대부분 비흡연자에게서 발견된다. 융합유전자로 인한 환자는 전체 폐 선암 환자의 10% 정도를 차지하고 있지만, 이 돌연변이의 생성과정에 대해서는 알려진 것이 거의 없었다.
이전까지의 폐 선암 유전체 연구는 주로 유전자 지역을 규명하는 ‘엑솜 서열분석 기법’이 사용됐으나 연구팀은 유전자 간 부분들을 총망라해 분석하는‘전장 유전체 서열분석 기법’을 대규모로 적용했다.
연구팀은 138개의 폐 선암(lung adenocarcinoma) 사례의 전장 유전체 서열 데이터(whole-genome sequencing)를 생성 및 분석해 암세포에 존재하는 다양한 양상의 유전체 돌연변이를 찾아냈다. 특히 흡연과 무관한 폐암의 직접적 원인인 융합유전자를 생성하는 유전체 구조 변이의 특성을 집중적으로 규명했다.
유전체에 발생하는 구조적 변이는 DNA의 두 부위가 절단된 후 서로 연결되는 단순 구조 변이와 DNA가 많은 조각으로 동시에 파쇄된 후 복잡하게 서로 재조합되는 복잡 구조 변이로 나눌 수 있다.
복잡 구조 변이는 암세포에서 많이 발견된다. DNA의 수백 부위 이상이 동시에 절단된 후 상당 부분 소실되고 일부가 다시 연결되는 ‘염색체 산산조각(chromothripsis)’ 현상이 대표적 사례이다. 연구팀은 70% 이상의 융합유전자가‘유전체 산산조각 (chromothripsis)’ 현상 등 복잡 구조 돌연변이에 의해 생성됨을 확인했다.
또한, 연구팀은 정밀 유전체 분석을 통해 복잡 구조 돌연변이가 폐암이 진단되기 수십 년 전의 어린 나이에도 이미 발생할 수 있다는 사실을 발견했다.
세포의 유전체는 노화에 따라 비교적 일정한 속도로 점돌연변이가 쌓이는데 연구팀은 이를 이용하여 마치 지질학의 연대측정과 비슷한 원리로 특정 구조 변이의 발생 시점을 통계적으로 추정할 수 있는 기술을 개발했다. 이 기술을 통해 융합유전자 발생은 폐암을 진단받기 수십 년 전, 심지어는 10대 이전의 유년기에도 발생할 수 있다는 사실을 확인했다.
이는 암을 일으키는 융합유전자 돌연변이가 흡연과 큰 관련 없이 정상 세포에서 발생할 수 있음을 명확히 보여주는 사례이며, 단일 세포가 암 발생 돌연변이를 획득한 후에도 실제 암세포로 발현되기 위해서는 추가적인 요인들이 오랜 기간 누적될 필요가 있음을 뜻한다.
연구팀의 이번 연구는 흡연과 무관한 폐암 발생 과정에 대한 지식을 한 단계 확장했다는 의의가 있다. 향후 폐암의 예방, 선별검사 정밀치료 시스템 구축에 이바지할 수 있을 것으로 기대된다.
연구팀은 한국과학기술정보연구원의 슈퍼컴퓨터 5호기 누리온 시스템을 통해 유전체 빅데이터의 신속한 정밀 분석을 수행했다. 슈퍼컴퓨터 5호기는 향후 타 유전체 빅데이터 연구자들에게도 활용 가능할 것으로 보인다.
주영석 교수는 “암유전체 전장서열 빅데이터를 통해 폐암을 발생시키는 첫 돌연변이의 양상을 규명했으며, 정상 폐 세포에서 흡연과 무관하게 이들 복잡 구조변이를 일으키는 분자 기전의 이해가 다음 연구의 핵심이 될 것이다”라고 말했다.
서울대학교 의과대학 김영태 교수는 “2012년 폐 선암의 KIF5B-RET 융합유전자 최초 발견으로 시작된 본 폐암 연구팀이 융합유전자의 생성과정부터 임상적 의미까지 집대성했다는 것이 이번 연구의 중요한 성과이다”라고 말했다.
