본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EA%B3%A0%EB%B6%84%EC%9E%90
최신순
조회순
KAIST-(주)LG화학 ‘산학협동교육프로그램’ 협약체결
KAIST(총장 강성모)와 (주)LG화학은 3월 26일(화) 오전 10시 대전 본관 제 1회의실에서 산학협동 교육 프로그램을 위한 협약을 체결하였다. 이번에 체결된 고분자소재, 촉매 및 공정에 관한 산학교육프로그램은 고분자학제 전공에서 운영하며, 화학과, 생명화학공학과, 신소재공학과가 참여한다. 국내 산업은 완제품 제조가 많은 비중을 차지하고 있으나, 최근 첨단 제품의 개발 및 제품 경쟁력에서 소재가 차지하는 비중이 커져가면서 소재산업과 첨단신소재에 관련된 연구개발의 중요성이 크게 부각되고 있다. 국내최대의 화학기업인 (주)LG화학은 글로벌 소재 기업으로 도약하기 위한 장기적 전략의 일환으로 첨단 고분자 소재와 촉매 및 공정 연구에 필요한 전문 연구 인력을 KAIST와 공동으로 양성하는 산학 협동 교육 프로그램인 “고분자 촉매 공정 교육 프로그램”에 관한 협약을 체결하였고, 향후 6년간 약 30억원을 지원할 예정이다. KAIST는 고분자 학제전공 교육과정을 통하여 별도의 교과 과정을 개발하고, 고분자 소재, 촉매 및 공정 분야의 맞춤형 교육과 선도적 연구를 통하여 고도의 학제적 지식과 탁월한 연구역량을 보유한 전문기술인력을 양성할 예정이다. [사진설명] 26일오전10시KAIST 본관회의실에서박규호KAIST 교학부총장과유진녕(주)LG화학기술연구원원장이제휴협약을체결한뒤기념촬영을하고있다.
2013.04.02
조회수 12796
고용량 분자 저장기술 개발 성공
- KAIST EEWS 대학원 Yaghi 교수팀, 고용량의 단백질 저장체 개발 성공해 사이언스(Science)지 5월호에 실려 - - “선택적으로 반응하는 신약 개발에 도움될 것” - 다양한 종류의 단백질 물질을 고용량으로 저장할 수 있는 기술이 KAIST 연구진에 의해 개발됐다. 우리대학 EEWS대학원 오마르 야기(Omar M. Yaghi)교수 연구팀이 커다란 크기의 기공을 갖는 금속유기골격구조체를 개발해 여러 종류의 단백질을 고용량으로 저장할 수 있는 원천기술을 확보하는데 성공했다. 이번 연구 결과는 세계적 학술지 ‘사이언스(Science)’ 5월호(25일자)에 실렸다. 이번에 개발된 기술은 다양한 종류와 크기의 단백질을 저장 할 수 있어 ▲고용량 고집적의 신약 개발 ▲특정 바이러스 분리 물질 개발 ▲인체 내에서 악성 반응을 일으키는 특정 단백질의 선택적 제거 ▲특정 부위에서 작용하는 신약 수용체 개발 ▲희귀 고분자 단백질 영구 보존 등 다양한 분야에 폭넓게 활용될 수 있을 것으로 학계는 기대하고 있다. 이와 함께 줄기세포를 포한한 모든 인체의 세포까지 선택적으로 분리하고 영구히 저장할 수 있어 난치병 치료나 생명연장을 위한 의학기반 기술 발전에도 크게 도움이 될 것으로 예상된다. 금속유기골격구조체는 분자단위에서 같은 물질들이 일정한 규칙과 간격을 가지고 배열돼 생성되는 것이기 때문에, 1그램당 축구장과 같은 크기의 표면적을 가지고 있으며 고용량의 물질 저장 능력과 빠른 물질 이동특성을 가지고 있다. 따라서 많은 양의 물질을 내부에 저장할 수 있어 최근 다양한 종류의 차세대 저장체 연구에 필수적인 장비로 사용되고 있다. 그러나 지금까지의 금속유기골격구조체는 7.0Å(옴스트롬·100억분의 1m) 크기의 아주 작은 단분자만을 사용했기 때문에 커다란 크기의 고분자 및 단백질의 저장에는 활용될 수 없었으며 고용량 가스 저장체로서의 가능성만 입증된 상태였다. 게다가 기존의 금속유기골격구조체의 경우 구조가 내부에서 서로 엇갈려 있어 큰 크기의 단백질을 저장하는 것은 사실상 불가능했다. 야기(Yaghi) 교수 연구팀은 5nm 이상의 크기를 가지는 분자체를 이용한 금속유기골격구조체를 개발해 이러한 문제들을 해결하고, 금속유기골격구조체의 주기적인 기공을 처음으로 투과전자현미경을 이용해 관찰하기도 했다. 연구팀은 커다란 크기의 분자들을 이용해 금속유기골격구조체를 만들고 단백질처럼 아주 큰 물질을 구조체 내부에 일정하게 배열시켜 효율적으로 저장하는 방법을 고안해 내 세계 최초로 규칙적 분자구조체 내부에 비타민과 미오그로빈(Myoglobin) 같은 단백질을 고용량으로 저장하는데 성공했다. 야기(Yaghi) 교수는 “이번 연구는 그동안 불가능했던 큰 크기의 단백질 및 고분자들을 규칙적 배열을 가지는 다공성 물질을 개발해 고용량으로 저장하는 원천기술”이라며 “고용량으로 집적된 단백질 약을 원하는 곳에 투여함과 동시에 제거해야 할 분자들을 선택적으로 흡수함으로써 난치병이나 희귀병 치료에 획기적인 역할을 할 수 있을 것으로 기대된다”고 말했다.
