-
(재)유전자동의보감사업단, 제2회 바이오시너지 기업파트너스 심포지엄 개최
인공지능 시스템을 이용한 천연물 소재 개발기술 발표와 사업단 및 관련기업 간 상호협력 방안 논의를 위한 ‘바이오시너지 기업파트너스 심포지엄’이 17일 열린다.
우리대학과 미래창조과학부 산하 (재)유전자동의보감사업단(단장 이도헌 교수·바이오및뇌공학과)은 한국건강기능식품협회 후원으로 17일 오후 2시30분부터 이화여자대학교 LG컨벤션센터에서 ‘바이오시너지 기업파트너스 심포지엄’을 개최한다.
올 심포지엄은 작년 5월에 열린 ‘바이오시너지 워크숍’행사에 이어 (재)유전자동의보감사업단이 두 번째로 주관, 개최하는 행사다. 이 심포지엄에는 미래부와 식약처·사업단 연구책임자들은 물론 바이오헬스케어 분야의 국내·외 학자와 관련 기업인·전문가들이 대거 참가해서 향후 기술개발 방향과 시장수요 예측·시장중심의 맞춤형 기술이전과 사업화 유망기술 발굴 등에 관해 심도 있게 논의한다.
이번 심포지엄에서는 특히 사업단과 공동연구를 수행 중인 네덜란드의 대표적인 식품연구소인 니조(NIZO)의 엘스 반 호펜(Els Van Hoffen) 실장(Senior Project Manager), 네덜란드 국립응용과학연구소 TNO의 수잔 워페리스(Suzan Wopereis) 책임연구원(Senior Scientist)이 참석해 각각 니조(NIZO)와 TNO의 최신 연구내용과 지난 5년 동안의 기술개발 내용 등에 관해 중점 소개한다.
OECD 발표자료에 따르면 2014년 글로벌 식품산업의 규모는 약 5.5조 달러(약 6,152조원)이며 매년 4.4% 성장하고 있는데 이는 세계 식품시장의 트렌드가 음식을 소비하는 차원에서 유기농 등 안전식품, 기능성 건강식품 위주로 변화하고 있기 때문이다. 농·식품 R&D로 경제성장을 견인한 대표적인 네덜란드는 니조(NIZO)와 TNO 등 시장 친화적인 식품관련 연구소를 중심으로 연구가 이뤄지고 있는데 1948년 낙농업체들이 공동 설립한 니조(NIZO)와 약 30년 전 네덜란드 정부가 세운 TNO는 전체 운영비의 70% 이상을 민간업체들과의 협력이나 개인투자자들과 프로젝트를 진행해서 벌어들이고 있다.
두 전문가의 발표가 끝난 후에는 권오란 이화여대 교수가 사업단이 개발한 기술과 천연물 분야 관련기업 등 산업계와의 상호 연계방안을 모색하는 등 기업인들과 연구 책임자들 간의 관심방안에 대한 토론을 주관, 진행한다. 이밖에 강연 홀 복도에는 발표와 토론이 끝난 후 참석자들이 사업단이 보유중인 기술을 한 눈에 볼 수 있도록 전시관을 꾸며놨으며 기업인들 간에 자연스럽게 상담을 할 수 있는 자리도 함께 마련했다.
이도헌 사업단장은 “2013년 11월 출범이후 사업단은 5개 연구 분야인 모델·소재·표적 마커·인체 연구에 역량을 집중한 결과, 성분기반의 바이오 헬스케어와 관련한 방대한 규모의 DB를 구축하고 이를 기반으로 천연물 성분의 인체작용을 분석할 수 있는 세계 최대 규모의 가상인체(인공지능) 시스템을 구축했다” 며 “이번 심포지엄에서 사업단과 관련기업들 간에 공동연구 및 연구 성과에 대한 공동 활용방안에 대한 심층적인 논의가 이뤄졌으면 한다”고 말했다. 참가 문의 042-350-8651.
2017.07.14
조회수 9076
-
박지호 교수, 인공수용체 종양에 전달해 표적치료하는 기술 개발
〈 박 지 호 교수 〉
우리 대학 바이오및뇌공학과 박지호 교수 연구팀이 종양 전체에 인공수용체를 전달해 효과적으로 종양을 표적 치료하는 기술을 개발했다.
김희곤 석박사통합과정이 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6월 19일자 온라인 판에 게재됐다.
종양 표적치료란 일반적으로 종양의 성장과 발생에 관여하는 특정 분자, 즉 수용체를 표적으로 삼아 종양의 성장을 저해하는 치료를 말한다.
하지만 표적치료는 종양 내 특정 수용체가 존재하는 환자에게만 효과가 있고 표적 분자가 소량이거나 불균일하게 존재할 경우 치료 효과에 한계가 있다.