이번 연구는 한국연구재단, 보건복지부 포스트게놈 다부처유전체사업/세계선도의과학자 육성사업, 서경배 과학재단 및 서울대학교 의과대학 교실지정기부금의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 흡연과 무관한 폐암에서 융합유전자에 의한 발암기전
그림2. 폐선암에서 관찰되는 다양한 복잡 구조 변이의 특성
그림3. 어린 나이에 생긴 융합유전자의 예시
2019.06.03
조회수 11724
-
과학기술원 공동사무국 출범
〈(왼쪽부터) 한상철 DGIST 기획처장, 정무영 UNIST 총장, 국양 DGIST 총장, 신성철 KAIST 총장, 김기선 GIST 총장,구혁채 과기부 미래인재정책국장, 김보원 KAIST기획처장, 김준하 GIST기획처장〉
대한민국 4대 과학기술원이 공동사무국을 꾸리고 과기원의 혁신적 비전 재설정에 나선다.
KAIST(총장 신성철)‧GIST(총장 김기선)‧DGIST(총장 국양)‧UNIST(총장 정무영)는 24일(금) 오후 2시 KAIST에서 ‘과학기술원 공동사무국(이하 과기원 공동사무국)’ 출범식을 개최했다. 4대 과학기술원의 창의적 협업과 비전 설정을 추진하고, 긴밀한 협력체계를 구축하는 구심점이 마련된 것이다.
과학기술원은 국가 발전에 필요한 고급 과학기술 인력을 양성하고, 이공계 연구중심대학의 본보기를 제시하기 위해 1971년 설립됐다(KAIST). 이후 광주(GIST, 1993년 설립)와 대구(DGIST, 2004년 설립), 울산(UNIST, 2015년 전환)에서도 과학기술원이 만들어지면서 대한민국 이공계 대학교육과 연구에 획기적인 변화와 발전을 가져왔다. 그러나 급변하는 4차 산업혁명 시대에 접어들면서 과기원은 대내외적인 도전과 위기를 맞고 있다.
김보원 과기원 공동사무국장(KAIST 기획처장 겸임)은 “4대 과기원이 ‘글로벌 가치창출 선도 대학’으로 거듭나기 위해 새로운 비전 설정이 필요한 시점”이라며 “공동사무국을 중심으로 4대 과기원의 공동 발전에 필수적인 다양한 과제를 수행해나갈 계획”이라고 과기원 공동사무국의 설치 배경을 밝혔다.
과기원 공동사무국은 지역별로 흩어져 있는 과기원의 역량을 결집해 ‘규모의 경제’와 ‘시너지(Synergy)’ 효과를 구현하는 데 목표를 두고 있다. 과기원 간 긴밀한 업무협력 체계를 구축하고, 과기원의 역할‧책무‧혁신방안을 발굴해 교육‧연구‧산학협력 등 혁신의 구심점 역할을 하려는 것이다. 또 공동사무국 설치를 계기로 과기원 발전모델을 확산하는 전략도 추진할 예정이다.
이를 위해 4대 과기원은 지난 3월 8일 과기원 공동사무국 설치를 위한 업무협약을 체결했다. 이 조직은 KAIST 기획처 산하 잠정조직으로 4월 4일 설치됐으며, 5월 초부터 각 과기원에서 대표를 한 명씩 파견해 업무를 개시했다.
김보원 사무국장은 “과기원 공동사무국은 각 과기원의 개별적이고 독립적인 발전과 전체 과기원 공동의 유기적인 발전을 동시에 추구하면서, 다차원적인 관점에서 사업을 기획하고 방향성을 제시할 것”이라며 “앞으로도 과학기술정보통신부, 4대 과기원과의 긴밀한 소통과 협업을 통해 모든 과기원이 과학기술 혁신을 선도하는 역할을 지속하는 데 기여하겠다”고 전했다.
이번 출범식 행사에는 과학기술정보통신부 미래인재정책국 구혁채 국장과 신성철 KAIST 총장, 김기선 GIST 총장, 국양 DGIST 총장, 정무영 UNIST 총장과 각 과기원 기획처장 등 관계자 20여 명이 참석했다.
2019.05.27
조회수 7497
-
김원준 교수, KAIST-NUS 공동 〈국제 혁신 및 기업가정신 학회〉 주최
〈 김원준 교수 〉
우리 대학 기술경영학부 김원준 교수가 공동 학회장으로 활동하고 있는 '국제 혁신 및 기업가정신 컨퍼런스 (AIEA-NBER Conference on Innovation and Entrepreneurship)' 와 '아시아 혁신 및 기업가정신 학회 (Asia Innovation and Entrepreneurship Association, AIEA)는 8월 싱가포르국립대학(NUS)에서 KAIST-NUS 공동 국제학술대회인 'The 7th AIEA-NBER conference on Innovation and Entrepreneurship'를 주최(hosting)한다.