2012.05.29
조회수 17909
동아일보, '10년 뒤 한국을 빛낼 100인' 선정
올해 동아일보가 선정한 "10년 뒤 한국을 빛낼 100인"에는 나이와 직업, 성별이 각기 다른 다양한 인물이 포함됐다. 대학교수 중에는 KAIST와 서울대가 각각 5명씩 선정돼 가장 많은 교수가 선정되는 쾌거를 이뤘다. 특히 안철수 교수는 세계 최고의 역량과 잠재력, 헌신성으로 향후 한국 사회에서 가장 주목받는 역할을 할 것이라는 기대감이 반영되어 많은 표를 얻었다. 신소재공학과 김상욱 교수는 고분자나 탄소나노튜브, 그래핀 등의 분자를 다양한 형태로 조립할 수 있는 ‘분자조립 나노기술분야’의 세계적 전문가이다. 특히 고분자 분자조립을 이용한 ‘저비용 대면적 나노패턴기술’은 기존 나노공정의 한계를 극복할 수 있는 신기술로서 반도체나 디스플레이등에 응용이 기대되고 있다. 물리학과 김은성 교수는 세계최초로 저온 고체 헬륨에서 새로운 양자현상, 초고체(supersolidity)를 발견하고 그 발현 원리를 이해하는 연구를 주도하는 과학자로 손꼽히고 있다. 저온에서 고체헬륨에 존재하는 숨겨진 상의 발견, 초고체 현상 발현에서 결정 결함의 역할 이해, 회전하는 고체를 통한 초고체 거시적 양자현상 파괴과정 연구 등으로 초고체 분야 연구를 주도하고 있다. 기술경영전문대학원 안철수 교수는 의대 교수로서 심장 전기생리학분야의 연구와 함께, 1988년부터는 컴퓨터 바이러스 백신 프로그램인 V3 제품군의 개발자로 활동했다. 1995년, 벤처기업 "안철수연구소"를 설립하였고, 벤처열풍과 몰락에 휩쓸리지 않는 내실있는 경영을 함으로써 국제적으로 한국을 대표하는 벤처 기업가로 손꼽히게 되었다. 2008년부터는 카이스트 기술경영전문대학원 석좌교수로서 기업가정신과 기술경영을 가르치며 연관 분야에서 활발한 사회활동을 하고 있다. 생명화학공학과 이상엽 교수는 세계최고 효율의 숙신산 생산기술 개발, 필수 아미노산인 발린과 쓰레오닌의 고효율 맞춤형 균주 개발, 바이오 에탄올보다 성능이 우수한 바이오부탄올 생산 균주 개발, 강철보다 강한 거미줄, 비천연 락트산 함유 고분자 등 재생 가능한 바이오매스로부터 화학물질을 효율적으로 생산하는 핵심기술인 대사공학 분야의 세계적 전문가로 손꼽히고 있다. 물리학과 정하웅 교수는 통계물리학을 이용하여 최근 집중적인 관심을 끌고 있는 “복잡계(Complex Systems)"라는 대상을 ‘네트워크’라는 개념을 이용하여 이해하는 새로운 시도를 통해 네이쳐 5편 등을 포함한 총 피인용횟수가 8,000번이 넘는 80여편의 논문을 발표, 여러 학문 분야를 아우르는 융·복합연구를 성공적으로 이끌며 복잡계 네트워크 과학의 국제적 전문가로 평가받고 있다.