연구팀은 문제 해결을 위해 리포좀이라는 인공나노입자와 세포에서 자연적으로 분비되는 엑소좀이라는 생체나노입자를 동시에 이용했다. 먼저 세포막과 효율적으로 결합하는 인공나노입자인 세포막결합성 리포좀을 개발했다.
〈 이번 연구를 주도한 김희곤 학생과 오찬희 학생〉
리포좀은 특정 분자를 표적하는 것이 가능한 인공수용체를 싣고 혈류를 통해 종양으로 침투한다. 그리고 혈관 주변의 종양 세포에 인공수용체를 전달하는데 여기서 종양 세포가 분비하는 엑소좀에 인공수용체를 탑재시키는 것이 리포좀의 역할이다.
중요한 점은 세포막결합성 리포좀은 정상 세포보다 암세포에 더 효과적으로 인공수용체를 전달함으로써 종양 표적치료를 용이하게 한다.
엑소좀은 일반적으로 세포 간 여러 생체 분자를 전달하는 역할을 한다. 혈관 주변의 세포를 통해 리포좀에 의해서 전달된 인공 수용체가 엑소좀에 탑재하게 되면 엑소좀이 이동하는 종양 내 모든 위치로 인공 수용체가 자연적이고 효율적으로 전달된다.
연구팀은 이렇게 종양 전체에 퍼진 인공 수용체를 표적할 수 있는 물질에 약물을 결합시켜 효과적인 종양 표적치료를 하는 것을 목표로 삼고 있다.
연구팀은 이 기술을 이용해 빛에 반응해 항암효과를 내는 광과민제를 종양이 이식된 실험용 쥐에 주입했다. 이후 종양 부위에 빛을 조사해 항암효과를 유도한 후 분석한 결과 효과적으로 표적치료가 이뤄짐을 확인했다.
연구팀은 이번 연구가 표적이 어렵거나 불가능한 종양 표적치료를 가능하게 하는 기술 개발의 발판을 마련했다는 의의를 갖는다고 밝혔다.
박 교수는 “리포좀은 종양 미세 환경에서 종양세포들이 분비하는 생체나노입자인 엑소좀에 효율적으로 인공수용체를 탑재한다. 그리고 엑소좀은 고유 이동경로를 통해 인공수용체가 종양 전역으로 전달되도록 한다.”며 “표적치료가 어려운 다양한 질병을 치료하는 데 유용하게 사용될 것으로 기대한다”고 말했다.
이번 연구는 한국연구재단의 신진연구자지원사업, 보건복지부의 암정복추진연구개발사업 및 KAIST연구소의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 종양 내 인공수용체 전달을 통한 협동 표적치료를 보여주는 모식도
그림2. 종양 내 인공수용체 전달을 통한 협동 표적을 보여주는 종양 조직 사진
2017.07.06
조회수 10514
-
2017 월드프렌즈 ICT KAIST 발대식_21일 개최
우리대학은 21일 오후 대전 본교 교수식당 3층 영빈관에서 신성철 총장과 김영걸 글로벌리더십센터장, 김영길 부센터장 등 주요 보직자와 엄현준 학생(원자력및양자공학과 3학년) 등 학생 봉사단원, 교직원 등 40여명이 참석한 가운데 ‘2017 월드프렌즈 ICT KAIST 봉사단’ 발대식을 가졌다. '월드프렌즈 ICT KAIST 봉사단’은 개발도상국 학생을 대상으로 ICT 관련 교육과 문화교류를 진행하는 해외 봉사프로그램인데 우리대학 글로벌리더십센터가 2015년부터 한국정보화진흥원(NIA·원장 서병조)의 후원을 받아 시행해오고 있다.
이날 발대식은 신성철 총장 격려사를 시작으로 봉사단 선서와 사전 안전교육·기념촬영 순으로 약 1시간 동안 진행됐다. 올해 월드프렌즈 ICT 봉사단은 32명의 학생과 이들을 인솔하고 지원하는 임무를 맡은 교직원 2명 등 모두 34명으로 구성됐다.
이들은 APP프리카·KAI-Tigers·WITH 등 총 8개 팀(팀당 4명으로 구성)으로 나눠 에티오피아의 아디스아바바 공대(AAIT) 및 아다마 공대(ASTU), 탄자니아 넬슨만델라대 등 2개국 3개 대학생을 대상으로 ICT 교육 및 문화교류 등에 관한 봉사활동을 실시할 예정이다. 봉사활동 기간은 다음 달 7일부터 오는 8월 5일까지 약 1달간이다. 이를 위해 우리대학은 지난 4월 27일부터 5월 11일까지 접수받은 참가 희망학생을 대상으로 1차 서류심사와 그리고 5월 18일까지 2차 면접심사를 통해 모두 32명의 학생 봉사대원을 선발했다. 총 지원자는 68명으로 2.1대 1의 경쟁률을 기록했다.