8월 16일부터 3일간 열리는 이번 국제 학회는 혁신 및 기업가정신 (Innovation and Entrepreneurship), 과학기술혁신정책 (Science, Technology, and Innovation Policy) 분야를 대표하는 국제학회 중 하나로 김원준 교수가 MIT 슬로안 경영대학원(Sloan School of Management)의 스칸 스턴(Scott Stern) 교수, 하버드 경영대학원(Harvard Business School)의 조시 러너(Josh Lerner) 교수와 공동으로 학회장을 맡고 있다.
이번 학회는 ‘전미경제연구소(NBER)’에 소속된 미국 주요대학 연구자들과 동경대, 칭화대, 홍콩대, 싱가포르국립대 등으로 구성된 ‘아시아 혁신 및 기업가정신협회 (Asia Innovation and Entrepreneurship Association, 김원준 교수 회장)’ 간의 협력으로 진행이 된다.
전미경제연구소(National Bureau of Economic Research, NBER)는 노벨경제학상 수상자 31명을 포함해 미국 대통령 경제자문위원회 위원장 등 다수의 경영 및 경제 분야 석학들이 소속된 미국의 대표 경제 및 경영 분야 연구기관이며, 매년 미국 소수의 석학들만 선정돼 구성된다.
이번 학회는 4차 산업혁명을 포함한 새로운 기술혁신 패러다임과 기업가정신의 사회경제적 변화에 대한 경영, 경제, 데이터 사이언스 분야 연구를 중심으로 진행되며, 듀크 경영대학 애시시 아로라(Ashish Arora), 하버드 경영대학원의 아리엘 도라 스턴(Ariel Dora Stern) 교수, 동경대 카즈유키 모토하시(Kazuyuki Motohashi) 교수, 칭화대 가오 슈동(Gao Xudong) 교수, 보스턴 대학(Boston University) 경영대 제프 퍼먼(Jeff Furman) 교수, 싱가프로국립대학 경영대의 얀보 왕(Yanbo Wang) 교수 등이 조직위원회를 맡는다.
김원준 교수가 센터장으로 있는 산업미래전략연구센터 (KAIST Center for Industrial Future Strategy)와 싱가폴 국립대(NUS)가 공동 협력 및 후원으로 진행되는 이번 국제 학회를 통해서 혁신 및 기업가정신, 과학기술정책 분야 우리 대학의 위상을 높일 수 있을 것으로 기대된다.
관련 정보는 링크( http://www.aiea-nber.org )에서 확인할 수 있다.
2019.05.07
조회수 9223
-
연구실 23년의 노하우로 제자와 공동 창업
〈기계공학과 권동수 교수와 8명의 공동 창업자를 포함한 이지엔도서지컬 기술개발팀(왼쪽부터 임창언, 김동규, 공덕유, 이동호, 김덕상, 양운제 연구원, 권동수 교수, 천병식, 김창균, 정덕균, 서현세 연구원)〉
지난 17일 대전 KAIST 문지캠퍼스 진리관에서는 의료 로봇 전문업체인 ‘이지엔도서지컬’의 창업식이 열렸다. 기계공학과 권동수 교수가 8명의 제자와 함께 창업한 이 회사는 KAIST의 66번째 교원 창업기업인데 권 교수가 연구실에서 쌓은 23년간의 노하우를 바탕으로 설립한 회사다.
회사가 실제로 문을 연 것은 2018년 2월이지만, 권 교수는 1년이 훨씬 지난 시점에서야 늦은 창업식을 개최했다. 설립 이후 수술 로봇 전문기업이라는 정체성 증명을 위해 우선 3개의 상용화 모델을 제작하는데 매진하는 등 가시적인 R&D 성과를 완성하고 나서야 사업 파트너와 투자자 등에게 확실한 사업 비전을 제시한 것이다.
식약처가 작년 발간한 보고서에 따르면 전 세계 수술 로봇시장은 매년 13.2%의 성장세를 보여 2021년에는 약 9조6천4백억 원 규모에 이를 것으로 예상된다. 그러나 이런 성장세와는 달리 국내 수술 로봇업계는 원천기술을 자력으로 연구해 확보하거나 상용화한 경험이 부족한 실정이다.
KAIST에서 시작한 글로벌 의료 로봇 기업으로의 성장을 비전으로 삼은 ‘이지엔도서지컬’은 순수 국내 연구진의 노하우로 세계적인 기술을 개발하고 체계적인 인·허가 시스템 정립과 상용화 등을 통해 로봇 수술 시장에서 국내 기술의 영향력을 확장해 가는 것을 목표로 삼고 있다.
