본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%A0%84%EA%B8%B0%EB%B0%8F%EC%A0%84%EC%9E%90%EA%B3%B5%ED%95%99%EB%B6%80
최신순
조회순
전기및전자공학부 최재혁 교수팀, '제22회 대한민국 반도체 설계대전' 대통령상 수상
우리 대학 전기및전자공학부 최재혁 교수 연구실(연구실명: 집적회로 시스템 연구실, Integrated Circuits and System Lab)에서 ‘제22회 대한민국 반도체 설계대전’의 대통령상 수상자를 배출했다. ‘제22회 대한민국 반도체 설계대전’은 산업통상자원부와 한국반도체산업협회가 공동으로 주관하는 반도체 설계 전문 공모전으로, 반도체 설계분야 대학(원)생들의 설계 능력을 배양하고, 창의적인 아이디어를 발굴하는 것을 목표로 한다. 대통령상 수상자는 최재혁 교수 연구실의 박선의 박사과정, 조윤서 박사과정, 방주은 박사과정 학생으로 6G 통신에서 통신을 방해하는 잡음(noise)을 획기적으로 낮추는 ‘초 저잡음 신호’를 생성할 수 있는 CMOS(상보형금속산화반도체) 공정 기반의 칩을 개발해 대통령상에 선정됐다. 6G 통신은 최대 20 기가bps(Gbps)의 전송 속도를 갖는 5G 통신 대비 최대 50배 빠른 1 테라bps(Tbps)를 목표로 연구가 진행되고 있다. 일반적으로 통신 주파수 대역이 올라갈수록 넓은 통신 대역폭을 사용할 수 있어 데이터 전송 속도를 높일 수 있기 때문에, 6G 통신에서 요구하는 높은 데이터 전송 속도를 위해서는 100 기가헤르츠(GHz) 이상 주파수 대역의 사용이 필수적이다. 하지만, 이러한 높은 주파수 대역에서 반송파로 사용될 수 있는 정확한 기준 신호를 CMOS 공정을 이용해 만드는 것은 큰 난제였다. CMOS 공정이 초소형, 저전력 디자인에 유리함에도 불구하고, 그 동작 주파수와 고주파 대역 이득(gain)에 한계가 있고, 저잡음 특성이 SiGe, InP 등의 현존하는 다른 공정에 비해 불리하기 때문에 100 기가헤르츠(GHz) 이상의 주파수 대역에서 초 저잡음 성능을 달성하기 어려웠기 때문이다. 하지만, 최재혁 교수팀 학생들이 개발한 칩에서는 이러한 한계를 극복하고, CMOS 공정을 사용해 처음으로 100 기가헤르츠(GHz) 이상 대역에서 고차 변‧복조 기술을 지원할 수 있는 초 저잡음 신호 생성 기술을 선보였다. 이 기술은 CMOS 공정 기반으로도 6G 통신에서 요구하는 초 저잡음 성능을 달성할 수 있다는 것을 보여줌으로써, 장차 상용화될 6G 통신 칩의 가격 경쟁력과 집적도를 높이는 데 기여할 것으로 기대된다. 대통령상 수상팀에게는 상금 500만 원과 부상이 수여되며, 시상식은 11월 22일 코엑스에서 진행된다.