우리대학은 준비과정에서부터 에티오피아와 탄자니아의 현지 요구를 바탕으로 맞춤형 봉사활동 프로그램이 될 수 있게 준비했는데 프로그램은 대학생 대상의 △ICT 교육과 △문화교류 △주말 농장 및 과학실험 봉사 등으로 구성됐다. 이 중 봉사단이 가장 중점을 두는 분야는 전체 봉사활동 내용의 70%를 차지하는 ICT 교육인데 에티오피아 아디스아바바 공대와 아다마 공대에서 각각 현지 대학생들을 대상으로 윈도우·MS워드·엑셀·파워포인트·포토샵 등을 포함해 스마트폰 이용법 등에 관해 중점 지도할 계획이다.
탄자니아에서는 또 넬슨만델라 대학생들과 함께 인근 고등학생들을 대상으로 적정기술과 아두이노(Arduino)를 이용한 Water tank control 등 실용 ICT 교육봉사를 진행한다.
☞ 아두이노(Arduino): 기기 제어용 기판으로 오픈 소스의 방식이라는 특징을 가지고 있으면서, 센서나 부품 등의 장치를 연결할 수 있는 구조로 되어 있다. 센서나 스위치 등의 다양한 부품을 연결할 경우 로봇 등을 작동시킬 수 있다. 또한 물리적 차원의 신호를 감지하여 디지털로 변환할 수 있기 때문에 장난감·사운드 구현·교육 프로그램 등 다양한 곳에 적용하여 사용 가능하다. 오픈 소스 방식이므로 누구나 쉽게 접근하여 만들 수 있고 수정도 용이한 게 큰 특징임.
봉사단은 이밖에 K-Pop 댄스와 제기차기·씨름 등 전통놀이와 비빔밥·송편 만들기 등 전통음식 만들기를 비롯해 한글교육 등을 통해 한국문화를 소개하는 한편 현지 대학생들과 함께 준비한 문화공연도 진행해 양국의 문화를 서로 교류하고 이해하는 시간도 가질 예정이다. 주말에는 특히 인근 농장을 찾아 봉사를 하고 인근 초등학교와 고아원을 찾아가 어린이를 대상으로 하는 과학실험과 체육·미술활동도 함께 진행한다.
신성철 총장은 격려사에서 “여름방학을 맞아 각자 개인적인 여러 계획을 세워 바쁘게 지내야 할 때 봉사와 희생정신 그리고 도전정신으로 인류애를 실현하기 위해 에티오피아와 탄자니아로 봉사활동을 떠나는 여러분들이야 말로 진정 가장 멋진 KAIST 대학생이며 봉사활동 기간 동안 건강에 유의하고 한국을 대표하는 민간외교관으로서의 사명감과 자긍심을 갖고 봉사활동을 충실히 수행해 달라”고 당부했다
2017.06.21
조회수 11893
-
유회준 교수, 인공지능 얼굴인식 시스템 K-EYE 개발
우리 대학 전기및전자공학과 유회준 교수 연구팀이 딥러닝 알고리즘을 세계 최소 전력으로 구현하는 인공지능 반도체 칩 CNNP를 개발했다. 그리고 이를 내장한 얼굴인식 시스템 K-Eye 시리즈를 개발했다.
연구팀이 개발한 K-Eye 시리즈는 웨어러블 디바이스와 동글 타입 2가지로 구성된다. 웨어러블 타입인 K-Eye는 블루투스로 스마트폰과 연동 가능하다.
봉경렬 박사과정이 주도하고 ㈜유엑스팩토리(대표 박준영)과 공동으로 개발한 이번 연구는 지난 2월 미국에서 열린 국제고체회로설계학회(ISSCC)에서 세계 최저전력 CNN칩으로 발표돼 주목을 받았다.
최근 글로벌 IT 기업들이 알파고를 비롯한 인공지능 관련 기술들을 경쟁적으로 발표하고 있다. 그러나 대부분은 소프트웨어 기술이라 속도가 느리고 모바일 환경에서는 구현이 어렵다는 한계가 있다.
따라서 이를 고속 및 저전력으로 구동하기 위해 인공지능 반도체 칩 개발이 필수적이다.
연구팀의 K-Eye 시리즈는 1mW 내외의 적은 전력만으로도 항상 얼굴 인식을 수행하는 상태를 유지하면서 사람의 얼굴을 먼저 알아보고 반응할 수 있다는 특징을 갖는다.
