-
장대준 교수, 형상 조절 가능한 압력탱크 상용화 성공
〈 (주)래티스태크놀로지 박근오 사장, KAIST 유화롱 연구원, 장대준 교수 〉
우리 대학 기계공학과 장대준 교수와 폴 베르간(Pål G. Bergan) 교수(2009년~2015년 재직, 현재는 은퇴) 연구팀이 개발한 자유자재로 형상을 조절할 수 있는 격자형압력탱크 기술이 상용화에 성공해 울산항 청항선의 LNG 연료탱크(15m3, 9기압)에 적용됐다.
격자형압력탱크라 불리는 이 기술은 내부 격자구조를 통해 압력을 견디는 방식으로 기존의 실린더형이나 구형으로만 가능했던 압력용기 기술의 한계를 극복해 압력용기 설계의 새로운 표본을 제시할 것으로 보인다.
연구팀은 2011년에 원천 특허 출원 이후 2012년부터 포스코와 협업을 통해 상용화에 착수해 7개의 국제인증과 4개의 시험탱크를 성공적으로 제작 및 시험해 기술의 적용 가능성을 입증했다.
이 기술은 KAIST 기술창업 기업인 ㈜래티스테크놀로지에 이전돼 상용화가 추진됐고, 지난 25일 청항선의 LNG 연료탱크로 채택됐음을 확정했다.
연구팀의 기술은 친환경 선박의 LNG 및 액체수소(LH2) 연료 저장 탱크에 활용할 수 있다. 대형 선박 1척은 자동차 5천 대 분량의 배기 가스량을 분출한다.
자동차에 대한 강력한 배기가스 규제와 달리 대양을 운항하는 대형 선박은 그동안 배기가스 규제가 없어 저품질의 중질류를 연료로 사용해 황산화물, 질소 산화물, 미세먼지, 이산화탄소 등을 대량으로 배출해 왔다.
이에 UN 산하의 국제해사기구(IMO)는 대형 선박의 배기가스에 대한 규제를 매년 강화하고 있으며 특히 2020년까지 선박 연료의 황 함유량을 0.5%, 2025년까지 이산화탄소 배출량을 50% 감축하는 규제를 발표했다.
이러한 목표 달성을 위해서는 선박 연료가 LNG와 액체수소로 바뀌어야 하는데 이 연료를 저장하는 기술이 가장 큰 기술적 및 경제적 걸림돌이었다. 격자형압력탱크는 이러한 걸림돌을 제거할 이상적인 압력탱크기술로 인정받았고 이번 적용을 통해 상용화에도 성공했다.
기존의 구형 또는 실리콘형 압력 탱크는 풍선과 유사하게 압력 하중을 막응력(Membrane Stress)으로만 견디기 때문에 표면에 작은 결함들이 성장하면서 전체적으로 파괴되거나, 크기가 커지면서 표면 두께가 증가해 용접이 어려워져 대형화에 한계가 있었다.
특히 실린더 주위는 버려지는 공간이 돼 다수의 실린더를 사용할 경우 실질적 저장 공간이 절반 이하로 떨어지게 되는 공간 효율성 문제를 해결하는 데 어려움이 있었다.
연구팀은 격자구조를 내부에 적용해 기존 압력 용기와는 전혀 다른 설계 이론을 개발했다. 내부 압력을 받는 마주보는 두 면을 격자구조로 연결하고 용기 표면은 보강재를 사용해 굽힘 응력(Bending Stress)으로 압력을 견디게 했다. 또한 레고 블록 쌓듯이 규칙적인 격자구조를 반복적으로 사용해 단순하고 일관적인 방법으로 대형화를 가능하게 했다.
이러한 설계 구조는 여러 가지 장점을 갖는다. 구조적 다중성으로 안전도를 크게 높일 수 있고 탱크가 커져도 구조의 두께가 유지되며 최대의 공간 효율성을 보장한다. 그밖에도 격자 구조가 내부 유체의 움직임을 제한해 선박용 LNG 저장 탱크의 가장 큰 숙제인 슬로싱(sloshing, 탱크 내부의 유체의 움직임에 의한 하중) 현상과 피뢰파괴 위험을 획기적으로 낮췄다.
장 교수 연구팀과 ㈜래티스테크놀로지 기술팀은 경량화와 경제성을 중점에 두고 상용화 개발 연구를 수행했다. 내부 격자 구조가 너무 밀집되면 탱크는 가벼워지지만 제작이 어려워지고 경제성이 떨어진다.
반면 다수의 실린더를 단일 격자형 압력용기로 대체한다면 탱크 자체 경제성 뿐 아니라 배관, 전계장 등의 부수적 비용과 운용의 복잡성을 낮출 수 있다. 연구팀은 구조 및 생산 최적화를 통해 다수의 실린더를 단일 탱크로 대체하면서 중량과 비용은 감소시키는 격자형압력탱크를 개발했다.
장 교수는 “압력용기는 물질과 에너지를 저장하는 가장 기본적인 장치로 가정부터 산업까지 다양한 곳에 필요해 원하는 형상의 압력탱크인 격자형압력탱크의 응용 범위는 매우 넓다”며 “LNG 추진 선박용 연료 탱크 뿐 아니라 육상 산업 설비, 철도, 차량 등에 적용 가능할 것이다”고 말했다.