2011.04.04
조회수 21928
고감도 나노광학측정기술 개발
- 머리카락 단면적의 70만배 보다 작은 나노유체기술과 나노광학기술을 융합한 바이오분석기술.- 신약개발 및 신경질환 조기진단기술로 활용 기대. 우리학교 바이오및뇌공학과 정기훈 교수 연구팀이 소분자 생화합물 (small molecules) 검출을 위한 획기적인 고감도 나노광학측정기술을 개발했다. 소분자 생화합물은 분자량이 작은 생체내 분자들로 다양한 세포의 세포막을 드나들며 세포간의 신호전달 등에 큰 역할을 담당한다. 최근에는 제약업계에서도 소분자 생화합물을 이용한 신약 개발 관련 연구 및 개발에 큰 관심을 기울이고 있다. 그러나 이러한 소분자 생화합물은 대부분 특정 항원-항체 화학 결합반응을 유도하기 힘들어 기존에 많이 사용되는 형광이나 전기화학적인 방법으로 극소량을 분석하는데 어려움이 많았다. 정 교수 연구팀은 사람의 머리카락 단면적의 70만배 보다 작은 나노유체관내 유동특성을 이용해 나노몰(nM) 수준의 농도를 갖는 극미량의 소분자 생화합물의 농도를 국소적으로 증가시켰다. 이후 나노플라즈모닉 광학기술과 접목해 측정하는 빛의 세기를 1만배 이상 향상시켜, 별도의 생화학처리를 사용하지 않은 도파민(Dopamine)과 가바(GABA)와 같은 신경전달물질을 1초 이내에 구별하는 데 성공했다. 이 결과는 현존 세계 최고수준의 검출한계를 수백배 이상 향상시킨 기술로 평가받고 있다. 이번 연구결과는 앞으로 소분자 생화합물을 이용한 다양한 글로벌 신약개발은 물론, 알츠하이머병과 같은 퇴행성 신경질환의 조기진단 및 뇌기능 진단기술에 크게 기여할 수 있을 것이라 기대된다. 한편, 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업과 한국생명공학연구원이 지원하는 오픈이노베이션사업의 일환으로 수행된 이번 연구는 오영재 박사과정 학생 주도하에 진행됐으며, 독일에서 발간되는 나노분야 국제저명학술지인 ‘스몰(Small)’지의 1월 17일자 표지논문으로 게재됐다.
2011.01.26
조회수 21312
2010년도 '올해의 KAIST인 상' 시상
우리학교는 ‘2010년도 올해의 KAIST인 상’에 생명과학과 박태관 교수와 의과학대학원 고규영 교수를 선정해 지난 3일 대강당에서 열린 시무식 행사에서 시상식을 가졌다. 박태관 교수는 생체고분자를 이용한 약물전달, 유전자치료, 조직공학 분야에서 탁월한 연구업적을 쌓아왔다. 총 243편의 SCI 논문을 발표한 박 교수는, 2010년에는 총 20여편의 논문을 게재하는 등 국내외 BT․NT 융합분야에서 최고의 연구성과를 자랑한다. 지난해 1월에는 차세대 핵산계열 약물인 소간섭 RNA(small interfering RNA, siRNA)의 세포내 전달을 극대화시키는 획기적인 나노약물전달시스템을 개발해 관련 논문을 세계적 권위의 저널 ‘네이처 머티리얼스(Nature Materials)’에 게재하기도 했다. 고규영 교수는 혈관 신생, 혈관질환 신약개발, 림프관신생, 줄기세포 분야에 탁월한 성과를 인정받았다. 고 교수는 지난 2월 지방조직으로 부터 백혈병 등 혈액계 난치병 치료에 이용 가능한 혈액줄기세포를 분리해 낼 수 있음을 입증해 세계적인 학회지 ‘블러드(Blood)"에 표지논문을 실었다. 이번 연구를 통해 보다 저렴하고 쉬운 방법으로 혈액줄기세포를 공급해 백혈병 등 혈액계 난치병 치료에 이용할 수 있을 것으로 기대된다. 또한, 고 교수는 암 성장과 전이에 필수적인 혈관신생에 관련하는 새로운 인자를 발견하고 이를 효과적으로 차단하는 제재를 개발하여 신개념의 암 치료제 개발의 전기를 마련했다. 이 연구논문은 지난 십여년간 우리나라에서는 한 번도 게재된 적 없는 암 분야 최고 권위의 학술지인 ‘캔서 셀(Cancer Cell)’ 표지논문으로 게재되는 등 세계적으로 주목받고 있다.