K-Eye의 핵심 기술인 얼웨이즈 온(Always-On) 이미지 센서와 CNNP라는 얼굴 인식 처리 칩이 있었기 때문에 위와 같은 세계 최저전력 기술이 가능했다.
첫 번째 칩인 얼웨이즈 온(Always-On) 이미지 센서는 얼굴이 있는지 없는지 스스로 판단할 수 있어 얼굴 인식이 될 때에만 작동하게 해 대기 전력을 대폭 낮출 수 있다.
얼굴 검출 이미지 센서는 아날로그 프로세싱으로 디지털 프로세싱을 제어해 센서 자체의 출력 소모를 줄였다. 픽셀과 결합된 아날로그 프로세서는 배경 부분과 얼굴 부분을 구분하는 역할을 하고 디지털 프로세서는 선택된 일부 영역에서만 얼굴 검출을 수행하면 돼 효율적인 작업이 가능하다.
두 번째 칩인 CNNP는 딥러닝을 회로, 구조, 알고리즘 전반에 도입하고 재해석을 진행해 최저 수준의 전력을 구현하는 역할을 했다.
특히 CNNP칩은 3가지의 핵심 기술을 사용했는데 ▲알파고 인공지능 알고리즘에서 사용하는 2차원 계산을 1차원 계산으로 바꿔 고속 저전력화 ▲분산형으로 배치된 칩 내 메모리가 가로방향 뿐 아니라 세로방향도 읽어낼 수 있는 특수 저전력 분산 메모리로의 설계 ▲1024개의 곱셈기와 덧셈기가 동시에 구동돼 막강한 계산력을 가지면서 외부 통신망을 거치지 않고 직접 계산 결과를 주고받을 수 있게 한 점이다.
CNNP는 97%의 인식률을 가지면서도 알파고에 사용된 GPU에 비해 5천분의 1정도의 낮은 전력인 0.6mW만을 소모한다.
K-Eye를 목에 건 사용자는 앞에서 다가오는 상대방의 얼굴이 화면에 떠오르면 미리 저장된 정보와 실시간으로 찍힌 사진을 비교해 상대방의 이름 등 정보를 자연스럽게 확인할 수 있다.
동글 타입인 K-EyeQ는 스마트폰에 장착해 이용할 수 있는데 사용자를 알아보고 반응하는 기능을 한다. 미리 기억시킨 사용자의 얼굴이 화면을 향하기만 하면 스마트폰 화면이 저절로 켜지면서 그와 관련된 정보를 제공한다.
또한 입력된 얼굴이 사진인지 실제 사람인지도 구분할 수 있어 사용자의 얼굴 대신 사진을 보여주면 스마트폰은 반응하지 않는다.
유 교수는 “인공지능 반도체 프로세서가 4차 산업혁명시대를 주도할 것으로 기대된다”며 “이번 인공지능 칩과 인식기의 개발로 인해 세계시장에서 한국이 인공지능 산업의 주도권을 갖길 기대한다”고 말했다.
□ 사진 설명.
사진1. K-EYE 사진
사진2. K-EYEQ 사진
사진3. CNNP 칩 사진
2017.06.14
조회수 10536
-
외국인 동아리 KATT, 적정기술 대회 금상, 동상 수상
우리대학 외국인 학생들로 구성된 적정기술 동아리 ‘KATT(KAIST Appropriate Techology Team)’팀이 제9회 ‘소외된 90%를 위한 창의설계 경진대회’에서 금상과 동상을 수상했다.
미래창조과학부에서 주최해 지난 5월 26일 서울대학교 글로벌컨벤션프라자에서 열린 이번 대회는 전국의 대학생 및 대학원생으로 구성된 65개 팀이 참가했다.
과학기술로부터 소외되고 구매력도 없는 국내외 이웃의 삶의 질을 높이기 위한 적정기술 설계 및 지속가능한 디자인 아이템 등을 발굴하는 것을 목적으로 한다.
전국 65개 팀이 참가한 올해 대회는 IT, 물·에너지, 농업·위생·안전·주거, 교육으로 세션을 구분해 프리젠테이션 발표와 현장 시제품 평가 등의 과정을 거쳐 진행됐다.
KATT 팀은 개발도상국 소외계층을 위한 알람 경고팔찌와 농산물건조용 스마트 하이브리드 건조기를 제작했다.
알람 경고팔찌는 쓰나미 위험 지역 거주민들을 위한 것으로 무선통신 기술을 활용해 경고신호 수신 뿐 아니라 다른 장비로 송신하는 기능을 갖고 있으며 최저 4달러 이하로 제작이 가능하다.