이번 연구는 포스코 산학공동연구 및 중소기업청 시장창출형 창조기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 격자형압력탱크의 내부 구조
그림2. 다양한 크기와 형상의 격자형압력탱크
그림3. 24제곱미터 실린더 탱크와 22제곱미터 격자형압력탱크 비교 사진
그림4. 6개의 실린더와 1개의 격자형압력탱크를 장착한 크루즈선
2018.05.30
조회수 9740
-
이해신 교수, 와인성분 통해 심장에 정맥주사로 약물 전달 기술 개발
〈 이 해 신 교수 〉
우리 대학 화학과 이해신 교수 연구팀이 와인의 떫은맛을 내는 성분인 탄닌산(tannic acid)을 이용해 간단한 정맥주사만으로도 약물을 심장 조직에 전달할 수 있는 기술을 개발했다.
연구팀은 탄닌산을 단백질, 펩타이드 등의 약물과 혼합시켜 입자화 하는 방법을 통해 심장조직을 표적할 수 있음을 규명했다. 연구팀의 심장 질환의 효율적 치료를 위한 표적화 약물전달 기술은 단백질 기반의 다양한 신약에 적용 가능할 것으로 기대된다.
안전성평가연구소의 예측모델 연구센터 김기석 박사 연구팀과 공동으로 수행된 이번 연구는 네이처 자매지 ‘네이처 바이오메디컬 엔지니어링(Nature Biomedical Engineering)’ 4월 30일자 온라인 판에 게재됐다.
심장은 인체 내 가장 중요한 기관으로 분당 60~100회의 박동을 하는 동안 약 5리터의 혈액을 뇌를 포함한 전신에 공급하는 역할을 한다. 심장은 심근이라는 근육을 이용해 끊임없이 박동하는 운동성이 높은 기관이다.
심장 및 관련 혈관 질병을 심혈관계-순환계 질환이라고 하는데 이는 우리나라 사망 원인 2위를 차지한다. 고혈압, 당뇨, 고지혈증, 흡연, 비만 등 현대인의 불규칙한 식습관 및 생활습관으로 인해 나타날 수 있다. 대표적으로 심장으로 가는 관상동맥이나 미세한 혈류들이 좁아져 산소 및 영양분 공급이 원활하지 못해 발생하는 심근경색이 있다.
많은 연구자들이 심혈관계 질환 극복을 위한 화학약물요법이나 치료용 단백질 등을 개발하고 있다. 그러나 여전히 직접적인 수술, 카테터 및 스텐트 삽입 등에 의존하고 있으며 일반 정맥주사로 개발된 약물을 심장에 효율적으로 전달하는 기술은 개발되지 않았다.
심장의 강한 운동성으로 인해 정맥으로 주사된 약물이 순환하는 동안 심장으로의 전달 효율이 급격하게 저하되기 때문이다.
문제 해결을 위해 연구팀은 과일 껍질, 견과류, 카카오, 와인 등에 다량으로 존재하는 탄닌산이라는 물질을 이용했다. 탄닌산은 와인의 떫은맛을 내는 폴리페놀 분자의 일종으로 혀에 존재하는 점막 단백질과 결합해 떫은맛을 낸다고 알려져 있다.
연구팀은 탄닌산과 단백질 사이의 강한 분자 간 결합력을 이용해 치료용 단백질, 유전자 전달체인 바이러스 또는 기능성 펩타이드 약물 등을 간단하게 섞어주는 방법으로 입자화에 성공했다. 그리고 이를 주사했을 때 심장을 표적화할 수 있다는 사실을 발견했다.
탄닌산을 이용한 단백질 입자화 기술의 원리는 일종의 ‘분자 수준에서의 코팅’ 기술이다. 입자화된 단백질 복합체 표면에 코팅된 탄닌산이 심장의 기능을 유지하기 위해 밀집돼 있는 엘라스틴 및 콜라겐 단백질과 부가적으로 강한 상호작용을 하며 심장 조직에 부착된 상태로 오랜 시간 머무는 심장 표적화 기술이다.
이러한 탄닌산-단백질 복합체는 단백질만을 주사했을 때와 비교하면 5일 이상 장기적으로 혈관 내에서 순환됨을 확인했다.
이 교수 연구팀은 예전부터 탄닌산을 비롯한 접착성, 코팅성을 갖는 다양한 폴리페놀 재료를 응용해 의료용 생체 재료를 개발해 왔다. 실제로 심근경색 동물 모델에 탄닌산과 섬유아세포 증식인자를 섞어서 만든 약품을 주입하고 4주가 지난 뒤 심근경색이 일어난 크기가 감소했을 뿐 아니라 좌심실 압력 및 심박출량 등이 정상에 가깝게 호전되는 것을 확인했다.
이해신 교수는 “지금까지 심장질환 관련한 많은 약물들이 개발됐음에도 불구하고 상대적으로 약물을 심장에 효율적으로 전달하는 방법은 개발되지 않았다”며 “이번 기술은 기존 약물들을 새롭게 공식화해 개량신약으로 만들 수 있는 원천기술이다”고 말했다.
이번 연구는 연구재단 중견연구자 도약연구, 보건복지부 암정복프로그램, 산업통상자원부의 바이오산업핵심기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 탄닌산으로 제조한 단백질 복합체가 심장 조직에 전달되는 모식도
그림2. 바이러스 유전자 발현 효율 및 치료기능성을 보여주는 연구결과
2018.05.16
조회수 11374
-
박희성 교수, 이달의 과학기술인상 5월 수상자 선정
〈 박 희 성 교수 〉
우리 대학 화학과 박희성 교수가 ‘이달의 과학기술인상’ 5월 수상자로 선정됐다.
이달의 과학기술인상은 우수한 연구개발 성과로 과학기술 발전에 공헌한 연구 개발자를 매월 1명씩 선정하는 상으로 과학기술정보통신부 장관상과 상금 1천만 원을 수여한다.