2011.01.06
조회수 21569
나노튜브를 이용한 유기태양전지 효율 향상 기술 개발
우리학교 신소재공학과 김상욱 교수팀과 전기및전자공학과 유승협 교수팀이 탄소나노튜브를 유기태양전지에 적용해 에너지 변환효율을 크게 향상시키는데 성공했다. 이 연구결과는 재료공학의 세계적 학술지인 어드밴스드 머티리얼스(Advanced Materials)지 최신호(11월 30일, 화) 온라인 판에 게재됐다. 반도체고분자의 광반응을 통해 전기에너지를 생산하는 유기태양전지는 고가의 실리콘을 사용하지 않아 가격이 저렴하다. 또한, 잘 휘고 투명해 여러 분야에 적용 가능한 미래 친환경 에너지원이다. 이 전지는 휴대 전자기기나 스마트 의류, BIPV(Building Integration Photovoltaic : 건물 외피에 전지판을 이용하는 건물 외장형 태양광 발전) 등 다양한 분야에 응용이 기대된다. 유기태양전지가 다른 태양전지에 비해 효율이 낮은 중요한 이유 중 하나는 태양빛을 받아 전자와 정공을 형성시키는 반도체고분자의 수송특성이 낮아 생성된 전자나 정공이 효율적으로 외부로 전달되지 못한다는 점이다. 이러한 문제를 해결하기 위해 반도체고분자의 수송특성을 향상하려는 다양한 연구들이 전 세계적으로 진행되어 왔다. 특히, 탄소나노튜브나 나노와이어 등을 이용해 전자나 정공의 빠른 수송 경로를 제공해주는 방법이 꾸준히 연구되어 왔다. 그러나 이들 연구에서는 전자와 정공이 동시에 탄소나노튜브나 나노와이어에 주입되어 자기들끼리 재결합 함으로써, 결국 외부에서 채집되는 전류가 증대되지 못하거나 오히려 감소하는 고질적인 문제가 발생했다. 이러한 문제를 포함해 유기태양전지들은 상용화하기에는 아직 낮은 광변환 효율을 보여 이에 대한 성능향상이 시급히 요구되어 왔다. KAIST 연구팀은 유기 태양전지의 반도체고분자에 붕소 또는 질소 원소로 도핑된 탄소나노튜브를 적용해 전자나 정공 중 한쪽만을 선택적으로 수송하도록 함으로써 이들의 재결합을 막아 유기태양전지의 효율을 33%까지 크게 향상시키는데 성공했다. 또한 도핑된 탄소나노튜브는 유기용매 및 반도체고분자내에서 매우 쉽고 고르게 분산되는 특성을 보여 기존의 값싼 용액공정을 그대로 사용해 효율이 향상된 태양전지를 만들 수 있음을 확인했다. 이 연구결과로 반도체고분자가 이용되는 유기트랜지스터나 유기디스플레이 등 다양한 전자기기의 성능향상도 가능할 것으로 기대된다. 김상욱 교수는 “이번 연구결과를 통해 나노소재 기술이 유기태양전지의 성능향상에도 크게 기여할 수 있음을 알아냈다”며 “앞으로 나노소재 기술을 이용한 차세 대 에너지개발을 위한 연구에 노력하겠다”고 말했다. 이번 연구는 KAIST EEWS(Energy, Environment, Water, and Sustainability)연구사업의 지원을 받아 김상욱, 유승협 교수의 지도하에 박사과정 이주민 학생이 진행했다.
2010.12.07
조회수 23477
플렉시블 디스플레이용 개스 배리어 기판기술 개발
- 나노 복합체 개스 배리어 기판 원천기술 확보 - - 투산소도와 투습도 낮아 식품 포장재에 바로 활용 가능 - 우리학교 물리학과 윤춘섭 교수팀이 금오공과대학 고분자공학과 장진해 교수와 공동으로 플라스틱 기판의 투산소도를 1/1,000로 낮춘 독창적 개념의 플렉시블 디스플레이용 개스 배리어(Gas Barrier) 기판을 개발했다. 이번 성과는 평판형 나노입자를 플라스틱 기판에 분산시킨 후 박리 및 배향시키는 나노 복합체 기판 원천기술 개발을 통해 가능해졌다고 공동연구팀은 밝혔다. 개발된 나노 복합체 기판 기술은 차세대 디스플레이인 플렉시블 유기발광 디스플레이(OLED)의 구현에 필수적인 기계적 고유연성, 저 투습도 및 저 투산소도, 높은 광투과도 조건을 모두 만족시킬 수 있는 획기적인 기판 기술로 평가받고 있다. 현존하는 세계최고 수준의 플렉시블 개스 배리어 기판 기술은 플라스틱 기판위에 유기 고분자 층과 무기물 층을 교차로 증착시킨 다층 박막 구조를 가진다. 이 구조로 인해 기판을 곡률반경이 작게 휘거나 접을 경우 무기층에 균열이 생겨 개스 배리어 기능을 상실한다. 