스마트 하이브리드 건조기는 기후가 불안정한 저위도 아열대 지방 저소득 계층이 농산물을 햇볕에 직접 노출시키는 방법 외에는 마땅한 건조 방법이 없는 문제를 해결하기 위해 태양광 발전 개념을 도입했다. 이를 통해 날씨와 상관없이 건조가 가능하도록 해 농산품 저장 및 물류 유통 효율을 높였다.
알람 경고팔찌에 참여한 아샤르 알람(Ashar Alam, 인도) 학생은 “적정기술 동아리 활동을 통해 인도의 문제가 곧 이웃 나라인 인도네시아, 방글라데시의 문제임을 인식했고, KAIST에서 배운 과학기술 지식들을 적극적으로 소외된 계층을 위해 활용하고 싶었다”며 “다른 나라에서 온 학생들끼리 각자의 재능을 적정기술 정신을 바탕으로 구현할 수 있어 보람을 느꼈다”고 말했다.
□ 사진 설명
사진1. 금상을 수상한 알람 경고팔찌 제작 팀
사진2. 동상을 수상한 하이브리드 건조기 수상팀
2017.06.07
조회수 10418
-
김세윤 교수, 이노시톨 대사효소에 의한 패혈증 유발 염증전달신호 규명
우리 대학 생명과학과 김세윤 교수 연구팀이 이노시톨 생합성 대사의 핵심효소인 IPMK (Inositol polyphosphate multikinase)에 의해 패혈증 등의 선천성 면역반응을 매개하는 신호전달네트워크가 정교하게 조절되는 현상을 규명했다.
김은하 박사과정이 제1저자로 참여한 이번 연구 결과는 서울대학교 성노현 교수 연구팀과 공동으로 진행됐고 사이언스 어드밴시스(Science Advances)지 4월 21일자에 게재됐다.
김세윤 교수 연구팀은 이노시톨 대사체 및 생합성 대사를 수 년 간 연구했고 이노시톨 다인산 멀티키나아제 효소(IPMK)에 의한 세포 성장 및 에너지 대사조절 기능을 다각적으로 규명한 바 있다.
이번 연구에서는 대식세포(macrophage) 특이적으로 IPMK 효소가 결핍된 생쥐에서 패혈성 쇼크를 유발시켰을 때 염증수준이 현저히 저하되고 또한 높은 생존율을 보이는 것을 확인했다. 이는 선천성 면역의 핵심인 염증반응이 강력히 저해되는 것을 의미한다.
IPMK 효소가 면역신호조절물질인 TRAF6 단백질과 직접 결합해 TRAF6 단백질의 분해를 조절하는 유비퀴틴화를 억제함을 규명했고, IPMK효소와 TRAF6단백질간 결합력을 저해할 수 있는 펩타이드를 활용함으로써 내독소에 의한 염증반응을 낮출 수 있음을 다각적으로 검증했다.
이번 연구는 미생물 감염 등에 의한 패혈증 발병의 원리를 규명함과 동시에 최근 급증하는 선천 면역 질환 (ex. 신경계 염증질환 및 당뇨)에 대한 이해를 넓히고 새로운 치료기술개발에 필요한 학문적 토대를 제공했다는 의의를 갖는다.
이번 연구는 미래창조과학부 뇌과학원천기술개발사업의 지원을 받아 이뤄졌다.
□ 그림 설명
그림1. IPMK 효소의 선천성 면역조절 모식도
2017.04.25
조회수 13654
-
앤시스코리아로부터 엔지니어링 시뮬레이션 소프트웨어 기증 받아
우리 대학은 24일(금) 오전 앤시스 코리아(대표 조용원)로부터 엔지니어링 시뮬레이션 교육 및 연구 활동을 지원을 위한 총액 40억원 상당(산업체 구매기준 약 2,000억원)의 시뮬레이션 소프트웨어를 기증받았다.
앤시스 코리아가 기증한 교육용 프로그램은 10,000명이 사용할 수 있고 연구용 프로그램은 1,000명이 3년간 사용할 수 있는 규모로, KAIST의 수업에서도 기증받은 소프트웨어를 활용함으로써 전공분야를 넘나드는 학제 간 융합교육 및 연구에 큰 도움이 될 것으로 기대한다.
앤시스의 다중물리학 캠퍼스 솔루션은 대학교 및 대학원 등의 학계 조직을 대상으로 하는 앤시스의 시뮬레이션 프로그램으로 수천 명의 학생 및 연구원이 해당 솔루션을 활용해 큰 성과를 거두고 있다. 또한 앤시스는 전 세계의 대학 및 연구소에서 앤시스의 고품질 시뮬레이션 솔루션을 통해 최고의 엔지니어링 교육을 받을 수 있도록 지원하고 있다.