과학기술정보통신부와 한국연구재단은 선정 배경에 대해 박희성 교수가 암, 치매 등 각종 질병 유발에 관여하는 단백질 변형을 인위적으로 제어할 수 있는 ‘맞춤형 단백질 변형기술’을 개발해 질병의 원인 규명과 신약 개발 연구의 단초를 마련한 공로가 높이 평가됐다고 밝혔다.
우리 몸의 단백질은 인산화, 당화, 아세틸화, 메틸화 등 200여 종의 다양한 변형(post-translational modification)을 통해 생체 신호를 전달하고 세포의 성장·분열 같은 신진대사를 조절한다. 하지만 유전적·환경적 요인으로 인한 비정상적 단백질 변형은 암, 치매, 당뇨 등 각종 퇴행성 질환과 만성질환의 원인이 된다.
많은 학자들이 단백질 변형에 따른 세포내 기능 연구와 질병의 연관성을 밝히기 위해 맞춤형 단백질 개발 연구를 진행했지만 기존 기술로는 원하는 변형을 갖는 단백질을 제조하는 것이 불가능했다.
박희성 교수는 박테리아의 생합성 경로를 재설계하고 비천연 아미노산을 표적단백질에 위치 특이적으로 첨가하는 방법으로 2011년 단백질 변형 중 가장 광범위한 단백질 인산화 제어에 성공했다.
이후 후속연구를 통해 비천연 아미노산의 특이적인 화학 반응성을 이용해 단백질 표면에서 탄소-탄소 결합을 일으켜 당화, 메틸화 등 200여 종의 맞춤형 단백질을 제조할 수 있는 기술을 최초로 개발했다.
박 교수팀은 퇴행성 신경질환의 원인중 하나로 알려진 비정상적 단백질 아세틸화를 실험용 쥐를 이용한 동물 모델에서 직접 구현했다.
이를 통해 실험용 쥐의 특정 발달 단계나 시기에 표적 단백질의 특정 위치에서 아세틸화 변형을 조절할 수 있었다. 또 다른 조직에 영향을 주지 않고 간이나 콩팥 등 특정 조직이나 기관에서만 표적 단백질이 아세틸화 변형 제어가 가능한 것도 확인했다.
박희성 교수는 “이 연구는 단백질 표면에서 선택적으로 탄소 간 결합을 일으켜 맞춤형으로 변형을 유발시키는 획기적인 단백질 변형 방법으로 암, 치매 등 단백질의 비정상적인 변형으로 유발되는 다양한 질병들에 대한 원인 규명과 치료제 개발에 돌파구를 마련하는 연구 결과이다” 고 말했다.
2018.05.03
조회수 9128
-
김용훈 교수, 차세대 탄소섬유 개발 위한 이론 규명
우리 대학 EEWS대학원 김용훈 교수 연구팀이 고품질 탄소섬유 개발에 필요한 고분자 전구체와 저차원 탄소 나노소재 간 계면의 원자구조 및 전자구조적 특성을 규명했다.
이번 연구로 차세대 탄소섬유 개발의 이론적 청사진을 제시할 것으로 기대된다.
이주호 박사과정이 1저자로 참여한 이번 연구 성과는 국제 과학 학술지인 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 4월 11일자에 속표지(Inside Back Cover) 논문으로 게재됐다.
탄소섬유는 매우 가벼우면서도 뛰어난 기계적, 열적 특성을 갖고 있기 때문에 초경량 자전거, 골프 클럽 등 스포츠 용품부터 자동차, 항공우주, 원자력 등 다양한 첨단 기술 분야에 활발히 활용되고 있는 신소재이다.
탄소섬유는 전구체(precursor) 고분자를 방사, 안정화 및 탄화 등의 작업을 통해 얻어지며 현재 폴리아크릴로나이트릴(polyacrylonitrile, PAN)이 탄소섬유의 주 전구체로 사용되고 있다.
고품질 차세대 탄소섬유를 얻는 방법으로 탄소나노튜브(carbon nanotube, CNT)를 탄소섬유 전구체 고분자 매트릭스에 분산시켜 고분자의 결정성을 높이는 연구가 대표적이다. 탄소나노튜브와 전구체 고분자의 조합이 탄소섬유의 물성을 향상시킬 수 있다는 것도 실험을 통해 확인된 바 있다.
그러나 20년 이상의 연구에도 탄소나노튜브와 전구체 고분자 간 상호작용에 대한 이해는 실험적 접근법의 어려움으로 인해 부족한 상황이다. 따라서 탄소나노튜브를 활용한 고품질 탄소섬유 제작 기술은 한계가 있었다.
김 교수 연구팀은 슈퍼컴퓨터를 활용해 양자역학적 제1원리 기반 멀티스케일 시뮬레이션을 수행해 대표적인 탄소섬유 전구체인 폴리아크릴로나이트릴 고분자가 탄소나노튜브 계면에서 배열되는 과정을 원자 수준에서 체계적으로 재현했다. 또한 탄소나노튜브-폴리아크릴로나이트릴 고분자 계면이 특히 좋은 특성을 보일 수 있는 이유를 연구했다.
폴리아크릴로나이트릴 고분자의 단위체가 누워있는 형태의 특정 원자구조를 선호하고, 이 때 양전하와 음전하가 균형 있게 이동하는 계면 특유의 특성이 발현되므로 이 계면 구조를 최대화 시키는 것이 최적의 대규모 폴리아크릴로나이트릴 고분자 정렬을 유도할 수 있음을 밝혔다.
또한 폴리아크릴로나이트릴 고분자의 정렬도가 그래핀 나노리본과의 계면에서 극대화되는 것을 확인해 최근 각광을 받고 있는 그래핀을 이용해 탄소 섬유의 품질을 더욱 향상시킬 수 있다는 가능성도 제시했다.