이 때문에 기계적 유연성에 한계를 가질 뿐만 아니라 생산 단가가 높은 문제점을 가지고 있었다. 이번에 윤 교수팀이 개발한 나노 복합체 기판 기술은 기판의 골격을 형성하고 있는 유기 고분자가 유연성을 담당하고, 평판형 나노입자가 개스 배리어 기능을 담당한다. 그로 인해 높은 기계적 유연성과 개스 배리어 특성을 동시에 확보할 수 있고 롤투롤(Roll to Roll) 공정이 가능해 생산 단가를 낮출 수 있는 장점이 있다. 플렉시블 디스플레이는 차세대 디스플레이로 각광받고 있으며, 미국을 위시한 일본, 영국, 독일 등 IT 선진국에서는 플렉시블 디스플레이를 모바일 통신기기용 접는 디스플레이, 입는 디스플레이, 디지털 광고판, 스마트 카드, 군복 소매에 부착할 수 있는 작전용 디스플레이 등에 적용하기 위해 대학, 연구소, 기업 및 군이 연구개발 협력체를 구성해 플렉시블 OLED 디스플레이 기술개발을 활발하게 추진하고 있다. 플렉시블 디스플레이를 구현하기 위해서는 유연성이 좋은 플라스틱 기판을 사용해야 하는데, 플라스틱은 내부에 미세한 공간이 있어 개스 분자들이 쉽게 스며들 수 있다. OLED 디스플레이에 습기나 산소가 소자 내부로 침투하면 OLED 소자를 구성하는 유기물질의 분해가 일어나 소자의 기능이 상실되기 때문에 디스플레이의 수명을 단축시킨다. 지금까지 우수한 개스 배리어 특성을 갖는 고유연성 기판의 부재가 플렉시블 OLED 디스플레이의 구현을 막는 중요한 요인 중 하나가 되어 왔다. 이로 인해 현재 상용화되고 있는 소형 모바일 통신기기의 OLED 디스플레이에는 유연성이 없는 유리 기판을 사용하고 있다. 또한, 개발된 나노 복합체 개스 배리어 기판 기술은 플렉시블 디스플레이 뿐만 아니라 투습도 및 투산소도에 대한 요구 조건이 덜 엄격한 식품 포장재에 바로 활용이 가능하다. 식품의 장기 저장 시 산화와 부패를 방지하기 위해서는 투산소도와 투습도가 낮은 포장재의 사용이 필수적이다. 개발된 나노 복합체 기판은 투산소도가 10-2~10-3cc/m2/day로서 현재 일반적으로 사용되고 있는 식품 포장재 투산소도의 1/10 이하이기 때문에 식품 보관 기간을 최소 5배 이상 늘릴 수 있어 식품 유통 구조에 대변혁을 가져올 수도 있다. 라면 봉지와 같은 기존의 식품 포장재는 투산소도와 투습도를 낮추기 위해 플라스틱 필름위에 알루미늄 코팅을 하는데, 인체에 해로운 알루미늄과 음식물의 직접적인 접촉을 피하기 위해 알루미늄 코팅위에 보호막 코팅을 다시 입혀야 되는 번거로운 공정을 거쳐야 한다. 그러나 나노 복합체 개스 배리어 기판 기술을 이용하면 알루미늄 코팅과 보호막 코팅이 필요 없기 때문에 생산 공정이 단순해져 생산 단가도 훨씬 저렴해 지고 친환경적인 장점이 있다. 한편, 윤 교수는 2008년부터 지경부 산업원천기술개발사업의 지원을 받아 ETRI와 공동연구과제로 연구를 수행하고 있으며, 개발된 개스 배리어 기판 기술의 특허 등록을 마치고 관련기업과 기술 이전을 협의 중이다. <용어설명> ○ 플렉시블 디스플레이 : 기존에 유리를 기판으로 사용한 평판형 디스플레이와 달리 유연한 플라스틱 기판을 사용하여 종이와 같이 말거나 접을 수 있는 디스플레이를 말하며, 휴대하거나 착용하기 쉬워 차세대 디스플레이로 각광받고 있다. ○ 유기발광 디스플레이(OLED) : 전기를 가하였을 때 유기물질에서 발생하는 자발광을 이용한 디스플레이로서 LCD에 비해 빠른 응답 속도, 높은 발광 효율, 넓은 시야각, 얇은 두께 등 우수한 특성을 가지고 있어 꿈의 디스플레이로 불린다. 아직 대면적 화면 구현에는 기술적인 난관이 있어 현재는 주로 소형 모바일 통신기기에 상용화되어 사용되고 있다. ○ 롤투롤(Roll-to-Roll) 공정 : 공정하고자 하는 재질을 두루마리 형태로 감아 한 두루마리에서 다른 두루마리로 감아 옮기면서 연속으로 진행하는 공정을 말한다. ○ 개스 배리어(Gas Barrier): 플라스틱 기판으로 스며드는 개스의 통과를 차단 시키는 역할을 하는 방어벽.