KAIST 신성철 총장은 “엔지니어링 시뮬레이션 소프트웨어를 통해 학부생 및 대학원생들이 물리학의 원리를 배우고 엔지니어링 개념을 깊이 이해하는데 도움이 될 것”이라며 “앤시스가 4차 산업혁명시대 산학 융합연구개발(R&D)를 위한 환경을 만드는데 도움이 될 것이다”고 말했다.
앤시스 코리아 조용원 대표는 “KAIST 학생들의 수업과 실험·실습에 도움이 되기를 바란다”며 “앤시스의 다중물리학 캠퍼스 솔루션을 통해 미래 인재들이 최고의 엔지니어링 교육을 받을 수 있도록 꾸준히 지원할 것”이라고 말했다.
앤시스 코리아는 글로벌 엔지니어링 시뮬레이션 기업 앤시스(ANSYS)의 한국 지사로, 다양한 산업 분야의 ANSYS CAE(Computer Aided Engineering) 소프트웨어 제품군을 국내에 제공하고 있으며, 이와 관련한 각종 지원 및 교육, 세미나, 컨설팅 등의 서비스를 제공하고 있다. 앤시스 코리아 및 제품에 대한 자세한 사항은 공식 홈페이지(http://ansys.com/ko-kr)를 통해 확인할 수 있다.
2017.03.24
조회수 9889
-
박희성 교수, 맞춤형 단백질 변형기술 동물 모델 적용에 성공
우리 대학 화학과 박희성 교수 연구팀이 아주대 의과대학 박찬배 교수와의 공동 연구를 통해 동물 모델에서 단백질의 아세틸화 변형을 조절할 수 있는 기술을 개발했다.
인간의 질병 연구에 대표적으로 쓰이는 쥐 모델에서 단백질 아세틸화를 조절할 수 있게 돼 다양한 질병의 원인을 밝힐 수 있을 것으로 기대된다.
이번 연구는 미래창조과학부의 글로벌프런티어사업(의약바이오컨버젼스연구단, 단장 김성훈)과 지능형 바이오시스템 설계 및 합성연구단(단장 김선창), 식약처의 미래 맞춤형 모델동물개발 연구사업단(단장 이한웅)의 지원을 받아 수행됐다.
이번 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 21일자 온라인 판에 게재됐다.
우리 몸의 세포에서 만들어지는 2만 여종의 단백질은 생합성 이후 인산화, 아세틸화, 당화 등 200여 종의 다양한 변형(post-translational modification)이 발생하게 된다.
세포 내 단백질들은 다양한 변형을 통해 기능과 활성이 조절되며 이러한 변형은 생체 내에서 세포 신호 전달 및 성장 등 우리 몸의 정상적인 신진대사 활동을 조절하는 매우 중요한 역할을 한다.
하지만 유전적 또는 환경적 요인으로 인해 단백질 변형이 비정상적으로 일어나면 세포의 신호 전달, 대사 활동 등이 손상돼 암, 치매, 당뇨를 포함한 다양한 중증 질환을 유발한다.
기존에는 이러한 비정상적 단백질 변형을 동물 모델에서 인위적으로 유발시키고 제어하는 기술이 존재하지 않아 질병의 원인 규명 및 신약 개발 연구에 어려움이 있었다.
박 교수팀은 2016년 9월 다양한 비정상 변형 단백질을 합성할 수 있는 맞춤형 단백질 변형 기술을 개발해 사이언스(Science)지에 발표한 바 있다.
연구팀은 기존 연구를 더 발전시켜 각종 암과 치매 등의 이유가 되는 퇴행성 신경질환의 원인인 비정상적인 단백질 아세틸화를 동물 모델에서 직접 구현하는 기술을 개발했다.
연구팀은 이 기술을 바탕으로 실험용 쥐의 특정한 발달 단계나 시기에 표적 단백질의 특정 위치에서 아세틸화 변형을 조절할 수 있음을 증명했다.
또한 다른 조직에 영향을 주지 않고 간이나 콩팥 등 특정 조직이나 기관에서만 표적 단백질의 아세틸화 변형 제어가 가능함을 확인했다.
연구팀은 “이 기술은 암과 치매 등 단백질의 비정상적 변형으로 발생하는 각종 질병의 바이오마커 발굴 등 질병 원인 규명 연구의 획기적인 전기를 마련할 것으로 기대된다”고 말했다.
박희성 교수는 “실용화 될 경우 지금까지 실현이 어려웠던 다양한 질병에 대한 실질적 동물 모델을 제조할 수 있을 것으로 전망된다”며 “향후 맞춤형 표적 항암제 및 뇌신경 치료제 개발 등 글로벌 신약 연구에 새 패러다임을 열 것이다”고 말했다.