“김 교수는 양자역학에 기반한 전산모사가 첨단 소재·소자의 개발을 위한 기본원리를 제공해 줄 수 있음을 보여준 연구의 예다”며 “이러한 전산모사 연구의 중요성은 컴퓨터 성능 및 전산모사 이론체계의 비약적인 발전과 더불어 더욱 커질 것이다”라고 말했다.
이번 연구는 미래창조과학부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 어드밴스드 펑셔널 머티리얼즈 표지
그림2. 연구 개요 모식도
2018.04.26
조회수 14288
-
김유천 교수, 부작용 낮춘 레이저 치료제 개발
〈 노 일 구 박사과정, 김 유 천 교수 〉
우리 대학 생명화학공학과 김유천 교수 연구팀이 기존 광역학 치료제(PhotoDynamic Therapy, 이하 PDT)의 단점을 보완한 근적외선 형광물질 기반의 PDT를 개발했다.
노일구 박사과정이 1저자로 참여하고 바이오및뇌공학과 박지호 교수 연구팀이 공동으로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 2018년도 3월 25일자 표지논문에 게재됐다.
PDT는 약물이나 유전자가 아닌 빛을 이용하는 치료법으로 레이저를 특정부위에 쬐어 산소를 독성을 갖는 활성산소로 변화시켜 세포를 자가 사멸(apoptosis)로 유도할 수 있는 기술이다.
이 기술은 피부병 치료 등 일상에서도 많이 활용되는 치료법이다. 그러나 기존에 이용하는 PDT 조영제의 경우 낮은 효율을 가질 때 오히려 암세포의 유전변형이 발생해 치료효과 감소 등의 부작용이 나올 수 있다.
따라서 치료효과를 극대화하기 위해선 원하는 위치에 많은 물질을 전달하는 것이 중요하며 이를 위해 세포 소기관인 미토콘드리아에 치료효과를 집중시키는 연구가 진행 중이다.
PDT 조영제로 인해 만들어진 활성산소는 미토콘드리아의 막을 공격해 세포 사멸을 일으킨다. 암세포의 미토콘드리아는 일반 세포와 비교했을 때 미토콘드리아 막의 전위 차이가 높아 양전하의 소수성 물질이 더 잘 투입되는 특성이 있다.
연구팀은 이러한 PDT 조영제 효과를 극대화하기 위해 미토콘드리아 타겟팅 그룹인 트리페닐포스포늄, PDT 증강제인 브롬화물, 그리고 용해도 증가를 위한 아민 그룹으로 구성된 물질을 개발했다.
연구팀은 이 기술을 종양이 이식된 실험용 쥐에 주입한 후 종양 부위에 빛을 조사해 항암효과를 유도했고 이를 분석했을 때 효과적으로 표적 치료가 이뤄지는 것을 확인했다.
이 물질은 근적외선 영역에서의 흡광 및 발광을 통한 662 나노미터(nm) 영역 레이저를 사용한다. 이를 통해 기존 가시광선 조영제가 마이크로미터 수준의 깊이를 보였다면 연구팀의 기술은 밀리미터까지 투과성을 가지며 진단 시 가시광역 조영제 보다 100배 이상 감도가 우수한 특성을 갖고 있다고 밝혔다.
연구를 주도한 노일구 박사과정은 “암세포 미토콘드리아에 오래 머물러 있어 레이저를 조사했을 때 원하는 부분에만 부작용 없이 효과적인 치료가 가능하다는 장점이 있다”며 “치료 후 독성이 없이 분해돼 기존 조영제의 단점을 극복할 수 있을 것이다”고 말했다.
김유천 교수는 “기존에 이용되는 진단 및 치료제를 한 단계 더 발전시킨 새로운 플랫폼의 개발을 통해 부작용을 최소화하고 다양한 질병을 치료하는 데 유용하게 사용될 것으로 기대한다”고 말했다.
이번 연구는 글로벌프론티어 지원사업 ABC 바이오매스 사업단 및 한국연구재단의 중견연구자지원사업, 바이오의료기술개발지원사업을 통해 수행됐다.
□ 그림 설명
그림1. Advanced science 3월 25일자 3호 표지
그림2. 완성된 물질의 화학구조, 미토콘드리아 타겟팅 효과 및 레이저에 따른 ROS 생성 그래프
2018.04.17
조회수 11508
-
박인규, 정연식 교수, 모바일 기기 탑재 가능한 고성능 수소센서 개발
〈 가오민 연구원, 박인규 교수, 조민규 연구원 〉
우리 대학 기계공학과 박인규 교수, 신소재공학과 정연식 교수 공동 연구팀이 폴리스티렌(Polystyrene) 구슬의 자기 조립(self-assembly) 현상을 이용해 고성능의 실리콘 기반 수소센서를 개발했다.
연구팀이 개발한 수소 센서는 제작 과정이 단순하고 비용이 저렴해 모바일 기기에 탑재할 수 있어 전력 소모에 어려움을 겪는 모바일 분야에 기여할 수 있을 것으로 기대된다.
가오 민(Gao Min) 연구원, 조민규 박사후 연구원, 한혁진 박사과정이 참여한 이번 연구는 나노 분야 국제 학술지 ‘스몰(Small)’ 3월 8일자 표지논문에 선정됐다.
청정에너지인 수소 가스는 차세대 에너지원으로 각광받고 있다. 현재도 냉각 시스템이나 석유 정제시설 등 다양한 산업분야에서 활용되고 있지만 무색, 무취의 가연성 물질이기 때문에 조기 발견이 어려워 고성능 수소 센서를 개발하는 것이 중요하다.