2010.09.06
조회수 22069
이상엽 교수, 초고분자량 거미 실크 단백질 생산기술 개발
- 초고분자량의 거미 실크 단백질이 거미줄을 강하게 만든다는 사실 밝혀 -- 첨단 초강력 섬유소재로의 활용 기대 - 우리학교 이상엽 특훈교수는 서울대 박명환 교수팀과 공동으로 세계적으로 이제까지 생산하지 못했던 ‘초고분자량의 거미 실크 단백질’을 대사공학으로 개량된 대장균을 이용하여 생산하였다고 발표하였다. 이 초고분자량의 단백질로 만든 거미 실크 섬유는 강철보다 강한 성질을 나타냄을 밝혔다.이 연구는 교육과학기술부가 2009년부터 추진하고 있는 ‘신기술융합형 성장동력사업(바이오제약 사업본부장 수원대 임교빈 교수, 분자생물공정 융합연구단장 KAIST 김정회 교수)의 지원을 받아 수행되었으며, 연구결과는 특허 출원 중으로 세계적 저명 학술지인 「미국 국립과학원 회보 (PNAS)」誌’ 7월 26일자 온라인판에 게재되었다. 거미가 만드는 초고분자량의 실크 섬유는 미국 듀폰(Dupont)社의 고강력 합성섬유인 케블라(Kevlar)에 견줄 강도를 갖고 있으며, 탄성력이 뛰어나 의료산업 등 다양한 분야에서 활용될 수 있는 것으로 알려져 있다. 거미 실크 섬유의 우수한 특성 때문에 그동안 효모, 곤충, 동물세포, 형질전환식물, 대장균을 비롯한 여러 생체 시스템을 활용하여 거미실크를 대량 생산하는 기술을 개발하려는 많은 시도가 있어 왔다.그러나 지금까지는 글리신 등 특정 아미노산이 반복적으로 많이 존재하는 거미 실크 단백질의 특수성으로 인해 고분자량의 거미실크를 인공적으로 생산할 수 없었다. 이러한 기존 기술의 한계와 달리, 우리학교 생명화학공학과 이상엽 교수 연구팀은 고분자량의 거미실크 단백질 (황금 원형 거미; Nephila clavipes 유래)을 생산하는 대장균을 대사공학적으로 새로이 개발하고, 이를 활용함으로써 고성능의 거미실크섬유를 인공적으로 합성하는데 성공하였다. 우선, 연구팀은 비교 단백체 분석 등 시스템 대사공학 기법을 이용하여 거미 실크 단백질을 생산할 때 대장균 내에 글리실-tRNA의 부족 현상이 일어남을 밝혀냈다. 그리고 이 문제의 해결을 위해 관련 유전자들을 증폭 또는 제거 하는 등 대장균의 대사를 재구성함으로써 대장균으로부터 세계 최고 수준의 반복단위수를 가진 285 kDa에 달하는 거미실크 단백질을 성공적으로 합성해 낼 수 있었다. 또한, 대장균에서 생산된 거미 실크 단백질을 분리‧정제한 후에 생체 모방 기술을 이용한 스피닝 작업을 통해 실크 섬유 형태로 제작하였다. 이렇게 만들어진 거미 실크 섬유의 물성을 측정한 결과 강도 (tenacity) 508 MPa, 인장탄성율 (Young"s modulus) 21 GPa를 보여 케블라 수준의 강도를 가지게 된다는 사실을 확인하였다. 기존에는 285 kDa이나 되는 큰 거미 실크 단백질의 생산이 불가능하여 고강도의 거미 실크 섬유를 만들 수 없었는데, 이번 연구를 통해 가능하게 되었다. 이상엽 교수는 “이번 연구는 바이오기반 화학 및 물질 생산시스템 개발의 핵심기술인 시스템 대사공학적 방법을 통해 기존의 석유화학 제품과 대체 가능한 고성능의 섬유를 생산하는 기반기술을 확립하였다는 데 그 의의가 있으며, 향후 생산시스템 향상과 물성 연구를 계속 수행하여 실용화하고 싶다.”라고 밝혔다.