신성철 총장은 이날 창업식 축사를 통해 “19세기 대학의 사명은 교육이었고, 20세기엔 지식 창출로 기관으로서 역할을 해왔다. 그러나 21세기에는 R&D를 비즈니스와 연결하는 R&BD를 통해 인류에 기여하는 방향으로 발전해야 한다”고 강조했다.
대학의 연구개발 성과를 경제적 가치로 창출하는 ‘기술사업화 혁신’은 신 총장이 취임 전부터 강조해온 가치인데, KAIST는 지난해 3월 발표한 ‘비전 2031’을 통해 구체적 혁신전략을 수립해 이를 추진 중이다.
우리 대학은 1971년 개교 이후 현재까지 대한민국 창업 산실로서 중추적인 역할을 담당해왔다. 지난‘80년대에는 메디슨·큐닉스·퓨처시스템 등 1세대 벤처를 탄생시키며 기틀을 닦았고, 네이버·넥슨·네오위즈 등‘90년대 IT 창업을 이끈 핵심 인재를 배출했다.
2000년대 들어서는 첨단소재·바이오·나노·IoT 등의 혁신 기술을 바탕으로 하는 기술 집약적인 창업을 선도하고 있다.
특히 과학기술에 바탕을 둔 기업가 정신을 캠퍼스 문화를 조성하고 체계적인 창업 지원 시스템 마련을 위해 2014년에 ‘KAIST 창업원’을 설치, 운영 중인데 창업원 출범 이후 약 4년간 30건의 교원 창업과 82건의 학생 창업기업을 각각 탄생시켰다.
1945년 하버드대에 창업 과정을 개설하며 대학의 R&BD를 일찍부터 강조해온 미국은 실리콘밸리를 통해 창업의 성공 신화를 구축했다. 미국은 여기에 만족하지 않고 오바마 정부 당시 성장 가능성이 높은 기업을 발굴해 경제 성장과 일자리 창출을 동시에 노리는‘스타트업 아메리카(Startup America)’정책을 추진한 데 이어 기존 기업을 성장시켜 경제 효과를 얻는‘스케일업 아메리카(ScaleUp America)’정책을 연이어 내놨다. 그 결과 미국은 2010년 이후 1천 550여만 개의 일자리가 창출된 것으로 발표했다.
이처럼 혁신 기술을 바탕으로 한 창업은 기존에 없던 고부가가치 시장을 새롭게 개척하고 경제적 가치를 창출해내는 대표적인 국가 성장의 원동력으로 자리를 잡아가고 있다.
우리대학이 주력하는 신기술 기반의 창업은 일반적인 아이디어 창업에 반해 고용 창출효과가 크고 기업 생존율이 우수하다는 특징이 있다. ‘이지엔도서지컬’도 학교로부터 26건의 특허를 이전받아 교수와 학생이 공동 창업한 케이스다.
수술 로봇은 인간의 한계를 넘어서는 고정밀도·고난이도의 기술이 요구되는 분야로 만성질환 발병 증가, 인구 고령화, 수술 절차의 복잡성 등에 따라 자동화에 대한 필요성이 증가하고 있다.
‘이지엔도서지컬’은 유연 수술 도구 제작과 제어 핵심 기술을 기반으로 안전하고 효과적이며 정확한 유연 내시경 수술로봇 개발에 집중할 계획이다.
권 교수는 “신생 벤처 기업 중 기업가치가 10억 달러 이상인‘유니콘(unicorn) 기업’이 전 세계에 311개가 있는데 그 중 우버·에어비앤비·샤오미 등의 기업은 100억 달러 이상의 가치를 ‘데카콘(decacorn) 기업’ 반열에 올라섰다”면서“대학이 연구실 창업을 적극적으로 지원, 이를 활성화할 경우 짧은 사업 기간 안에 높은 부가가치를 생산해 낼 수 있는 국내 유니콘 기업 수도 대폭 늘어날 것”이라고 강조했다.
2019.04.25
조회수 8296
-
전치형 교수, 『사람의 자리: 과학의 마음에 닿다』 출간
우리 대학 과학기술정책대학원 전치형 교수가 최근 『사람의 자리: 과학의 마음에 닿다』를 출간했다. 『사람의 자리』는 전치형 교수가 지난 3년간 여러 매체에 쓴 글 40여 편을 엮은 책이다. 저자는 천재, 노벨상, 4차 산업혁명과 같은 인기 키워드로 대표되는 과학이 아닌 다른 과학을 상상하자고 제안한다.
