본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%A0%84%EA%B8%B0%EB%B0%8F%EC%A0%84%EC%9E%90%EA%B3%B5%ED%95%99%EB%B6%80
최신순
조회순
실리콘 한계 넘는 양극성 반도체 소자 개발
차세대 2차원 층상구조 나노소재로 주목받는 인듐 셀레나이드(InSe)는 실리콘 반도체보다 전자 이동도가 뛰어나고 포화 속도가 두 배 이상 빠른 장점을 가지지만, 주로 N형 반도체로만 사용되어 왔다. 우리 연구진이 이를 극복하고 N형 및 P형, 양극에 우수한 성능을 제공하는 인듐 셀레나이드 기반 기술을 개발하여 차세대 전자 소자의 설계 및 상용화 가능성을 크게 앞당길 것으로 기대된다. 우리 대학 전기및전자공학부 이가영 교수 연구팀이 나노 반도체 인듐 셀레나이드(InSe)* 기반 혁신적인 양극성 다기능 트랜지스터를 개발했다고 30일 밝혔다. *인듐 셀레나이드(InSe): 인듐과 셀레늄으로 이루어진 무기 화합물 반도체로 2차원 층간 결합을 이루고 있음 인듐 셀레나이드는 N형 반도체로만 사용되어 왔는데, 이는 P형 반도체 및 상보적 회로 구현에 필요한 양(P) 전하를 띄는 정공*을 유도하기 어렵다는 문제 때문으로 이는 상용화의 큰 걸림돌로 작용해 왔다. *정공: P형 트랜지스터 구현에 필요한 양 전하를 띠는 입자 이가영 교수 연구팀은 정공 유도를 위해 추가적인 공정이나 다른 물질을 접목하는 다양한 시도에도 해결되지 못했던 문제점을 새로운 소자 구조 설계를 통해 해결했다. 이번에 공개된 양극성 반도체 소자는 N형과 P형 트랜지스터에 모두 적용이 가능하다. 연구팀은 인듐 셀레나이드 하부에 전극을 배치하고 금속-반도체 접합 특성을 개선함으로써, 전자와 정공이 선택적으로 흐를 수 있는 양극성 특성을 구현하는 데 성공했다. 특히, 이번 연구에서는 N형 및 P형 전류 꺼짐/켜짐 비가 모두 109(10억) 이상에 달하는 우수한 성능을 기록했다. 실리콘 반도체 소자의 경우 일반적으로 108 이하 꺼짐/켜짐 비의 단극성 구동을 띄며, N형과 P형 구동이 동시에 가능한 양극성 2차원 반도체*의 경우도 N형과 P형 꺼짐/켜짐 비가 동시에 108 이상인 경우는 없었다. *2차원 반도체: 2차원 방향으로만 강한 원자 결합을 이루며 수직 방향으로는 층상구조를 가져 층상구조 반도체라고 불리기도 함 이가영 교수는 “다기능 소자들은 일반적으로 복잡한 공정 과정과 구조를 요구해 제작과 집적에 어려움이 있다. 그러나 이번 연구에서는 간단한 부분 게이트 구조를 도입해 하나의 소자에서 다양한 기능을 구현할 수 있는 다기능 소자를 제작하는 데 성공했다”며 “이 기술은 공정 효율성을 높이고 회로 설계 유연성 향상에 기여할 것으로 기대된다”고 설명했다. 또한 “이번 연구는 인듐 셀레나이드를 기반으로 한 P형 응용 가능성을 새롭게 밝혔으며, 궁극적으로는 상보적 다기능 시스템으로서의 활용 가능성을 보여준다”고 덧붙였다. 전기및전자공학부 김민수 석박통합과정, 염동주 석사과정, 석용욱 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 나노 물리 분야 저명 국제 학술지 ‘나노 레터스(Nano Letters)’에 2024년 12월 18일 출판됐으며 동시에 저널 표지 논문으로 채택됐다. (논문명: Superior P-Type Switching in InSe Nanosheets for Complementary Multifunctional Systems, https://doi.org/10.1021/acs.nanolett.4c04624) 한편 이번 연구는 한국기초과학지원연구원 국가연구시설장비진흥센터, 한국연구재단 우수연구사업, KAIST 도약연구(UP) 사업, 그리고 삼성전자의 지원을 받아 수행됐다.