2021.11.22
조회수 6270
국제 컴퓨터 기술 활용 협업 및 소셜 컴퓨팅 학술대회 최우수논문상 수상
우리 대학 전기및전자공학부 이성주 교수 연구팀이 지난 10월 23일부터 10월 27일에 열린 세계컴퓨터연합회(ACM) 주최로 진행된 제24회 컴퓨터 기술활용 협업 및 소셜 컴퓨팅 학술대회(International Conference on Computer-Supported Cooperative Work and Social Computing, 이하 CSCW)에서 최우수 논문상과 방법론 우수상을 수상했다고 18일 밝혔다. CSCW 는 1986년에 시작됐으며 집단과 공동체를 위한 기술을 디자인하고 활용하는 연구 분야에 초점을 맞추고 있으며, 인간-컴퓨터 상호작용(Human Computer Interaction, HCI)과 소셜 컴퓨팅 분야의 최우수 학회 중 하나로 오래동안 각광받고 있다. 올해 340개의 논문이 발표되며, 최우수 논문상은 제출된 논문의 최상위 1% 논문에만 주어진다. 또한, 방법론 우수상은 올해 신설된 상으로, 획기적인 방법론을 제시하고 구현한 논문에게 주어진다. 이번 논문(Reflect, not Regret: Understanding Regretful Smartphone Use with App Feature-Level Analysis)은 조현성 우리 대학 졸업생 (現 미국 카네기멜론대학교 박사과정), 최다은 학사과정, 김동휘 박사과정, 강완주 박사과정, 최은경 미국 메릴랜드 대학 교수가 참여했다. 연구팀은 스마트폰 화면의 사용자 인터페이스(User Interface) 배치를 기반으로, 사용자가 모바일 애플리케이션 내의 어떤 형태(feature)를 사용하는지 추출해 분석하는 방법론을 개발했다. 예를 들면, 인스타그램 앱에서, 팔로잉 포스트, 팔로잉 스토리 보기, 검색, 대화창 등 다양한 형태(feature)가 존재하는데, 형태별로 세분화된 스마트폰 사용 분석을 가능하게 했다. 이 기술을 기반으로, 특정 형태 사용 패턴은 후회가 되는 스마트폰 사용에 영향을 준다는 것을 밝혔다. 이성주 교수는 "많은 사람들이 스마트폰을 편리하게 사용하지만 과도한 사용으로 문제가 제기되고 있고, 앱 안의 다양한 형태로 세분화한 사용 분석을 가능하게 한 독창적 방법론이 학문적으로 인정받았다ˮ며 "현실적으로 디지털 웰빙에 기여할 수 있다는 점이 높게 평가되어 수상하게 된 것 같다ˮ라고 소감을 밝혔다. 우리 대학 전기및전자공학부 학부장 강준혁 교수는 이성주 교수와 학부생이 포함된 연구팀의 세계적 학술대회 수상을 더욱 높이 평가했다. 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단과 정보통신기술진흥센터의 지원을 받아 수행됐다.
2021.11.18
조회수 8630
최성율 교수, 2021 소부장 산업공헌 유공 국무총리표창 수상
우리 대학 전기및전자공학부 최성율 교수(소재부품장비 기술자문단장 및 기술가치창출원장)가 10월 13일부터 15일까지 일산 킨텍스에서 열린 2021 소부장 뿌리기술대전 시상식에서 소재부품장비(소부장) 산업공헌 유공 국무총리 표창을 수상했다. 소부장 산업공헌 유공 포상은 국내 소재부품장비 산업 발전 및 기술혁신, 소부장 육성 정책의 수립·시행 및 현안 해결에 기여한 유공자에게 주어지는 상이며, 최성율 교수는 2019년 출범한 우리 대학 소부장 기술자문단의 단장으로서, 기업지원 협력체계를 구축하고 소부장 산업 경쟁력 강화를 위한 정책 발굴에 노력해왔다. 최성율 단장을 중심으로 우리 대학 전·현직 교수 155인이 기업의 기술애로점에 대한 선제적·전방위적·전주기적 기술자문을 수행하고 있는 기술자문단은, 일본의 수출규제와 화이트리스트 배제 조치에 영향을 받는 중소·중견기업이 적극적으로 대응할 수 있는 창구를 제공하기 위해 국내 최초의 소부장 산업기술 전담 자문조직으로 출범하였으며, 출범 이후부터 현재까지 75개 기업을 대상으로 100회 이상 자문을 수행했다. 최성율 단장은 과학기술정보통신부 국가연구협의체(N-TEAM) 사업단장, 산업통상자원부 대학 소재부품장비 기술전략자문단 단장으로 소부장 지원 국가과제 수행을 이끌며 국내 소부장 분야 중소·중견기업의 기술애로 해소에도 크게 기여하고 있다. 또한 금년도부터 최성율 단장이 기술가치창출원장 역할을 수행함으로써 기관 차원의 전사적, 전주기적 지원체계를 구축하고 있다. 이 외에도 소부장 경쟁력강화위원회, 대중소기업 상생협의회, 국가연구인프라 위원회 등 다양한 국가 정책 위원회 활동을 통해 정부의 소부장 산업 정책 발굴에 기여하고 있으며, 한국지식재산보호원과 협력해 국내 소부장 기업의 지식재산권 보호 및 분쟁 대응 지원에도 앞장서고 있다. 최성율 단장은 "이번 국무총리 표창 수상은 개인의 성과이기보다는 기술자문단에 참여해 주시고 지원해 주신 우리 교수님들과 구성원을 대표해서 받는 것이라 생각한다. 일본의 수출규제와 이후 팬데믹으로 인한 글로벌 밸류체인 교란으로 어려움을 겪는 중소·중견기업을 돕기 위해 출범한 기술자문단에 헌신적으로 참여해 주신 교수님들과 사무국 직원들, 그리고 성원해 주신 모든 구성원들께 깊이 감사드린다"며, "앞으로도 우리나라 소부장 기업들이 글로벌 경쟁력 선도기업으로 발전하는데 도움이 되도록 더 노력하겠다"라고 전했다.