2010.07.28
조회수 26709
김성철 교수, 환태평양 고분자 연합 회장으로 추대
생명화학공학과 김성철(64)교수가 호주 케언스(Cairns)에서 개최된 환태평양 고분자연합(Pacific Polymer Federation, PPF) 집행위원회에서 제12대 회장으로 최근 선출됐다. 환태평양 고분자연합은 한국, 미국, 일본, 중국, 호주, 카나다, 멕시코, 대만, 싱가포르, 태국, 뉴질랜드, 칠레, 베트남, 인도네시아, 말레이시아 등 태평양 연안 15개국의 고분자학회의 연합체로 2년에 한번 국제 심포지엄을 개최한다. 김 교수는 이번 케언스(Cairns)에서 열린 제11차 국제 심포지엄에서 ‘메탄올 연료전지용 고분자 블렌드, IPN, 하이브리드 막(Polymer Blend, IPN, Hybrid Membranes for Direct Methanol Fuel Cell)’이란 제목으로 기조강연을 했다. 제12차 국제심포지엄은 2011년 11월 제주 신라호텔에서 개최되며, 김 교수가 조직위원장을 맡게 된다. * IPN : 상호침투하는 고분자 망목(Interpenetrating Polymer Network)
2009.12.23
조회수 21119
서남표 총장, 기계공학분야 최고 권위‘ASME 메달’수상
- 기계공학분야의 노벨상으로 매년 단 한명만 선정 - 전 세계 기계공학 역사에 중요한 획을 그은 세계적 공학자에 수여 서남표(Nam Pyo Suh) KAIST 총장이 美 기계공학회(American Society of Mechanical Engineers, ASME)에서 ‘ASME 메달’ 수상자로 지난 15일 선정됐다. 시상식은 오는 11월 16일 플로리다주 레이크 부에나 비스타(Lake Buena Vista)에서 열리는 ASME 연차총회에서 있을 예정이다. 서 총장은 공학 교육 및 연구의 전반적인 인프라를 향상시킨 공로와 함께 마찰공학, 고분자 및 금속 가공, 설계분야에서 독창적이면서 새로운 방법인 공리설계(Axiomatic Design)이론을 개발하여 공학 발전에 기여한 업적을 인정받아 이 상을 수상하게 됐다. ASME 이사회 이사들은 만장일치로 서총장을 올해 수상자로 결정했으며, 90년 역사를 지닌 이 상을 아시아 출신 학자에게 수여하는 것은 처음으로 매우 이례적인 일이다. 1920년 처음 제정된 ASME 메달은 전 세계 기계공학 분야에서 최고 권위의 상으로 ‘기계공학분야의 노벨상’으로 불린다. 매년 단 한명의 수상자만 선정되며 금메달과 함께 1만 7천 달러의 상금과 여행 경비가 제공된다. 대표적인 수상자들로는 1985년 미국의 핵 잠수함 노틸러스호의 진수를 총 지휘한 것으로 유명한 밀튼 쇼 교수(Milton C. Shaw), 1941년 항공학과 우주 항행학에 지대한 공적을 남긴 테오도어 폰 칼만(Theodore von Karman), 1963년 4기의 엔진을 장착한 비행기를 발명하고 헬리콥터 메이커인 시코르스키社를 설립한 이고르 시코르스키(Igor I. Sikorsky), 1926년 전자의 질량을 측정하여 노벨 물리학상을 수상한 로버트 앤드류 밀리컨(R. A. Millikan) 등 전 세계 기계공학역사에 중요한 획을 그은 세계적 공학자들이 이 상을 수상했다. ASME (American Society of Mechanical Engineers, 미국기계공학회)는 지난 1880년 창설돼 120여 년의 역사를 자랑하는 기관으로, 각종 기계류의 제작과 조립에 사용되는 부품 및 재료에 대한 기술기준과 표준규격을 제정하는 비영리 단체다. 미국기계학회가 정한 표준과 규격은 미국내 표준이자 세계의 기술기준으로 권위를 인정받고 있다. 전 세계적으로 12만명에 달하는 공학자를 회원으로 하고 있다. 서총장은 이외에도 ASME 블랙올 상 공동수상(82), NSF 올해의 국가공학자 상(87), NSF 우수 업적상(88), ASME 마찰학 최고논문상 공동수상(93), KBS 해외 동포상(95), 호암상 공학상(97), 영국 공학설계원 힐스 밀레니엄상(01), 미국 학제교육협회 아카데미 명예금상, CIRP 최고 영예상(06), 플라스틱공학자회의 종신 업적상(07), 포니정 재단의 혁신상(08) 등 다수의 상을 수상했으며 최근에는 동경대학교 펠로쉽, 한국공학한림원의 교포회원으로 추대되었고 교육부문 인촌상을 수상한 바 있다.