2024.12.30
조회수 5102
전기및전자공학부 김태수 석사과정, IEEE EDAPS 2024 국제학회 최우수논문상 수상
아시아·태평양지역에서 가장 권위 있는 반도체 패키징 기술 관련 국제학회 ‘EDAPS(Electrical Design of Advanced Packaging & Systems) 2024’에서 전기및전자공학부 김정호 교수 연구실 석사과정 김태수 학생이 ‘최우수 논문상’을 수상했다고 26일 밝혔다. ‘이뎁스(EDAPS)’는 아시아·태평양 지역에서 가장 큰 규모와 영향력을 지닌 반도체 패키징 기술 관련 학회로, 지난 2002년부터 국제전기전자공학자협회(IEEE) Electronic Packaging Society가 매년 주최하고 있다. 주로 전기 공학 분야에서 활동하는 학계 연구자와 산업계 엔지니어가 참석하며, 칩(Chip) 설계, 시스템인 패키지·시스템 온 패키지(Sip/Sop), 전자파 간섭·전자 적합성(EMI/EMC), 설계 자동화 프로그램(EDA) 툴(Tool) 및 3D-IC 및 실리콘 관통 전극(TSV) 설계 등 반도체 패키징의 전반적인 분야에 대해, 연구 결과를 공유하고 산업계의 요구사항을 반영한 연구를 진행할 수 있는 기회를 제공하는 것으로 유명하다. EDAPS 학회는 매년 열리는 학회 마지막 날, 해당 연도에 제출된 논문 중 최우수 논문상, 최우수 학생 논문상과 최우수 포스터 상 등 3개 부문의 수상 논문을 뽑아 발표한다. “김태수 석사과정 학생은 지난 12월 17일부터 사흘간 인도 벵갈루루에서 열린 ‘EDAPS 2024’ 국제학회에서 ‘Twin Tower HBM’이란 주제의 논문으로 2024년에 출판된 40여 편의 논문 중 해당 분야의 기술혁신에 기여한 점을 인정받아 ‘EDAPS 2024 전체 최우수 논문상(Best Paper Award)’을 수상했다”고 관계자는 설명했다. 김태수 학생이 ‘Twin Tower HBM’이라는 주제로 최우수 논문상을 수상한 이 논문은 마치 쌍둥이 빌딩처럼 두 개의 DRAM 스택을 단일 베이스 다이(Base Die)에 통합해 메모리 용량을 기존 대비 2배로 확대하는 한편 대역폭을 27.9% 향상시켰으며, 신호 무결성 검증을 위해 채널 설계 최적화와 3D EM 시뮬레이션을 병행한 내용으로 큰 주목을 받았다. 특히 김태수 학생은 생성형 AI의 초거대 모델을 효과적으로 지원하기 위해 기존 메모리 용량과 대역폭의 한계를 수평적으로(Horizontally) 확장하는 방식으로 극복한 독창적인 연구를 수행했다는 점에서 심사위원들로부터 높은 평가를 받은 것으로 알려졌다. 김태수 학생은 “이번 연구의 주제와 내용을 정리하는데 ‘HBM의 아버지’로 불리는 김정호 교수님의 지도와 함께 올 6월부터 4개월간 미국 실리콘밸리에 위치한 삼성전자 미주법인(DSA)에서의 인턴 생활 경험이 많은 도움이 됐다”면서, 앞으로 HBM 중심 컴퓨팅(HCC: HBM Centric Computing)을 수립하는 데 도움을 줄 수 있을 것”이라고 기대했다. 그는 이어 “AGI(인공 일반 지능, Artificial General Intelligence) 실현을 위해 SiP(시스템인 패키지) 기반의 칩렛(Chiplet) 구조와 하드웨어-소프트웨어 협업 설계를 더욱 심화하여 차세대 인공지능 플랫폼의 토대를 마련하겠다”고 포부를 밝혔다. 한편, 김정호 교수 연구실(TERA Lab)에는 올 12월 말 현재 석사과정 12명, 박사과정 14명 등 모두 26명의 학생이 반도체 전·후공정에 들어가는 다양한 패키지와 인터커넥션 설계를 강화·모방 학습과 같은 인공지능(AI) 머신러닝(ML)을 활용해 최적화하는 연구를 수행 중이다. 김정호 교수 연구실은 이번 김태수 석사과정 학생의 수상 외에도 지난 2021년 신태인 박사과정 학생이 ‘EDAPS 2021 전체 최우수 논문상’을 수상한 바 있다. 이밖에 같은 해(2021년)에 반도체 설계 분야에서 세계적으로 권위를 인정받고 있는 국제학술대회‘디자인콘(DesignCon)’에서도 김민수 석사과정 학생이‘최우수 논문상’을, 그리고 2023년 말에는 전체 수상자 총 8명 중 김성국·최성욱·신태인·김혜연 박사과정 학생 등 4명이 동시에 최우수 논문상을 받아 큰 화제를 모은 바 있다.
2024.12.26
조회수 4547
기존보다 5배 정밀하게 생체 임피던스 측정 가능
‘인바디(InBody)’란 기기로 체성분을 분석하는 것은 이제 우리의 일상이 되었다. 이렇듯 몸에 교류 전류를 흘릴 때 전류 흐름을 방해하는 인체의 저항 특성인 생체 임피던스* 측정 기술은 웨어러블 기기에 매우 중요하다. 국제 공동 연구진이 단 두 개의 전극만을 사용하면서도 기존보다 5배 정밀하게 생체 임피던스를 측정할 수 있는 기술을 개발해 화제다. *생체 임피던스 측정 기술 : 생체 조직의 전기적 특성을 기반으로 체내의 다양한 생리적 상태를 모니터링할 수 있는 핵심 기술 우리 대학 전기및전자공학부 제민규 교수 연구팀이 뉴욕대학교 아부다비(New York University Abu Dhabi, NYUAD) 하소명 교수 연구팀과 공동연구를 통해 웨어러블 기기에 최적화된 고해상도 생체 임피던스 측정 기술을 개발했다고 26일 밝혔다. 