2021.10.21
조회수 7365
김수예, 우상현, 이해범 박사과정, '2021 구글 PhD 펠로우' 선정
우리 대학 전기및전자공학부 박사과정 김수예 학생(지도교수 김문철)과 우상현 학생(지도교수 권인소), 그리고, 김재철 AI대학원 박사과정 이해범 학생(지도교수 황성주)이 ‘2021 구글 PhD 펠로우’에 선정됐다. 구글 PhD 펠로우십은 컴퓨터과학과 관련된 유망 연구 분야에서 우수한 성과를 낸 대학원생을 지원하는 장학 프로그램으로 올해는 전 세계에서 75명이 선발됐다. 선정된 펠로우에게는 1만 달러의 장학금과 구글 각 분야 전문가 멘토와의 일대일 연구 토의, 피드백 등의 혜택이 주어진다. 김수예, 우상현 학생은 “기계 지각, 음성기술 및 컴퓨터 비전(Machine Perception, Speech Technology and Computer Vision)” 분야에서 펠로우로 선정됐다. 김수예 학생은 딥러닝 기반 이미지 및 영상 화질 개선, 우상현 학생은 컴퓨터비전 분야의 탁월한 연구 성과를 인정받아 선정됐다. 이해범 학생은 머신러닝(Machine Learning) 분야에서 메타학습 분야의 탁월한 연구 성과들을 인정받아 선정됐다. 김수예 학생은 딥러닝 기반 이미지 및 영상 화질 개선에 대한 탁월한 연구 성과를 인정받았다. 특히 초해상화와 HDR 영상 복원, 그리고, 초해상화와 프레임 보간을 동시에 처리하는 딥러닝 기반 방법을 각각 최초로 제안하는 등, 관련 연구 성과를 CVPR, ICCV, AAAI 등의 유수 컴퓨터 비전 및 인공지능(AI) 분야 국제학술대회에 발표했다. 또한 연구 인턴십을 통해 구글 리서치 및 어도비 리서치의 연구진과 협력하며 다양한 고품질 영상 변환 연구를 수행하고 있다. 우상현 학생은 시각적 인식 및 추론 분야의 탁월한 연구 성과를 인정받았다. 그가 제안한 인간의 주의 집중 매커니즘(Attention Mechanism)에 기반한 효과적인 딥러닝 모델 디자인, 자기 지도 및 시뮬레이터를 활용한 효율적인 학습 방법론들이 주목을 받았다. 모델과 학습 방법론에 대한 다양한 연구 성과들은 CVPR, ECCV, NeurIPS 등 유수의 컴퓨터비전 및 인공지능 분야 최고 국제학술대회에서 발표됐다. 특히, 2018년도 ECCV에서 발표되었던 논문 Convolutional Block Attention Module (CBAM)은 여러 컴퓨터비전 응용들에 활용되면서 현재 구글 스칼라기준 피 인용수 2700회를 넘었다. 그는 2020년 마이크로소프트 펠로우십 (Microsoft Reserach Asia PhD Fellowship)에도 선발된 바 있다. 이해범 학생은 메타학습 분야의 탁월한 연구 성과, 특히 기존의 메타학습 프레임워크의 여러 가지 한계점들을 다양한 측면에서 효과적으로 극복한 것으로 평가받는다. 구체적으로는 기존의 인위적인 태스크 분포에서 벗어나 불균형이 심한 현실적인 태스크 분포를 다뤘고, 메타지식의 실용성을 높였으며, 대규모의 태스크 상황에서도 메타학습이 가능하도록 했다. 이러한 다양한 연구들은 NeurIPS, ICML, ICLR 등 기계학습 및 딥러닝 분야의 최고 학회에 다수 선정됐으며, 특히 ICLR 2020에 구두발표 및 NeurIPS 2020에 스포트라이트 발표로 선정됐다. 시상식은 COVID-19 상황으로 인해, 8월 31일부터 9월 1일 양일간 가상으로 열린 구글 PhD 펠로우십 서밋(Google PhD Fellowship Summit)에서 진행됐으며, 수상자 리스트는 구글 홈페이지에 게시돼 있다. (홈페이지 주소 : https://research.google/outreach/phd-fellowship/recipients)