□ 그림 설명
그림1. 아세틸화 변형 조절 마우스 개발 및 아세틸화 제어 결과
그림2. 비정상적인 단백질 변형 및 각종 질병의 모식도
2017.03.06
조회수 11253
-
오지훈 교수, 이산화탄소 90%이상 분해 가능한 광전극 구조 개발
우리 대학 EEWS 대학원 오지훈 교수 연구팀이 빛을 이용해 이산화탄소를 분해하기 위한 금 나노 다공성 박막과 실리콘(Silicon) 기반의 새로운 광전극 구조를 개발했다.
광전기화학적 이산화탄소 변환은 태양광 에너지를 이용해 물과 이산화탄소를 연료로 바꿔주는 기술로 많은 주목을 받고 있다. 연구팀이 개발한 기술은 이를 위한 반도체 광전극 구조의 기본 틀을 제공할 것으로 기대된다.
송준태 박사가 1저자로 참여한 이번 연구는 화학, 에너지 및 소재 분야의 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 8일자 내면 표지 논문에 게재됐다.
안정적인 이산화탄소를 환원시키기 위해서는 낮은 과전압을 지닌 우수한 촉매가 필요하다. 그 중 금(Au)은 이산화탄소를 일산화탄소로 환원시키는 전기 촉매로 알려져 있다.
그러나 금은 과전압이 비교적 높고 일산화탄소 생산성이 낮아 수소가 많이 발생하는 문제점이 있다. 또한 가격이 비싸기 때문에 사용량도 조절을 해야 한다.
연구팀은 문제 해결을 위해 나노 다공성 구조를 갖는 금 박막을 제작하는 데 성공했다. 금을 박막형태로 기판 재료에 증착해 이를 양극산화 처리한 뒤 연속적인 환원 처리를 통해 제작했다.
높은 전류 효율을 보였다. 이전의 나노구조 촉매는 0.1mm의 두꺼운 호일을 이용해 제작됐다면 연구팀의 박막은 약 5만 배 정도 얇은 200나노미터 수준으로서 금 기반 촉매의 제작비용을 최소화했다.
나아가 연구팀은 직접 제작한 나노다공성 금 박막을 촉매로 활용하기 위해 새로운 실리콘(Si) 광전극 구조를 개발했다. 기존 방법인 나노 입자 형태로 반도체 표면에 촉매를 형성하면 전기화학적 처리 과정에서 기판 자체에 영향을 주게 된다.
따라서 연구팀은 금 박막을 표면 전체에 연결될 수 있는 메쉬 패턴 구조로 제작해 광전극에 영향을 주지 않고도 독립적으로 표면의 전극 접합을 통해 전기화학처리를 가능하게 했다.
제작된 광전극은 실리콘에서 생성된 광전압과 금 박막층의 높은 촉매 특성이 작용돼 기존의 일산화탄소 변환을 위해 필요한 에너지보다 더 낮은 양으로도 변환이 가능하다.
오 교수는 “다양한 반도체 및 촉매 재료도 쉽게 적용 가능한 플랫폼 역할을 할 수 있을 것이다”며 “다른 연구자들이 우리 연구팀의 구조를 적용해 이산화탄소 광전환의 광변환 효율을 향상시킬 수 있을 것이다”고 말했다.
1저자인 송준태 박사는 “발상의 전환을 통해 매우 간단하지만 중요한 새로운 타입의 광전극 구조를 개발했고, 이를 통해 효율적인 이산화탄소 환원이 가능해졌다”며 “생성물의 평형 전위보다 더욱 낮은 전위조건에서 이산화탄소 환원을 하는 결과를 낸 것은 처음이다”고 말했다.
이번 연구는 KAIST EEWS 대학원 정성윤 교수가 공동으로 참여했고 한국이산화탄소 포집 및 처리 연구개발센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 게재된 논문 이미지
그림2. 실리콘 광전극 모식도 및 전자현미경 사진
그림3. 제작된 광전극의 광전기화학적 이산화탄소 특성
2017.02.24
조회수 13557
-
한국타이어와 산학협력연구센터 설립을 위한 협약 체결
우리 대학과 한국타이어는 16일(목) 본관 총장실에서 강성모 총장과 김형남 한국타이어 부사장 등이 참석한 가운데 ‘KAIST-한국타이어 산학협력연구센터’ 설립을 위한 협약을 체결했다.
양 기관은 이번 협약을 통해 △ 전기 자동차, 자율 주행차와 같은 미래사회 Trend 변화에 대비한 선도 기술 확보 △ 새로운 미래형 타이어 소재, 센서 기술 등의 융합 기술 개발 등 사업성이 높고 글로벌 시장을 선도할 수 있는 세계 최고 수준의 창의적인 타이어 기술개발에 협력할 계획이다.