생체 임피던스 측정 기술로 잘 알려진 기존 4개 전극 시스템*에 비해 2개 전극 기반 측정 시스템**은 소형화가 쉽다는 장점으로 웨어러블 기기에 적합하다고 평가받고 있다. *4개 전극 시스템: 생체 임피던스를 측정하기 위해 네 개의 전극을 사용하는 시스템으로 웨어러블 기기의 소형화에 불리함 **2개 전극 시스템: 단 두 개의 전극만을 사용하여 생체 임피던스를 측정할 수 있는 시스템으로 웨어러블 기기의 소형화에 적합함 하지만, 2개 전극 시스템은 전극 자체의 임피던스 값이 포함된 신호를 측정하기 때문에 넓은 입력 범위가 필요하며, 측정하는 임피던스 값에 비례해 정확한 측정을 방해하는 잡음이 증가하는 한계로 활용이 어려웠다. 연구팀은 기존 2개 전극 시스템의 기술적 한계를 극복하기 위해 전극 자체의 임피던스 값인 베이스라인과 그에 의해 발생하는 측정 잡음을 기존보다 훨씬 효과적으로 제거할 수 있는 반도체 회로 설계 기술을 새롭게 개발했다. 이번에 제안된 기술을 적용한 시스템은 기존 기술 적용 시 필요로 하던 별도의 전류 생성 회로를 없앨 수 있어 전력 소모 역시 줄일 수 있다. 이런 기술을 통해 생체 임피던스 측정 과정에서 발생하는 임피던스의 위상 및 크기 변화에 따른 잡음 문제를 효과적으로 해결해, 높은 정밀도와 효율성을 동시에 확보했다. 제민규 교수(교신저자)는 “이번 연구로 개발된 생체 임피던스 측정 기술은 다양한 임피던스 모델에 대해 기존의 방식 대비 최대 약 5배 가량 우수한 잡음 성능을 달성하였음을 입증했다”면서 “향후 생체 임피던스 측정을 활용한 개인 맞춤형 건강 관리와 질환 예측 기술 발전에 크게 기여할 것”이라고 말했다. 우리 대학 전기및전자공학부 최해담, 천송이 박사과정이 공동 제1 저자, 제민규 교수와 NYUAD 하소명 교수가 공동 교신 저자로 참여했으며 해당 논문은 세계 최고 권위의 반도체 집적회로 및 시스템 학회인 ‘ISSCC (International Solid-State Circuits Conference)’에 발표됐으며, 동 분야 세계 최고 학술지인 ‘IEEE JSSC (Journal of Solid-State Circuits)’의 초청을 받아 지난 11월 게재됐다. IEEE Journal of Solid-State Circuits (2024), DOI:10.1109/JSSC.2024.3439865 (논문명: A Bio-Impedance Readout IC With Complex-Domain Noise-Correlated Baseline Cancellation) 한편 이번 연구는 NYUAD (New York University Abu Dhabi)와의 협업으로 진행됐으며, 과학기술정보통신부가 지원한 ‘상시 근골격 모니터링 및 재활을 위한 무자각 온스킨 센서 디바이스 기술’과제와 ‘인간 기능 확장을 위한 생체 신호 센서 기반의 내골격 장치 및 통합 시스템 개발’ 과제를 통해 수행됐다.
2024.12.26
조회수 4957
인간의 인지 방식과 유사한 AI 모델 개발
우리 연구진이 인간의 인지 방식을 모방해 이미지 변화를 이해하고, 시각적 일반화와 특정성을 동시에 확보하는 인공지능 기술을 개발했다. 이 기술은 의료 영상 분석, 자율주행, 로보틱스 등 다양한 분야에서 이미지를 이해하여 객체를 분류, 탐지하는 데 활용될 전망이다. 우리 대학 전기및전자공학부 김준모 교수 연구팀이 변환 레이블(transformational labels) 없이도 스스로 변환 민감 특징(transformation-sensitive features)을 학습할 수 있는 새로운 시각 인공지능 모델 STL(Self-supervised Transformation Learning)을 개발했다고 13일 밝혔다. 연구팀이 개발한 시각 인공지능 모델 STL은 스스로 이미지의 변환을 학습하여, 이미지 변환의 종류를 인간이 직접 알려주면서 학습하는 기존 방법들보다 높은 시각 정보 이해 능력을 보였다. 특히, 기존 방법론들을 통해 학습한 모델이 이해할 수 없는 세부적인 특징까지도 학습하여 기존 방법 대비 최대 42% 우수한 성능을 보여줬다. 컴퓨터 비전에서 이미지 변환을 통한 데이터 증강을 활용해 강건한 시각 표현을 학습하는 방식은 일반화 능력을 갖추는 데 효과적이지만, 변환에 따른 시각적 세부 사항을 무시하는 경향이 있어 범용 시각 인공지능 모델로서 한계가 있다. 연구팀이 제안한 STL은 변환 라벨 없이 변환 정보를 학습할 수 있도록 설계된 새로운 학습 기법으로, 라벨 없이 변환 민감 특징을 학습할 수 있다. 또한, 기존 학습 방법 대비 학습 복잡도를 유지한 채로 효율적인 최적화할 수 있는 방법을 제안했다. 실험 결과, STL은 정확하게 객체를 분류하고 탐지 실험에서 가장 낮은 오류율을 기록했다. 또한, STL이 생성한 표현 공간은 변환의 강도와 유형에 따라 명확히 군집화되어 변환 간 관계를 잘 반영하는 것으로 나타났다. 김준모 교수는 "이번에 개발한 STL은 복잡한 변환 패턴을 학습하고 이를 표현 공간에서 효과적으로 반영하는 능력을 통해 변환 민감 특징 학습의 새로운 가능성을 제시했다”며, "라벨 없이도 변환 정보를 학습할 수 있는 기술은 다양한 AI 응용 분야에서 핵심적인 역할을 할 것”이라고 말했다. 우리 대학 전기및전자공학부 유재명 박사과정이 제1 저자로 참여한 이번 연구는 최고 권위 국제 학술지 ‘신경정보처리시스템학회(NeurIPS) 2024’에서 올 12월 발표될 예정이다.(논문명: Self-supervised Transformation Learning for Equivariant Representations) 한편 이번 연구는 이 논문은 2024년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구 성과물(No.RS-2024-00439020, 지속가능한 실시간 멀티모달 인터렉티브 생성 AI 개발, SW스타랩) 이다.