그러나 기존 수소 센서들은 부피가 크고 소모 전력이 높으며 제작비용이 상대적으로 높은 단점이 있다.
공동 연구팀은 수백 나노미터 (nm) 직경의 폴리스틸렌 구슬들을 자기조립 현상을 이용해 규칙적으로 실리콘 기판 위에 배열시켰다. 이를 이용해 수십 나노미터 수준의 그물 모양 패턴을 구현해 초소형 고성능 수소 센서를 개발했다.
이 기술은 수소가스가 센서에 노출되면 팔라듐 나노입자와 반응해 팔라듐의 일함수(work function)가 변화하고 그에 따라 실리콘 나노 그물 내 전자의 공핍 영역(depletion region)의 크기가 변화하면서 전기 저항이 바뀌는 원리이다.
이번에 개발한 수소 센서는 최소 선폭 50 나노미터 (nm) 이하의 실리콘 나노 그물 구조 센서를 저비용으로 구현할 수 있다.
일반적으로 수소 센서의 성능은 민감도, 반응속도, 선택성 등에 따라 구분된다. 연구팀의 센서는 0.1%의 수소 농도에서 10%의 민감도와 5초의 반응속도를 기록해 기존 실리콘 기반 수소 센서보다 50% 이상 빠르고 10배 이상 높은 민감도를 보였다.
박인규 교수는 “기존의 값비싸고 복잡한 공정을 거치지 않고도, 단순한 방법으로 초미세 나노패턴 구현이 가능하며, 수소센서 뿐만 아니라 다양한 화학, 바이오센서에도 응용이 가능할 것이다”고 말했다.
과학기술정보통신부의 나노소재기술개발사업, 한국연구재단의 국민위해인자에 대응한 기체분자식별․분석기술개발사업, 해양수산부의 해양수산환경기술개발사업, KUSTAR-KAIST 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스몰(Small) 2018년 3월 8일자 Issue 표지논문
그림2. 완성된 수소센서의 일반 사진 (왼쪽), 전자현미경 사진 (중간, 오른쪽)
그림3. 수소 농도 변화에 따른 수소센서의 감지 그래프
2018.04.04
조회수 14182
-
오토아이디랩(Auto-ID Labs), 국제표준 사물인터넷 오픈소스 올리옷 개발
우리대학 오토아이디랩(Auto-ID Labs, 센터장 김대영 교수·전산학부)이 주도해 개발한 GS1 국제표준 사물인터넷(IoT) 오픈소스 플랫폼 올리옷(Oliot)이 국내 최대 규모의 협동조합인 완주로컬푸드에 적용돼 5일부터 본격적인 운용에 들어간다.
올리옷 개발에는 우리대학을 중심으로 총 11개 기관이 참여했다. 우리대학을 중심으로 하는 이 컨소시엄은 농식품의 생산, 가공, 유통물류, 소비에 이르는 전 과정의 데이터를 수집/공유할 수 있는 ‘GS1 국제표준 기반 올리옷(Oliot) 플랫폼’을 기반으로 농가소득 증대와 안전한 먹거리를 제공하는 국내 농축산 글로벌 생태계 구축에 앞장서고 있다.
올리옷 플랫폼은 우리대학 중심의 컨소시엄이 과기정통부와 정보통신기술진흥센터가 주관하는 ICT융합산업원천기술개발사업의 지원을 받아 2015년부터 3년간 ‘GS1(Global Standards One) 표준 기반의 균형생산·투명유통·안전소비를 위한 농·축산 클라우드 및 응용서비스 개발’이란 과제 명으로 연구를 수행한 결과, 개발에 성공한 국제표준 사물인터넷(IoT) 오픈소스 플랫폼이다.
올리옷이 적용되는 완주로컬푸드 시스템에는 생산부터 가공, 유통물류, 판매까지 전 단계에 걸쳐 GS1 표준기술의 적용은 물론 기획생산, 농산물 가공센터, 직거래 매장관리, 학교급식, 인터넷쇼핑 뿐만 아니라 이력추적서비스 등 다양한 분야에 KAIST 컨소시엄 참여업체인 이지팜·메디앙시스템이 개발한 국제 호환성을 제고를 위한 표준 시스템이 적용됐다.
완주로컬푸드는 올리옷 등 이 시스템의 본격적인 통합운용을 계기로 GS1 국제표준에 맞춰 생산계획 단계부터 최종 판매까지 안전한 먹거리 보장을 위한 이력 데이터를 구축한 세계 최초의 로컬푸드로 이름을 올리게 됐다. 우리대학은 올리옷을 데이터가 핵심인 4차 산업혁명의 전 산업분야로 확산시키기 위해 오픈소스 프로젝트로 이를 공개 중인데, 올 4월 현재 100개 이상 국가에서 9,000여개 이상의 기업과 개발자들이 다운로드 받아 활용 중이다.
김대영 교수는 “완주로컬푸드를 시작으로 전국의 로컬푸드 조합에 GS1 국제표준시스템인 올리옷의 확산을 적극 추진하고 중국 CFDA(국가식품의약품감독관리총국) 주관의 GS1 농식품안전시스템과의 연결, 유럽연합(EU)의 IoF2020(Internet of Food & Farm)사업을 통한 네덜란드 와게닝겐 대학과의 축산물 이력추적시스템 공동개발, 그리고 홍콩 등과도 글로벌 농축산 식품산업 생태계 조성을 위해 적극 협력할 것”이라고 말했다.
김 교수는 이어“올리옷과 인공지능/블록체인 기술을 융합해 스마트시티, 헬스케어, 스마트팩토리 등 여러 분야로의 확산을 위해 관련기업들과 함께 서비스를 개발 중”이라면서“조만간 가시적인 성과를 내놓을 것”이라고 덧붙였다.