2021.10.18
조회수 8764
전기및전자공학부 심지훈, 채현욱 박사과정, 2021 디스플레이 챌린지 공모전 장관상 수상
우리 대학 전기및전자공학부 박사과정 심지훈, 채현욱 박사과정 학생이 산업통상자원부에서 주최한 '2021 디스플레이 챌린지 공모전'에서 대상(산업통상자원부 장관상)을 수상했다. 본 공모전은 미래 디스플레이 산업을 선도할 수 있는 신규 융합제품 아이디어 발굴을 위해 2014년 시작으로 올해 8회째를 맞았으며, 한국디스플레이산업협회 주관과 뉴파워프라즈마, 삼성디스플레이, LG디스플레이, 한국전자통신연구원, 한국전자기술원, 창업진흥원의 후원으로 진행됐다. 공모전에는 코로나19를 계기로 비대면 시대 디스플레이와 바이오, 헬스케어, 자동차, 의료 등을 연계한 융복합 디스플레이 분야 아이디어를 대상으로 우수작을 발굴했다. 서류 심사 및 발표 평가에 따른 치열한 경쟁 끝에 심지훈, 채현욱 박사과정이 (주)화이바이오매드 신상배 박사와 함께 제안한 “눈질환의 항시 비대면 빛치료가 가능한 유기발광다이오드(OLED) 스마트 콘택트렌즈가 대상(산업통상자원부 장관상)으로 선정됐으며, 부상으로 상금 500만 원을 받았다. 이외 수상작 혜택으로 수요처 매칭과 특허출원 등의 다양한 사업화 추진 등이 지원될 예정이다. 시상식은 10월 5일 ‘제12회 디스플레이의 날’ 기념식 행사에서 진행될 예정이었으나, 최근 코로나19 확산세 및 참석자 안전 등을 고려해 취소되었으며, 10월 12일 한국디스플레이산업협회에서 별도 진행한 시상식 행사에 공모전 팀 대표인 심지훈 학생이 참석하여 수상하였다.
2021.10.18
조회수 6342
전기및전자공학부 윤영규 교수팀, 국제의료영상처리학회 젊은과학자상 수상
우리 대학 전기및전자공학부 윤영규 교수팀이 2021년 국제의료영상처리학회(MICCAI)로부터 젊은 과학자 상(Young Scientist Award) 수상자로 선정되었다고 8일 밝혔다. 젊은 과학자 상(Young Scientist Award)은 의료영상처리 분야 저명 국제 학술대회인 국제의료영상학회에 출판된 논문 중 학생 혹은 박사 학위를 받은 지 2년 이내의 주저자에 의해 작성된 가장 우수한 논문에 주어지는 상으로 우리나라에서 이 상을 받기는 처음이다. 전기및전자공학부 신창엽 학생(現 석사과정 학생)과 전기및전자공학부 류현 학생(現 학사과정 학생)이 공동 제1 저자, 전기및전자공학부 조은서 학생(現 박사과정 학생)이 공저자로 저술한 아래 논문으로 상을 수상했다. “RLP-Net: A Recursive Light Propagation Network for 3-D Virtual Refocusing,”International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2021. 이 논문은 두 장의 현미경 이미지만 활용해 3차원 영상을 복원하는 가상 재초점 기술에 관한 것으로, 빛의 전파 과정이 공간적 불변성을 가지는 점에 착안해 빛의 전파 함수를 재귀적 신경망을 활용해 근사함으로써 정확한 가상 재초점이 가능함을 보였다. 시상식은 COVID19 상황으로 인해 가상으로 진행된 2021 MICCAI 학술대회에서 지난 9월 30일 진행됐으며, 수상자 리스트는 영구적으로 MICCAI 학술회 홈페이지에 게시될 예정이다.