2024.12.15
조회수 4884
전기및전자공학부 이현주 교수, 대한치료초음파학회 젊은 연구자상 수상
우리 대학 전기및전자공학부의 이현주 교수가 2024년 대한치료초음파학회에서 ‘젊은 연구자상’을 수상했다. 이 상은 치료 초음파 분야에서 우수한 연구 성과를 이룬 젊은 연구자를 격려하기 위해 제정된 상으로, 만 43세 이하 연구자 중 한 명에게 수여된다. 대한치료초음파학회는 치료 초음파 기술의 학문적 발전과 기술 혁신을 목표로 설립된 학술 단체다. 초음파를 활용한 진단 및 치료 기술의 연구와 임상 적용을 활성화하고, 관련 학문 분야 간의 융합과 교류를 촉진하기 위해 다양한 활동을 펼치고 있다. 특히, 치료 초음파는 초음파 에너지를 이용해 조직을 자극하거나 병변을 치료하는 기술로, 암 치료, 신경 자극, 혈전 용해 등 다양한 의학적 분야에서 혁신적인 해결책을 제시하며 주목받고 있다. 학회는 이러한 치료 초음파 기술의 학문적 기반을 강화하고, 연구자와 의료진 간의 협력을 지원함으로써 의료 기술의 발전과 환자 삶의 질 향상에 기여하고자 한다. 이현주 교수는 신경 인터페이스와 뇌-컴퓨터 인터페이스 연구를 수행하며, 양방향 신경 인터페이스 및 뇌질환 치료를 위한 비침습적 뇌 자극 기술을 초음파로 개발하는 데 주력해왔다. 이번 수상을 통해 이 교수는 치료 초음파 분야에서의 연구 성과를 인정받았으며, 차세대 리더로서의 역할이 기대되고 있다.
2024.11.27
조회수 3564
초박막으로 초고해상도 이미지 즐긴다
한미 공동 연구진이 기존 센서 대비 전력 효율이 높고 크기가 작은 고성능 이미지 센서를 구현할 수 있는 차세대 고해상도 이미지 센서 기술을 개발했다. 특히 세계 시장에서 소니(Sony)社가 주도하고 있는 초고해상도 단파적외선(SWIR) 이미지 센서 기술에 대한 원천 기술을 확보해 향후 시장 진입 가능성이 크다. 우리 대학 전기및전자공학부 김상현 교수팀이 인하대, 미국 예일대와 공동연구를 통해 개발한 초박형 광대역 광다이오드(PD)가 고성능 이미지 센서 기술에 새로운 전환점을 마련했다고 20일 밝혔다. 이번 연구는 광다이오드의 기존 기술에서 나타나는 흡수층 두께와 양자 효율 간의 상충 관계를 획기적으로 개선한 것으로, 특히 1마이크로미터(μm) 이하의 얇은 흡수층에서도 70% 이상의 높은 양자 효율을 달성했다. 이 성과는 기존 기술의 흡수층 두께를 약 70% 줄이는 결과를 가져왔다. 흡수층이 얇아지면 화소 공정이 간단해져 높은 해상도 달성이 가능하고 캐리어 확산이 원활해져 광캐리어 획득에 유리한 장점이 있다. 더불어 원가도 절감이 가능하다. 그러나 일반적으로 흡수층이 얇아지면 장파장의 빛의 흡수는 줄어들게 되는 본질적인 문제가 존재한다. 연구진은 도파 모드 공명(GMR)* 구조를 도입해 400나노미터(nm)에서 1,700 나노미터(nm)에 이르는 넓은 스펙트럼 범위에서 고효율의 광 흡수를 유지할 수 있음을 입증했다. 이 파장 대역은 가시광선 영역뿐만 아니라 단파 적외선(SWIR) 영역까지 포함해 다양한 산업적 응용에서 중요한 역할을 할 것으로 기대된다. *도파 모드 공명: 전자기학에서 사용하는 개념으로 특정 파동(빛)이 특정 파장에서 공명 (강한 전기/자기장 형성)하는 현상. 해당 조건에서 에너지가 최대화되기 때문에 안테나나 레이더 효율을 높이는데 활용된 바 있음. 단파 적외선 영역에서의 성능 향상은 점점 고해상도화되는 차세대 이미지 센서의 개발에도 중대한 기여를 할 것으로 예상된다. 특히, 도파 모드 공명 구조는 상보적 금속산화물 반도체(CMOS) 기반의 신호 판독 회로(ROIC)와의 하이브리드 집적, 모놀리식 3D 집적을 통해 해상도 및 기타 성능을 더욱 높일 가능성을 가진다. 연구팀은 저전력 소자 및 초고해상도 이미징 기술에 대한 국제 경쟁력을 높여 디지털카메라, 보안 시스템, 의료 및 산업용 이미지 센서 응용 분야부터 자동차 자율 주행, 항공 및 위성 관측 등 미래형 초고해상도 이미지 센서의 실현 가능성을 크게 높였다. 연구 책임자인 김상현 교수는 "이번 연구를 통해 초박막 흡수층에서도 기존 기술보다 훨씬 높은 성능을 구현할 수 있음을 입증했다”며, "특히 세계 시장에서 소니(Sony)社가 주도하고 있는 초고해상도 단파적외선(SWIR) 이미지 센서 기술에 대한 원천 기술을 확보해 향후 시장 진입 가능성을 열었다”고 설명했다. 이번 연구 결과는 인하대학교 금대명 교수(前 KAIST 박사후 연구원), 임진하 박사(現 예일대학교 박사후 연구원)이 공동 제1 저자로 참여해 국제 저명 학술지인 ‘빛, 과학과 응용(Light: Science & Applications, JCR 2.9%, IF=20.6)’에 11월 15일자 발표됐다. (논문제목: Highly-efficient (>70%) and Wide-spectral (400 nm -1700 nm) sub-micron-thick InGaAs photodiodes for future high resolution image sensors) 한편, 해당 연구는 한국연구재단의 지원을 받아 진행됐다.