올리옷 개발을 주도한 우리대학 오토아이디랩(Auto-ID Labs)은 지난 1999년 세계 최초로 사물인터넷(Internet of Things)기술을 소개한 국제공동연구 컨소시엄으로 우리학교를 포함해 미국 MIT대, 영국 캠브리지대, 스위스 취리히공대(ETH Zurich), 중국 푸단대, 일본 게이오대 등 6개 대학이 참여하고 있다.
한편 우리대학은 올리옷의 완주로컬푸드 개통을 기념하기 위해 5일 오전 11시 완주로컬푸드 혁신점 현지에서 시연식을 갖는다.
2018.04.03
조회수 12657
-
육종민, 이정용 교수, 나트륨 기반의 이차전지 음극 소재 개발
우리 대학 신소재공학과 육종민 교수와 이정용 명예교수(前 기초과학연구원 나노물질 및 화학반응연구단) 공동 연구팀이 리튬 기반 이차전지 음극재료에 비해 저렴하고 수명이 긴 나트륨 기반 이온 전지용 음극 소재를 개발했다.
기존의 이차전지 음극재료 대비 1.5배 수명이 길고 약 40% 저렴한 나트륨 이온 전지용 음극 소재 개발을 통해 나트륨 이온 전지의 상용화에 기여할 것으로 기대된다.
박재열 박사과정과 기초과학연구원 김성주 박사가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 3월 2일자 온라인 판에 게재됐다.
현재 리튬 이온 전지는 휴대폰, 전기차 등 일상생활과 밀접한 다양한 곳에 사용되고 있다. 그런데 리튬은 매장지역이 한정돼 있고 수요가 급등해 공급량이 부족한 상황이다. 2015년과 대비해 현재 리튬의 가격은 3배 이상 상승했다.
이런 문제를 해결하기 위해 리튬 이온 전지의 대안으로 나트륨 이온 전지가 주목받고 있다. 리튬이 지구 지표면에 0.005%만 존재하는 반면 나트륨은 그 500배 이상인 2.6% 존재하기 때문에 공급 문제가 해결된다.
따라서 나트륨 이온 전지는 기존 리튬 이온 전지에 비해 40% 저렴한 가격으로 같은 용량의 에너지를 저장할 수 있을 것으로 전망된다.
그러나 리튬 이온 전지의 음극 재료인 흑연은 나트륨의 저장에 적합하지 않다. 흑연 간의 층 사이에 리튬 이온들이 삽입(intercalation)되며 저장이 이뤄지는데 나트륨 이온을 저장하기에는 흑연 층간 거리가 너무 좁기 때문이다. 이러한 이유로 나트륨 이온 전지 상용화를 위해서는 이에 적합한 음극 소재를 개발하는 것이 필수적이다.
연구팀은 흑연의 대안을 나노판상 구조를 가진 황화구리에서 찾았다. 황화구리는 높은 전기전도도와 이론용량을 갖는다. 또한 황화구리에 나트륨이 저장되는 과정을 원자단위에서 실시간 분석한 결과 황화구리의 결정 구조가 유동적으로 변화하며 안정적으로 나트륨 이온을 저장하는 것을 확인했다.
그 결과로 황화구리의 나트륨 저장 성능이 흑연 이론용량(~370mAh/g)의 1.5배(~560mAh/g)에 달하는 것을 확인했고 충, 방전을 250회 반복한 이후에도 이론용량의 90% 이상이 유지됨을 증명했다.
이번 연구로 나트륨 이온전지가 상용화되면 지구 표면의 약 70%를 차지하는 바다에 무궁무진하게 존재하는 나트륨을 활용할 수 있다. 이는 배터리 원가 절감으로 이어지고 휴대폰, 전기 자동차, 노트북 등의 단가를 약 30% 정도 낮출 수 있을 것으로 기대된다.
이정용 교수는“이번 연구결과가 차세대 고성능 나트륨 이온 전지 개발에 크게 기여할 것으로 기대된다”고 말했다.
육종민 교수는 “요즘 미세먼지 등의 환경오염 문제로 특히 신재생 에너지 상품에 관심이 많은데 이번 연구 결과를 통해 우리나라가 관련 제품에 대한 우위를 점할 수 있는 토대를 한 단계 다졌다고 생각한다”고 말했다.
이번 연구는 한국연구재단의 생애첫연구사업 및 나노, 소재기술개발사업과 기초과학연구원의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 판상구조 황화구리 촬영 사진
그림2. 황화구리 내 나트륨이 저장되면서 나타나는 결정구조 변화 양상
그림3. 황화구리 내 나트륨 충방전 횟수별 저장 용량
2018.03.08
조회수 11448
-
KAIST-한화시스템, 국방 인공지능 융합연구센터 개소
우리 대학과 한화시스템이 20일 낮 12시 대전 본원에서 신성철 총장, 한화 장시권 대표이사 참석 하에 국방인공지능 융합연구센터(센터장 : 김정호 교수) 개소식을 가졌다.
이번 개소식을 통해 우리 대학과 방산전자 기업인 한화시스템이 힘을 합쳐 4차 산업혁명에서 핵심 기술로 떠오르는 인공지능(AI)기술과 국방을 접목하는 계기가 될 것으로 기대된다.
우리 대학과 한화시스템은 센터의 공동 운영을 통해 ▲국방 인공지능 융합과제 발굴, 연구 및 기술자문 ▲연구 인력 상호교류 및 교육 등을 통한 협력체계를 구축할 예정이다.