2009.07.02
조회수 20288
박찬범 교수팀, 펩타이드 자기조립기술을 이용하여 전도성고분자 나노선/나노튜브 개발
- 화학분야 저명 국제학술지 안게완테 케미지 최근호 게재 우리대학 신소재공학과 박찬범(40) 교수와 유정기(28) 연구원이 자연계의 펩타이드 자기조립기술을 이용, 전도성고분자 나노선과 나노튜브 소재를 개발했다. 관련 논문은 독일에서 발간되는 세계적인 학술지인 안게완테 케미(Angewandte Chemie)지 최근호 (6월 15일자)에 게재됐으며, 나노기술과 생명과학분야의 창의적인 융합을 통해 새로운 나노소재를 개발하는데 크게 기여했다는 평가를 받았다. 펩타이드나 단백질은 20여가지 아미노산의 조합을 통해 다양한 3차원 구조를 형성할 수 있으며, 이들은 기존의 재료에서는 볼 수 없었던 매우 우수한 물성과 다양한 기능을 가지는 장점이 있다. 朴 교수 연구팀은 두 개의 아미노산으로 구성된 매우 단순한 펩타이드 (peptide)를 수만 개 이상 스스로 조립시켜 머리카락의 약 천분의 일 정도 두께를 가진 긴 나노선을 형성하고, 여기에 대표적인 전도성 고분자 물질인 폴리아닐린 (polyaniline)을 얇게 코팅하여 누드김밥처럼 코어(Core)/쉘(Shell) 구조를 가진 전도성 나노선을 제조했다. 코어/쉘 형태의 나노선은 일반 전선과는 반대로, 바깥쪽으로만 전류가 흐르는 특성을 가지고 있다. 朴 교수팀은 이렇게 형성된 전도성 나노선의 펩타이드 코어부분을 선택적으로 제거하여 폴리아닐린으로만 구성된 전도성 나노튜브 (채널직경 약 1/5000 mm)를 제조하는 데 성공했다. 화학물질들이 레고(Lego) 장난감처럼 스스로 조립하여 3차원 구조체를 만드는 것은 모든 생명현상의 근간이 될 뿐만 아니라, 최근 들어서는 나노소재를 개발하는 주요기술들 중의 하나로 각광받고 있다. 특히 朴 교수팀의 연구에서 사용한 펩타이드는 알츠하이머병 등 각종 퇴행성 신경질환의 발병과도 밀접한 연관성을 가진 섬유상 구조의 아밀로이드 플라크(amyloid plaque)로부터 유래되어 펩타이드의 자기조립 현상에 관한 연구는 의학적 측면에서도 중요성이 매우 크다. 전도성 고분자를 나노크기의 구조로 제조할 경우 그 전기적 특성이 대폭 향상되기 때문에 이번에 개발된 전도성 고분자 나노선/나노튜브 소재는 차세대 태양전지, 각종 센서/칩 개발 등에 응용이 가능할 것으로 예상되며, 향후 나노-바이오 융합분야에서 국가 과학기술 경쟁력 제고에 기여할 것으로 기대된다. 朴 교수팀은 2008년도부터 교육과학기술부의 ‘국가지정연구실사업’으로부터 지원을 받아 다양한 형광색상(RGB)을 가진 나노튜브, 연잎처럼 물에 젖지 않는 펩타이드 소재, 식물의 광합성을 모방한 인공광합성 재료 등 새로운 기능을 가진 바이오소재를 개발하기 위한 연구를 수행해 왔으며, 해외 저명학술지들로부터 크게 주목받는 연구 성과들을 발표하고 있다 (http://biomaterials.kaist.ac.kr).
2009.06.16
조회수 22779
생명과학과 박태관 교수, 美 생체재료학회 클렘슨상 수상
생명과학과 박태관(朴泰寬, 52세) 교수가 미국생체재료학회에서 매년 수여하는 세계 생체재료 연구분야의 최고영예인 클렘슨상(Clemson Award)을 수상하게 되었다. 朴 교수는 고분자재료를 이용한 약물전달, 유전자치료, 조직재생공학 등의 융합학문 연구분야에서 탁월한 업적을 인정받아, 2009년도 수상자로 결정되었다. 미국 국적이 아닌 과학자가 36년 전통의 클렘슨상을 수상하는 것은 매우 이례적이다. 朴 교수는 그 동안 SCI 논문 203편, 총 논문 피인용횟수 5,500회, 논문 피인용영향력 h-지수 45, 국내외특허 25여건 및 다수의 기술실용화 성과를 거두었다. 현재 5개의 유명 국제학술지 편집위원으로 활동하고 있다. 오는 22일(수) 미국 텍사스 샌안토니오에서 열리는 연례 미국생체재료학회에서 관련 수상식 및 초청강연이 있을 예정이다.
2009.04.09
조회수 17701
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
>
다음 페이지
>>
마지막 페이지 6