2024.11.20
조회수 6823
제1회 한국인공지능시스템포럼(이하 KAISF) 조찬 강연회 개최
우리 대학이 12일(화) 오전 대전 인터시티호텔에서 ‘제1회 한국인공지능시스템포럼(이하 KAISF) 조찬 강연회’를 개최했다. 이는 우리 대학 인공지능반도체대학원이 AI 기술에 관련 미래와 혁신 등에 대해 다양한 분야의 전문가들이 함께 논의하는 장을 열고자 추진됐다. 총 77명의 전문가가 참석한 이번 행사에는 이광형 총장, 홍진배 정보통신기획평가원장, 방승찬 한국전자통신연구원장 등이 축사를 전했다. 이어서 ▲칩렛 이종 집적 첨단 패키지 기반 페타플롭스급 고성능 PIM 설계(한진호 한국전자통신연구원 PIM인공지능반도체연구실장) ▲자율주행·자율 행동체 연구개발사업 소개(최정단 한국전자통신연구원 모빌리티로봇연구본부장)에 대해 발표했다. 이후 인공지능 반도체 설계 전문 기업인 리벨리온(Rebellions)의 박성현 대표가 ‘인공지능 반도체와 리벨리온의 여정’을 주제로 강연을 진행했다. 박성현 리벨리온 대표는 강연에서 “AI 반도체의 발전은 단순히 기술적인 변화가 아닌 세계를 기반으로 한 기술 경쟁을 새롭게 구축하는 패러다임의 변화”임을 강조했다.d 유회준 인공지능반도체대학원장 및 KAISF 의장은 “본 행사는 거대언어 모델을 비롯한 생성형 AI 기술이 우리의 삶과 사회를 변화시키는 핵심 동력임을 확인하는 장이다. AI는 반도체, 알고리즘·소프트웨어, 응용 시스템 총 3가지 기술을 동시에 최적화해야 하는 복잡하고 중요한 기술”이라고 말했다. 이어 “KAISF는 종합 AI 연구를 바탕으로 사회, 산업, 국방을 첨단화하고, 우리나라의 국가경쟁력을 강화해 글로벌 AI 선도국으로 자리매김하도록 최선을 다할 것”이라고 포부를 밝혔다. 한편, KAISF는 제1회 조찬 강연회를 시작으로 AI 혁신을 이끄는 플랫폼으로서 최신 동향을 공유하는 포럼과 산학연 협력 강화 프로그램 등 다양한 활동을 본격적으로 펼칠 예정이다.
2024.11.12
조회수 4249
페로브스카이트 태양전지의 한계를 극복하다
전체 태양 에너지의 약 52%를 활용하지 못하는 문제점을 가진 기존 페로브스카이트 태양전지가 한국 연구진에 의해 근적외선 광 포집 성능을 극대화하면서도 전력 변환 효율을 크게 향상하는 혁신기술로 개발되었다. 이는 차세대 태양전지의 상용화 가능성을 크게 높이며, 글로벌 태양전지 시장에서 중요한 기술적 진전에 기여할 것으로 보인다. 우리 대학 전기및전자공학부 이정용 교수 연구팀과 연세대학교 화학과 김우재 교수 공동 연구팀이 기존 가시광선 영역을 뛰어넘어 근적외선 광 포집을 극대화한 고효율·고안정성 유무기 하이브리드 태양전지 제작 기술을 개발했다고 31일 밝혔다. 연구팀은 가시광선 흡수에 한정된 페로브스카이트 소재를 보완하고, 근적외선까지 흡수 범위를 확장하는 유기 광반도체와의 하이브리드 차세대 소자 구조를 제시하고 고도화했다. 또한, 해당 구조에서 주로 발생하는 전자구조 문제를 밝히고 다이폴 층*을 도입해 이를 획기적으로 해결한 고성능 태양전지 소자를 발표했다. *다이폴(쌍극자) 층: 소자 내 에너지 준위를 조절해 전하 수송을 원활하게 하고, 계면의 전위차를 형성해 소자 성능을 향상하는 역할을 하는 얇은 물질 층임 기존 납 기반 페로브스카이트 태양전지는 850나노미터(nm) 이하 파장의 가시광선 영역에만 흡수 스펙트럼이 제한돼 전체 태양 에너지의 약 52%를 활용하지 못하는 문제가 있다. 이를 해결하기 위해 연구팀은 유기 벌크 이종접합(BHJ)을 페로브스카이트와 결합한 하이브리드 소자를 설계, 근적외선 영역까지 흡수할 수 있는 태양전지를 구현했다. 특히, 나노미터 이하 다이폴 계면 층을 도입해 페로브스카이트와 유기 벌크 이종접합(BHJ) 간의 에너지 장벽을 완화하고 전하 축적을 억제, 근적외선 기여도를 극대화하고 전류 밀도(JSC)를 4.9 mA/cm²향상하는 데 성공했다. 이번 연구의 핵심 성과는 하이브리드 소자의 전력 변환 효율(PCE)을 기존 20.4%에서 24.0%로 대폭 높인 것이다. 특히, 이번 연구는 기존 연구들과 비교했을 때, 높은 내부 양자 효율(IQE)을 달성하며 근적외선 영역에서 78%에 달하는 성과를 기록했다. 또한, 이 소자는 높은 안정성을 보여, 극한의 습도 조건에서도 800시간 이상의 최대 출력 추적에서 초기 효율의 80% 이상을 유지하는 우수한 결과를 보였다. 