현재 국방 분야는 네트워크 중심의 미래 전장에 효과적으로 대응하기 위해 4차 산업혁명 기술의 활용 방안을 활발히 모색 중이다. 특히 미국 등의 선진국은 인공지능 기술을 적용한 신 무기체계를 개발하고 있다.
국방 인공지능 융합연구센터는 ▲인공지능 기반 지휘결심지원체계 ▲대형급 무인 잠수정 복합항법 알고리즘 ▲인공지능 기반 지능형 항공기 훈련시스템 ▲인공지능 기반 지능형 물체추적 및 인식기술 개발 등 4개 과제를 우선적으로 선정했고, 산학협동연구개발 방식을 통해 인공지능 기술의 국방 융합 연구를 진행할 예정이다.
신성철 총장은 “KAIST는 인공지능 분야 교수진이 60여 명에 이를 만큼 세계적인 인공지능 연구개발 능력을 갖추고 있다”며 “이번 연구센터 설립을 통해 한화시스템과 함께 국방 기술 발전에 기여할 수 있는 계기가 될 것으로 기대한다”고 말했다.
2018.02.20
조회수 8945
-
최원호 교수, 전기바람 발생 원리 규명
우리 대학 물리학과 최원호 교수가 전북대 문세연 교수와의 공동 연구를 통해 전기 바람(Electric wind)이라 불리는 플라즈마 내 중성기체 흐름의 주요 원리를 규명했다.
이는 플라즈마 내 존재하는 전자나 이온과 중성입자 사이의 상호작용에 대한 기초 연구로 플라즈마를 이용하는 유체 제어기술 등 플라즈마 응용 기술의 발전에 기여할 것으로 기대된다.
박상후 박사가 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 25일자 온라인 판에 게재됐다.
두 개의 서로 다른 입자 무리로 구성된 유체역학 문제는 수세기 동안 뉴턴을 포함한 많은 과학자들의 관심을 지속적으로 받아 온 연구주제이다.
전자나 이온과 중성입자 간의 충돌로 인한 상호작용은 지구나 금성의 대기에서도 일어나는 여러 자연현상의 기초 작용으로 흔히 알려져 있다. 플라즈마에서의 전기바람은 이 상호작용을 통해 나온 결과의 대표적인 예다.
전기바람이란 전하를 띈 전자나 이온이 가속 후 중성기체 입자와 충돌해 발생하는 중성기체의 흐름을 말한다. 선풍기 날개와 같이 기계적인 움직임 없이 공기의 움직임을 일으킬 수 있는 방법으로 기존의 팬을 대체할 수 있는 차세대 기술로 주목받고 있다.
최근에는 이와 같은 플라즈마 기술을 적용해 트럭 및 선박에서 발생하는 공기저항을 감소시켜 연료효율의 증가와 미세먼지 발생 감소, 풍력발전기 날개 표면의 유체 분리(flow separation)의 완화, 도로 터널 내 공기저항 및 미세먼지 축적 감소, 초고층 건물의 풍진동 감소와 같은 응용기술 개발이 여러 나라에서 활발히 시도되고 있다.
대기압 플라즈마 내에 전기장이 강하게 존재하는 공간에서 전자나 이온이 불균일하게 분포되면 전기바람이 발생한다. 전기바람의 주요 발생 원인은 현재까지도 명확하게 밝혀지지 않아 유체 제어와 관련한 여러 응용분야에 적용하는데 어려움이 있었다.
연구팀은 대기압 플라즈마를 이용해 전기바람 발생의 전기 유체역학적 원리를 밝히는데 성공했다. 전기 유체역학적 힘에 의한 스트리머 전파와 공간전하 이동의 효과를 정성적으로 비교하는 데 성공했다.
연구팀은 스트리머 전파는 전기바람 발생에 큰 영향을 주지 못하고 오히려 스트리머 전파 이후 발생하는 공간전하의 이동이 주요 원인임을 밝혔다. 특정 플라즈마에서는 음이온이 아닌 전자가 전기바람 발생의 핵심 요소임을 확인했다.
또한 헬륨 플라즈마에서 최고 초속 4m 속력의 전기바람이 발생했는데 이는 일반적인 태풍 속력의 4분의 1 정도이다. 이러한 결과를 통해 전기바람의 속력을 효율적으로 제어할 수 있는 기초 원리를 제공할 수 있을 것으로 보인다.
이번 연구는 하전입자와의 상호작용으로 인해 중성기체 흐름이 발생하는 원리를 실험을 통해 설명했고 정확한 분석법과 설득력을 갖췄다는 평을 받는다.
최 교수는 “이번 결과는 대기압 플라즈마와 같이 약하게 이온화된 플라즈마에서 나타나는 전자나 이온과 중성입자 사이의 상호작용을 학문적으로 이해하는데 유용한 기반이 될 것이다”며 “ 이를 통해 경제적이고 산업적 활용이 가능한 플라즈마 유체제어 분야를 확대하고 다양한 활용을 가속화하는데 큰 역할을 할 것으로 기대된다”고 말했다.
이번 연구는 국가핵융합연구소의 미래선도플라즈마-농식품융합기술개발사업과 산업통상자원부의 사업화연계기술개발사업(R&BD)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 약전리 대기압 제트 플라즈마 사진
그림2. 대기압 헬륨 제트 플라즈마의 고전압 펄스 폭 및 높이에 따른 전기바람 속력의 변화
2018.02.19
조회수 11407
-
장호종 교수, 2018 ISIITA 최우수 논문 발표상 수상
〈 장 호 종 연구교수 〉
우리 대학 IT융합연구소 장호종 연구교수가 ‘2018 정보기술 및 응용분야 혁신 국제 심포지엄(ISIITA : The International Symposium on Innovation in Information Technology Application)에서 최우수 논문 발표상을 수상했다.