여기서 과학은 자연과학과 응용과학, 공학 등의 학문 분야인 동시에 이들 분야에 종사하는 이들도 포함하는 개념이다.
전치형 교수가 제안하는 과학은 사람과 공동체를 살리는 과학, 그래서 사람의 자리를 밝힐 수 있는 과학이다. 저자는 “한명 더 부탁드립니다”라는 메시지를 남기고 프레스에 눌리는 사고를 당해 숨진 특성화고 3학년 이민호씨, 로봇에게 맡겨지는 노인, 세월호라는 재난을 통과한 한국 사회 등을 찬찬히 살피며 ‘과학은 무엇이 되어야 하고, 어디에 있어야 하고, 누구의 편이어야 하는가’를 묻는다.
이는 사회문제를 해결하는 과학이 아닌 “인간이 사회적 존재로서 자신의 삶을 지속하기 위해 필요한 것을 알아내고 마련하는 의지와 행위”로서의 과학을 향하는 질문이다.
‘4차 산업혁명’ 시대라 불리는 오늘날에는 인공지능과 로봇이 사람을 대체할 것이라는 예측이 가득하다. 그러나 과학기술의 언저리를 살펴보는 이 책을 통해 독자는 사람의 자리를 찾아내고 기억하는 것이 여전히 중요함을 알게 될 것이다.
▶ 전치형 교수 소개
서울대학교 전기공학부를 졸업하고 동 대학원 과학사 및 과학철학 협동과정에서 공부했다. 미국 MIT에서 과학기술사회론(STS: Science, Technology & Society) 전공으로 박사학위를 받고 독일 막스플랑크 과학사 연구소에서 박사 후 연구원 과정을 밟았다.
과학잡지 『에피』의 편집위원이자 카이스트 과학기술정책대학원 교수인 저자는 인간과 테크놀로지의 관계, 정치와 엔지니어링의 얽힘, 로봇과 시뮬레이션의 문화에 관심을 갖고 연구와 저술 활동을 하고 있다. 미세먼지, 세월호 참사, 지하철 정비, 통신구 화재 등의 사건들로부터 로봇과 인공지능, 4차 산업혁명과 인류세 등의 주제들까지 과학적 지혜와 사회적 합의가 필요한 영역들을 주목하고 고민한다.
▶『사람의 자리: 과학의 마음에 닿다』목차
1장 로봇 앞에 선 인간
2장 자율적 인공지능과 타율적 인간
3장 과학자는 무엇으로 사는가
4장 살 만한 곳을 위한 과학과 정치
5장 세월호학을 위하여 6장 오지 않을 미래
2019.04.19
조회수 3860
-
KAIST-한국테크놀로지그룹 미래기술 연구 협약식 개최
〈신성철 총장(왼쪽)과 조현식 한국테크놀로지그룹 부회장이 ‘한국테크놀로지그룹-KAIST 미래기술 연구 협약'을 맺었다. 〉
우리 대학이 한국 테크놀로지그룹과 15일 ‘한국테크놀로지그룹-KAIST 미래기술 연구 협약식’을 개최했다.
양 기관은 지난해 11월 '한국타이어-KAIST 디지털 미래혁신 연구센터' 설립 후 ▲공장 물류자동화시스템 최적화 ▲고정 스케줄링 고도화 ▲인공지능(AI) 활용 불량검수 자동화 ▲빅데이터 기술활용 품질향상을 위한 설비 최적화 ▲딥러닝 활용 소재 특성 예측 ▲사물인터넷(IoT)과 AI 기반 모니터링 등의 연구 협력을 진행해왔다.
이번 협약을 통해 디지털 기술 역량 확보를 위해 혁신적 공동연구를 지속하고 기술 협약 및 성공적인 산학협력으로 미래 디지털 산업을 선도할 혁신 기술을 발굴해 나갈 계획이다.
2019.04.16
조회수 4125
-
KAIST-UAE 칼리파대학, 4차 산업혁명 공동연구센터 개소
한국과 아랍에미리트(이하 UAE)가 4차 산업혁명 분야에서 협력을 대폭 강화한다.
우리 대학이 UAE 칼리파대학(KU)과 4차 산업혁명 관련 공동연구를 목적으로 KAIST-KU 공동연구센터(KAIST-KU Joint Research Center)를 지난 8일 UAE 현지에 개소했다.