이정용 교수는 “이번 연구를 통해 기존 페로브스카이트/유기 하이브리드 태양전지가 직면한 전하 축적 및 에너지 밴드 불일치 문제를 효과적으로 해결하였고 근적외선 광 포집 성능을 극대화하면서도 전력 변환 효율을 크게 향상시켜 기존 페로브스카이트가 가진 기계적-화학적 안정성 문제를 해결하고 광학적 한계를 뛰어넘을 수 있는 새로운 돌파구가 될 것”이라고 말했다. 전기및전자공학부 이민호 박사과정과 김민석 석사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스트 머티리얼스(Advanced Materials)' 9월 30일 자 온라인판에 게재됐다. (논문명 : Suppressing Hole Accumulation Through Sub-Nanometer Dipole Interfaces in Hybrid Perovskite/Organic Solar Cells for Boosting Near-Infrared Photon Harvesting). 한편 이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2024.10.31
조회수 7510
인공지능으로 고성능 양자물성 계산시간 획기적 단축
인공지능과 고성능 과학계산 간의 밀접한 관련성은 최근 2024년도 노벨 물리학상과 화학상이 동시에 수상된 것을 보면 알 수 있다. 우리 연구진이 인공지능을 활용하여 3차원 공간에 분포하는 원자 수준의 화학결합 정보를 예측하여 양자역학적 고성능 컴퓨터 시뮬레이션의 계산 시간을 획기적으로 단축하는데 성공했다. 우리 대학 전기및전자공학부 김용훈 교수팀이 물질의 특성을 도출하기 위해 슈퍼컴퓨터를 활용해 수행되는 원자 수준 양자역학적 계산에 필요한 복잡한 알고리즘을 우회하는 3차원 컴퓨터 비전 인공신경망 기반 계산 방법론을 세계 최초로 개발했다고 30일 밝혔다. 슈퍼컴퓨터를 활용한 양자역학적 밀도범함수론(density functional theory, DFT)* 계산은 빠르면서도 정확하게 양자 물성을 예측할 수 있게 해 첨단 소재 및 약물 설계를 포함한 광범위한 연구·개발 분야에서 표준적인 도구로 자리 잡아 필수 불가결한 역할을 하고 있다. *밀도범함수론(DFT): 원자 단위에서부터 양자역학적으로 물성을 계산하는 제1원리 계산의 대표적인 이론 그러나 실제 밀도범함수론 계산에서는 3차원적인 전자밀도를 생성한 후 양자역학 방정식을 푸는 복잡한 자기일관장 과정(self-consistent field, SCF)*을 수십에서 수백 번씩 반복해야 해서 그 적용 범위가 수백~수천 개의 원자로 제한되는 한계가 있었다. *자기일관장(SCF): 상호 연결된 여러 개의 연립 미분 방정식으로 기술해야 하는 복잡한 다체 문제(many-body problem)를 해결하기 위해 널리 사용되는 과학계산법 김용훈 교수 연구팀은 자기일관장 과정을 최근 급속한 발전을 이룬 인공지능 기법으로 회피하는 것이 가능한지 질문했다. 그 결과 3차원 공간에 분포된 화학 결합 정보를 컴퓨터 비전 분야의 신경망 알고리즘을 통해 학습해 계산을 가속화하는 딥SCF(DeepSCF) 모델을 개발했다. 연구진은 밀도범함수론에 따라 전자밀도가 전자들의 양자역학적 정보를 모두 포함하고 있으며 이에 더해 전체 전자밀도와 구성 원자들의 전자밀도의 합 간의 차이인 잔여 전자밀도가 화학결합 정보를 담고 있는 점에 주목하고 기계학습의 목표물로 선정했다. 이후 다양한 화학결합 특성을 포함한 유기 분자들의 데이터 세트를 채택했고 그 안에 포함된 분자들의 원자구조들에 임의의 회전과 변형을 가해 모델의 정확도 및 일반화 성능을 더욱 높였다. 최종적으로 연구팀은 복잡하고 큰 시스템에 대해 딥SCF 방법론의 유효성 및 효율성을 입증했다. 이번 연구를 지도한 김용훈 교수는“3차원 공간에 분포된 양자역학적 화학결합 정보를 인공 신경망에 대응시키는 방법을 찾았다”며 “양자역학적 전자구조 계산이 모든 스케일의 물성 시뮬레이션의 근간이 되므로 인공지능을 통한 물질 계산 가속화의 전반적인 기반 원리를 확립한 것”이라고 연구의 의의를 부여했다. 전기및전자공학부 이룡규 박사과정이 제 1저자로 수행한 이번 연구는 소재 계산 분야의 권위 있는 학술지 '네이쳐 파트너 저널 컴퓨테이셔널 머터리얼즈(Npj Computational Materials)'에 10월 24일 字 온라인판에 게재됐다. (논문명 : Convolutional network learning of self-consistent electron density via grid-projected atomic fingerprints) 한편, 이번 연구는 KAIST 석박사 모험사업, 한국연구재단 중견연구자지원사업 등의 지원을 받아 수행되었다.