한국타이어-KAIST 산학협력연구센터(공식명칭 : H-K 미래타이어기술연구센터)는 KAIST 나노융합연구소(소장 정희태 교수, 생명화학공학과) 산하 센터로 설립되어 △ 상호 발전을 위한 연구과제 도출 및 공동 연구수행 △ 연구 인력의 교류 및 활용 △ 해외 네트워크 상호연계 지원 △ 국제 심포지엄, 워크숍 개최 등 성공적인 산학협력사업 운영의 컨트롤타워 역할을 수행할 예정이다.
2017.02.17
조회수 5813
-
국경 없는 공학자회 KAIST 지부(EWB-KAIST), 네팔 사업 성공리에 완수
우리 대학 기계공학과 송태호 교수가 이끄는 ‘국경 없는 공학자회 KAIST 지부(EWB-KAIST)’ 가 지난 1월10일 네팔 히말라야 낭기(Nangi)에서 2주간(2016.12.26.~2017.1.10.)의 활동을 마치고 귀국하였다.
2012년 KAIST 학생들과 교수들의 뜻을 모아 창립 모임을 가진 후 네팔 안나푸르나 일대 산간 마을인 낭기 지역을 대상으로 현지 방문, 과제 수집 및 프로젝트 수행을 진행했다. 패시브 하우스, 소형수력 발전, 과학교육 등의 프로젝트를 수행하였으며, 특히 짚을 단열재로 적용한 패시브 하우스는 지역민들의 큰 호응을 받았다.
이번을 마지막으로 네팔에서의 5개년 사업은 종료되었고, 앞으로는 과학기술정책대학원 박범순 교수가 몽골에서 사업을 진행하게 된다.
송 교수는 "지난 5년간의 네팔 사업이 성공적으로 수행되었으며, 그 동안의 지원이 헛되지 않도록 앞으로는 개인자격으로 히말라야를 방문하며 계속해서 마을의 자립을 도울 것"이라고 밝혔다.
EWB-KAIST는 ‘국경 없는 공학자회 KAIST 지부(Engineers Without Borders-KAIST)’ 의 줄임말로, 기술의 혜택이 필요한 저개발국가의 적정 기술 개발 및 지원을 목표로 비영리 활동을 수행하는 단체이다. 해당 지역민이 보다 나은 환경과 기술의 혜택을 누리고 장기적으로는 그 기술을 스스로 널리 퍼뜨리고 활용하는 것을 목표로 하고 있다. 또한 이러한 활동을 통하여 지구촌에 기여할 수 있는 책임감과 따뜻한 마음을 가진 글로벌 엔지니어를 양성하고, EWB-KAIST 활동에 동참한 기관과 기업의 이미지도 제고에도 도움이 될 것으로 기대하고 있다.
[ 패시브 하우스]
2017.01.24
조회수 9918
-
올해의 KAIST인 상, 화학과 박희성 교수
〈 박 희 성 교수 〉
우리 대학은 2016년 올해의 KAIST인 상에 화학과 박희성(46) 교수를 선정하고 2일 오전 10시 교내 대강당에서 열리는 2017년도 시무식에서 시상했다.
16회째를 맞는 올해의 KAIST인 상은 한 해 동안 국내외에서 KAIST 발전을 위해 노력하고 교육, 연구 실적이 탁월한 인물에게 수여한다.
수상자인 박희성 교수는 암과 치매 등 각종 질병을 유발하는 것으로 알려진 단백질의 비정상적인 변형을 재현할 수 있는 맞춤형 단백질 변형 기술을 개발해 KAIST의 위상을 높인 공을 인정받았다.
박 교수는 지난 2011년 암을 일으키는 원인으로 알려진 비정상적인 단백질 인산화를 조절하는 기술을 개발해 저명 학술지인 ‘사이언스(Science)’지에 논문을 발표했다.
이후 박 교수는 선행 연구를 발전시켜 인산화 이외 200여 종의 다양한 단백질 변형을 구현할 수 있는 기술을 개발하는데 성공해 지난 9월 사이언스(Science)지에 논문을 발표했다.
박 교수의 맞춤형 단백질 변형 기술은 암을 포함한 각종 질병의 직접적인 원인을 밝히는데 유용하게 쓰일 것으로 기대된다. 또한 향후 표적항암제 개발 등 글로벌 신약개발 연구에 새로운 방향을 제시할 것으로 예상된다.
박 교수는 “KAIST를 대표하는 상을 수상하게 돼 커다란 영광이며 동시에 무거운 책임감을 느낀다” 며 “KAIST가 명실상부한 세계 최고의 교육 연구기관이 되는데 보탬이 되도록 최선을 다해 노력하겠다”고 말했다.
2017.01.02
조회수 9104