칼리파대학(KU)은 UAE 국왕이 미래 국가 발전을 이끌어 갈 고급 연구개발 인력 양성을 위해 2007년 UAE 아부다비에 설립한 국립대학이다. 지난 2017년 칼리파대학 등 3개 이공계 대학·대학원이 통합해 교명을 KU(Khalifa University of Science and Technology)로 개칭했으며 올 4월 기준으로 학부생 3,500여 명과 대학원생 900여 명, 교원 500여 명 규모로 자리 잡은 연구중심대학이다.
2009년 12월 UAE 원전 수주 시 맺은 한-UAE 양국정부의 협약으로 KAIST가 칼리파대학에 원자력공학과 개설과 교과과정 개발 등의 지원을 통해 시작된 양 대학 간 국제공동연구 협력은 2011년 이후 지금까지 원자력·ICT·전기·기계·재료·바이오·에너지 등 다양한 분야에 걸쳐 200여 과제에 달하고 있다.
특히 지난 2월 방한한 모하메드 빈 자이드 알 나흐얀 UAE 아부다비 왕세제(General H.H. Sheikh Mohammed bin Zayed Al Nahyan)는 KAIST로부터 2010년 5월 명예 과학기술학 박사학위를 받을 정도로 KAIST와는 인연이 깊다.
KAIST-KU 공동연구센터 개소식은 8일 오전 11시(현지 시간) UAE 아부다비 칼리파대학에서 진행됐다.
이에 앞서 신성철 총장은 작년 2월 스위스 다보스에서 열린 WEF 연차총회(다보스 포럼)에서 사라 알 아미리(Sarah Al Amiri) UAE 첨단과학기술부 장관과 만나 양국 간 4차 산업혁명 관련 협력 확대를 원하는 UAE 정부의 의지를 확인하고 같은 해 3월 양 대학 간에 양해각서(MOU)를 체결한 바 있다.
양교는 이날 공동연구센터 개소를 계기로 올해부터 스마트 헬스케어와 스마트 교통플랫폼 등 미래 먹거리 창출을 위한 4차 산업혁명 관련 공동연구와 교육협력을 적극적으로 수행할 방침이다.
임만성 KUSTAR-KAIST 교육연구원장은 “원자력 및 에너지 분야 등 기존 교육·연구 분야에서의 협력을 더욱 공고히 할 방침”이라며 “미래 먹거리 창출을 위한 4차 산업혁명 분야에서도 협력을 대폭 강화해서 한-UAE 양국이 지속 가능한 발전을 이뤄 가는데 가교역할을 충실히 해나갈 것”이라고 밝혔다.
임 원장은 또 “이번 KAIST-KU 공동연구센터 개소식에 관해 현지 언론들의 취재 열기 또한 뜨거워 짧은 방문 기간 중임에도 에미레이츠 뉴스 에이전시(Emirates News Agency)를 비롯해 알 이티하드 신문(Al-Ittihad Newspaper), 알 칼리지 신문(AL Khaleej Newspaper), 바이얀 신문(Bayan Newspaper) 등 주요 매체들의 취재와 함께 신성철 총장에 대한 인터뷰가 이어지기도 했다”고 UAE 방문 일화를 소개했다.
이날 개소식에는 KAIST 신성철 총장과 임만성 KUSTAR-KAIST 교육연구원장, KUSTAR-KAIST 교육연구원 김종현 원자력협력센터장 등이 참석했다. UAE 측에서는 칼리파대학(KU) 아리프 술탄 알 하마디(Arif Al Hammadi) 총장대행을 비롯해 스티브 그리피스(Steve Griffiths) 연구부총장, 아흐메드 알 쇼아비(Ahmed Al Shoaibi) 교학부총장과 KU 한국인 교수 등 학교 관계자와 학생 등 30여 명이 자리를 함께해 축하했다.
이날 행사는 양교 총장의 축사에 이어 KAIST-KU 공동연구센터 소개, 현판식 등의 순서로 진행됐다.
신성철 총장은 “KAIST-KU 공동연구센터 개소는 지난 10년간 KAIST와 칼리파대학이 지속해온 교육·연구 협력의 큰 결실이며 한-UAE 협력의 새로운 이정표”라고 말했다.
신 총장은 이어 “공동연구센터 설립을 바탕으로 혁신적인 연구를 수행해 4차 산업혁명 시대에 양국을 이끌어갈 기술을 개발하고 인재발굴을 위해 최선을 다할 것”이라고 강조했다.
2019.04.09
조회수 8991