2024.10.30
조회수 6351
전기및전자공학부 명현 교수, 2024 한빛대상 수상
우리 대학 명현 전기및전자공학부 교수가 ‘2024 한빛대상’을 수상했다. 올해로 20주년을 맞은 ‘2024 한빛대상’은 한화그룹과 대전MBC가 공동으로 주관하는 시상식으로, 매년 충청 지역 각 분야의 발전에 공헌한 인물을 발굴해 포상하고 있다. 한빛대상은 크게 5개 분야 (과학기술, 교육/체육진흥, 문화예술, 사회봉사, 지역경제 발전 분야)의 수상자 1명씩을 선정하고 각 상금 1천만원과 상패를 수여한다. 올해는 특별히 특별상(파리올림픽 펜싱 2관왕 대전시청 오상욱 선수) 항목을 추가했다. 과학기술부문 수상자인 우리 대학 명현 전기및전자공학부 교수는 16년간 자율 주행, 자율 보행 등의 분야를 연구하여 해당 분야 발전에 기여했으며, 블라인드 보행 로봇 신기술인 '드림워크' 제어기를 개발하여 국제 사족로봇 자율보행 경진대회 우승을 이끈 공로를 인정받았다. 각 부문의 수상은 ▲명현 KAIST 교수(과학기술 부문) ▲배상목 청운대학교 교수(교육체육진흥 부문) ▲이환수 한국국악협회 대전광역시지회장(문화예술 부문) ▲여광조 밀알선교단 대표(사회봉사 부문) ▲길배수 주식회사 트라이포드 대표이사(지역경제발전 부문)가 차지했다. ‘2024 한빛대상’ 시상식은 10월 24일(목) 대전 MBC 공개홀에서 개최됐으며, 10월 29일(화) 금일 대전 MBC TV로 녹화 방영됐다.
2024.10.29
조회수 3972
소량의 전류로 전기차 배터리 정밀 진단 가능하다
전기차 배터리를 효율적으로 관리하고 안전하게 사용하기 위해서는 정확한 배터리 상태 진단이 필수적이다. 우리 연구진이 소량의 전류만을 사용해 높은 정밀도로 배터리의 상태를 진단하고 모니터링할 수 있는 기술을 개발하여 배터리의 장기적 안정성과 효율성을 극대화할 것으로 기대된다. 우리 대학 전기및전자공학부 권경하 교수와 이상국 교수 연구팀이 전기차 대용량 배터리의 안정성과 성능 향상에 활용할 수 있는 전기화학 임피던스 분광법(이하 EIS) 기술을 개발했다고 17일 밝혔다. EIS 기술은 배터리의 임피던스* 크기와 변화를 측정해 배터리 효율과 손실을 평가할 수 있는 강력한 도구로, 배터리의 충전 상태(state-of-charge; SOC) 및 건강 상태(state-of-health; SOH)를 평가하는 중요한 도구로 여겨진다. 또한 배터리의 열적 특성과 화학적/물리적 변화, 수명 예측, 고장의 원인을 식별하는 데 활용 가능하다. * 배터리 임피던스: 배터리 내부에서 전류 흐름에 저항하는 요소로, 이를 통해 배터리 의 성능과 상태를 평가할 수 있는 지표 그러나 기존 EIS 장비는 비용 및 복잡성이 높아 설치, 운영 및 유지 보수가 쉽지 않다. 또한, 감도 및 정밀도 제약으로 수 암페어(A)의 전류 교란을 배터리에 인가하는 과정에서 배터리에 큰 전기적 스트레스가 가해지기 때문에 배터리의 고장이나 화재 위험을 증가시킬 수 있어 활용이 어려웠다. 이에 연구팀은 고용량 전기차 배터리의 상태 진단 및 건강 모니터링을 위한 소전류 EIS 시스템을 개발하고 입증했다. 이 EIS 시스템은 낮은 (10mA) 전류 교란으로, 배터리의 임피던스를 정밀하게 측정할 수 있으며 측정 시 발생하는 열적 영향 및 안전 문제를 최소화한다. 추가로 부피가 크고 비용이 많이 드는 구성요소를 최소화해 차량 내 탑재가 용이한 설계다. 해당 시스템은 전기차 배터리의 여러 운영 조건(다양한 온도 및 배터리 잔존용량을 나타내는 SOC 레벨에서 배터리의 전기화학적 특성을 효과적으로 파악할 수 있음이 입증됐다. 권경하 교수(교신저자)는 "이 시스템은 전기차용 배터리 관리 시스템 (BMS)에 쉽게 통합 가능하며, 기존의 고전류 EIS 방식 대비 비용과 복잡성을 현저히 낮추면서도 높은 측정 정밀도를 입증했다ˮ면서 "전기차 뿐만 아니라 에너지저장시스템(ESS)의 배터리 진단 및 성능 향상에도 기여할 수 있을 것ˮ이라고 말했다. 이번 연구 결과는 국제 저명 학술지 `IEEE Transactions on Industrial Electronics (동 분야 상위 2%; IF 7.5)'에 지난 9월 5일 발표됐다. (논문명 : Small-Perturbation Electrochemical Impedance Spectroscopy System With High Accuracy for High-Capacity Batteries in Electric Vehicles, 링크: https://ieeexplore.ieee.org/document/10666864) 한편, 이번 연구는 과학기술정보통신부 한국연구재단의 기초연구사업, 산업통상자원부 한국산업기술기획평가원의 차세대지능형반도체기술개발사업 및 정보통신기획평가원의 인공지능반도체대학원사업의 지원을 받아 수행됐다.