국제 심포지엄 ISIITA는 고도의 정보기술 응용 분야의 선도적 연구자들이 모여 기술의 융합에 대해 교류하는 국제적 네트워킹 심포지엄이다.
장 교수는 이번 심포지엄에서 최우수 논문 발표상을 수상했다. (논문명 : A Study on the Measurement of Aptamer in Urine Using SiPM)
이 논문은 질병의 조기 진단을 위해 소변의 나트륨 및 칼륨 농도를 압타머의 발광량을 통해 실시간 측정하고 분석하는 시스템 개발에 관한 내용이다.
소자 내부증폭으로 저조도의 빛 양을 100만 배 증폭시킬 수 있어 단일광자도 측정이 가능한 실리콘 광증배관을 활용했다.
장 교수는 “추후 원심분리 등의 별도 과정 없이 신속한 진단이 가능한 ‘포인트 오브 케어 테스트(Point-of-care test)’ 시스템이 개발되면 질병의 조기진단 및 감염 여부를 실시간으로 확인 가능할 것이다”며 “추후 핵심 기술 보편화를 통해 삶의 질을 높이는 적정기술로의 발전을 꾀할 예정이다”고 말했다.
이번 연구는 미래창조과학부 선행공정·플랫폼기술연구개발사업의 지원을 받아 수행됐다.
2018.02.12
조회수 9663
-
최원호 교수, 플라즈마로 바이오필름 제거 기술 개발
〈 박 주 영 박사과정, 최 원 호 교수, 박 상 후 박사 〉
우리 대학 물리학과 최원호 교수, 서울대 조철훈 교수 공동 연구팀이 대기압 저온 플라즈마를 통해 페트병 등 식품 보관 용기 표면에 존재하는 대장균, 박테리아 등 일명 바이오필름을 손쉽게 제거할 수 있는 기술을 개발했다.
이는 플라즈마를 물에 처리해 활성화시켜 발생하는 화학반응을 이용해 바이오필름을 제거하는 방식으로 기존 기술보다 안전하고 손쉬워 다양한 용도로 사용 가능할 것으로 기대된다.
박상후 박사, 박주영 박사과정이 공동 1저자로 참여한 이번 연구는 재료분야 국제 학술지 ‘미국화학회 어플라이드 머티리얼즈&인터페이시스(ACS Applied Materials & Interfaces)’ 2017년도 12월 20일자에 게재됐다.
대기압 플라즈마는 대기 중에서 여러 형태로 플라즈마 및 2차 생성물을 방출할 수 있는 장점을 갖는다. 번개도 플라즈마의 일종인데 번개를 통해 공기 중 질소가 질소화합물이 돼 땅 속에 스며들어 토양을 비옥하게 만드는 것이 대표적인 사례이다.
이런 장점을 활용해 플라즈마는 에너지 및 환경 분야부터 생의학 분야까지 다양한 연구와 산업분야에 응용되고 있으며 플라즈마의 반응성 및 활용성을 높이기 위한 연구들이 전 세계적으로 활발히 진행 중이다.
최근에는 의료기술, 식품, 농업 등 다양한 분야에 살균을 목적으로 한 활성화, 기능화 등 측면에서 대기압 플라즈마를 적용하고 있다.
그러나 대기압 플라즈마로부터 발생하는 활성종의 종류, 밀도, 역할 등은 현재까지도 명확하게 밝혀지지 않아 기술을 적용하는 데 큰 어려움이 있었다.
연구팀은 플라즈마를 물에 처리시켜 활성수로 만들어 대장균, 살모넬라, 리스테리아 등 유해한 미생물이 겹겹이 쌓여 막을 이룬 형태를 뜻하는 바이오필름을 제거하는 방법을 개발했다.
플라즈마를 처리할 때 발생하는 활성종은 수산기(하이드록시기, OH*), 오존, 과산화수소, 아질산이온, 활성산소 등이다. 연구팀은 그 중 수산기가 다른 활성종에 비해 100 배에서 1만 배 낮은 농도임에도 불구하고 산화력이 높아 바이오필름 제거에 큰 역할을 하는 것을 확인했다.
연구팀은 그 외에 발생된 오존, 과산화수소, 아질산 이온 등에 대해서도 바이오필름을 제거할 수 있는 기능이 있음을 정량적으로 증명했고 이를 통해 살균제로서 대기압 플라즈마의 역할을 규명했다.
연구팀은 향후 후속 연구를 통해 플라즈마로 수산기를 효율적으로 생산할 수 있는 기술을 개발할 예정이다.
최 교수는 2013년 플라즈마 발생이 가능한 포장재를 특허로 등록했고 지도학생 창업기업인 플라즈맵에 기술이전을 완료했다. 이번 연구를 통해 플라즈마 살균 기술의 상용화에 힘쓰는 중이다.
최 교수는 “이번 연구결과는 플라즈마 제어 기술과 플라즈마-미생물 간 물리화학적 상호작용을 이해하는데 유용한 기반이 될 것이다”며 “의학, 농업, 식품 분야에서의 플라즈마 기술의 활용이 가속화되는 계기가 될 것으로 기대한다”고 말했다.
이번 연구는 국가핵융합연구소의 미래선도 플라즈마-농식품 융합기술 개발 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1.플라즈마 발생이 가능한 포장재
그림2.대기압 플라즈마를 이용한 바이오필름 저감 실험 개략도
그림3.대기압 플라즈마 적용 개념도 및 핵심요소 평가 결과
그림4.스타트업 기업인 플라즈맵(Plasmapp)에서 시판중인 STERPACK 제품
2018.01.23
조회수 11984