2024.10.17
조회수 7487
고비용 인프라 없이 AI 학습 가속화 가능
우리 대학 연구진이 고가의 데이터센터급 GPU나 고속 네트워크 없이도 AI 모델을 효율적으로 학습할 수 있는 기술을 개발했다. 이 기술을 통해 자원이 제한된 기업이나 연구자들이 AI 연구를 보다 효과적으로 수행할 수 있을 것으로 기대된다. 우리 대학 전기및전자공학부 한동수 교수 연구팀이 일반 소비자용 GPU를 활용해, 네트워크 대역폭이 제한된 분산 환경에서도 AI 모델 학습을 수십에서 수백 배 가속할 수 있는 기술을 개발했다고 19일 밝혔다. 기존에는 AI 모델을 학습하기 위해 개당 수천만 원에 달하는 고성능 서버용 GPU(엔비디아 H100) 여러 대와 이들을 연결하기 위한 400Gbps급 고속 네트워크를 가진 고가 인프라가 필요했다. 하지만 소수의 거대 IT 기업을 제외한 대부분의 기업과 연구자들은 비용 문제로 이러한 고가의 인프라를 도입하기 어려웠다. 한동수 교수 연구팀은 이러한 문제를 해결하기 위해 '스텔라트레인(StellaTrain)'이라는 분산 학습 프레임워크를 개발했다. 이 기술은 고성능 H100에 비해 10~20배 저렴한 소비자용 GPU를 활용해, 고속의 전용 네트워크 대신 대역폭이 수백에서 수천 배 낮은 일반 인터넷 환경에서도 효율적인 분산 학습을 가능하게 한다. 기존의 저가 GPU를 사용할 경우, 작은 GPU 메모리와 네트워크 속도 제한으로 인해 대규모 AI 모델 학습 시 속도가 수백 배 느려지는 한계가 있었다. 하지만 연구팀이 개발한 스텔라트레인 기술은 CPU와 GPU를 병렬로 활용해 학습 속도를 높이고, 네트워크 속도에 맞춰 데이터를 효율적으로 압축 및 전송하는 알고리즘을 적용해 고속 네트워크 없이도 여러 대의 저가 GPU를 이용해 빠른 학습을 가능하게 했다. 특히, 학습을 작업 단계별로 CPU와 GPU가 나누어 병렬적으로 처리할 수 있는 새로운 파이프라인 기술을 도입해 연산 자원의 효율을 극대화했다. 또한, 원거리 분산 환경에서도 GPU 연산 효율을 높이기 위해, AI 모델별 GPU 활용률을 실시간으로 모니터링해 모델이 학습하는 샘플의 개수(배치 크기)를 동적으로 결정하고, 변화하는 네트워크 대역폭에 맞추어 GPU 간의 데이터 전송을 효율화하는 기술을 개발했다. 연구 결과, 스텔라트레인 기술을 사용하면 기존의 데이터 병렬 학습에 비해 최대 104배 빠른 성능을 낼 수 있는 것으로 나타났다. 한동수 교수는 "이번 연구가 대규모 AI 모델 학습을 누구나 쉽게 접근할 수 있게 하는 데 큰 기여를 할 것"이라고 밝혔다. “앞으로도 저비용 환경에서도 대규모 AI 모델을 학습할 수 있는 기술 개발을 계속할 계획이다”라고 말했다. 이번 연구는 우리 대학 임휘준 박사, 예준철 박사과정 학생, UC 어바인의 산기타 압두 조시(Sangeetha Abdu Jyothi) 교수와 공동으로 진행됐으며, 연구 성과는 지난 8월 호주 시드니에서 열린 ACM SIGCOMM 2024에서 발표됐다. 한편, 한동수 교수 연구팀은 2024년 7월 GPU 메모리 한계를 극복해 소수의 GPU로 거대 언어 모델을 학습하는 새로운 기술도 발표했다. 해당 연구는 최신 거대 언어 모델의 기반이 되는 전문가 혼합형(Mixture of Expert) 모델을 제한된 메모리 환경에서도 효율적인 학습을 가능하게 한다. 이 결과 기존에 32~64개 GPU가 필요한 150억 파라미터 규모의 언어 모델을 단 4개의 GPU만으로도 학습할 수 있게 됐다. 이를 통해 학습의 필요한 최소 GPU 대수를 8배~16배 낮출 수 있게 됐다. 해당 논문은 KAIST 임휘준 박사와 김예찬 연구원이 참여했으며, 오스트리아 빈에서 열린 AI 분야 최고 권위 학회인 ICML에 발표됐다. 이러한 일련의 연구 결과는 자원이 제한된 환경에서도 대규모 AI 모델 학습이 가능하다는 점에서 중요한 의미를 가진다. 해당 연구는 과학기술정보통신부 한국연구재단이 주관하는 중견연구사업 (RS-2024-00340099), 정보통신기획평가원(IITP)이 주관하는 정보통신·방송 기술개발사업 및 표준개발지원사업 (RS-2024-00418784), 차세대통신클라우드리더십구축사업 (RS-2024-00123456), 삼성전자의 지원을 받아 수행됐다.
2024.09.19
조회수 6365
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 29