2021.10.08
조회수 7242
인간의 뇌를 모방한 뉴로모픽 반도체 개발
우리 대학 전기및전자공학부 최양규, 최성율 교수 공동연구팀이 인간의 뇌를 모방한 고집적 뉴로모픽 반도체를 개발했다고 5일 밝혔다. 뉴로모픽(neuromorphic) 하드웨어는, 인간의 뇌가 매우 복잡한 기능을 수행하지만 소비하는 에너지는 20와트(W) 밖에 되지 않는다는 것에 착안해, 인간의 뇌를 모방해 인공지능 기능을 하드웨어로 구현하는 방식이다. 뉴로모픽 하드웨어는 기존의 폰 노이만(von Neumann) 방식과 다르게 인공지능 기능을 초저전력으로 수행할 수 있어 많은 주목을 받고 있다. 공동연구팀은 단일 트랜지스터를 이용해 인간의 뇌를 모방한 뉴런과 시냅스로 구성된 뉴로모픽 반도체를 구현했다. 이 반도체는 상용화된 실리콘 표준 공정으로 제작되어, 뉴로모픽 하드웨어 시스템의 상용화 가능성을 획기적으로 높였다. 우리 대학 전기및전자공학부 한준규 박사과정이 제1 저자로, 같은 학부 오정엽 박사과정이 제2 저자로 참여한 이번 연구는 저명 국제 학술지 `사이언스 어드벤시스(Science Advances)' 8월 온라인판에 출판됐다. (논문명 : Co-integration of single transistor neurons and synapses by nanoscale CMOS fabrication for highly scalable neuromorphic hardware). 뉴로모픽 하드웨어를 구현하기 위해서는, 생물학적 뇌와 동일하게 일정 신호가 통합되었을 때 스파이크를 발생하는 뉴런과 두 뉴런 사이의 연결성을 기억하는 시냅스가 필요하다. 하지만, 디지털 또는 아날로그 회로를 기반으로 구성된 뉴런과 시냅스는 큰 면적을 차지하기 때문에 집적도 측면에서 한계가 있다. 인간의 뇌가 약 천억 개(1011)의 뉴런과 백조 개(1014)의 시냅스로 구성된다는 점에서, 실제 모바일 및 사물인터넷(IoT) 장치에 사용되기 위해서는 집적도를 개선할 필요가 있다. 이를 개선하기 위해 다양한 소재 및 구조 기반의 뉴런과 시냅스가 제안되었지만, 대부분 표준 실리콘 미세 공정 기술로 제작될 수 없어 상용화가 어렵고 양산 적용에 문제가 많았다. 연구팀은 문제 해결을 위해 이미 널리 쓰이고 있는 표준 실리콘 미세 공정 기술로 제작될 수 있는 단일 트랜지스터로 생물학적 뉴런과 시냅스의 동작을 모방했으며, 이를 동일 웨이퍼(8 인치) 상에 동시 집적해 뉴로모픽 반도체를 제작했다. 제작된 뉴로모픽 트랜지스터는 현재 양산되고 있는 메모리 및 시스템 반도체용 트랜지스터와 같은 구조로, 트랜지스터가 메모리 기능 및 논리 연산을 수행하는 것은 물론, 새로운 뉴로모픽 동작이 가능함을 실험적으로 보여 준 것에 가장 큰 의미가 있다. 기존 양산 트랜지스터에 새로운 동작원리를 적용해, 구조는 같으나 기능이 전혀 다른 뉴로모픽 트랜지스터를 제작했다. 뉴로모픽 트랜지스터는 마치 동전에 앞면과 뒷면이 동시에 있는 것처럼, 뉴런 기능도 하고 시냅스 기능도 수행하는 야누스(Janus) 구조로 구현 가능함을 세계 최초로 입증했다. 연구팀의 기술은 복잡한 디지털 및 아날로그 회로를 기반으로 구성되던 뉴런을 단일 트랜지스터로 대체 구현해 집적도를 획기적으로 높였고, 더 나아가 같은 구조의 시냅스와 함께 집적해 공정 단순화에 따른 비용 절감을 할 수 있는 신기술이다. 기존 뉴런 회로 구성에 필요한 평면적이 21,000 단위인 반면, 새로 개발된 뉴로모픽 트랜지스터는 6 단위 이하이므로 집적도가 약 3,500 배 이상 높다. 연구팀은 제작된 뉴로모픽 반도체를 바탕으로 증폭 이득 조절, 동시성 판단 등의 뇌의 기능을 일부 모방했고, 글자 이미지 및 얼굴 이미지 인식이 가능함을 보였다. 연구팀이 개발한 뉴로모픽 반도체는 집적도 개선과 비용 절감 등에 이바지하며, 뉴로모픽 하드웨어의 상용화를 앞당길 수 있을 것으로 기대된다. 한준규 박사과정은 "상보성 금속 산화막 반도체(CMOS) 기반 단일 트랜지스터를 이용해 뉴런과 시냅스 동작이 가능함을 보였다ˮ 라며 "상용화된 CMOS 공정을 이용해 뉴런, 시냅스, 그리고 부가적인 신호 처리 회로를 동일 웨이퍼 상에 동시에 집적함으로써, 뉴로모픽 반도체의 집적도를 개선했고, 이는 뉴로모픽 하드웨어의 상용화를 한 단계 앞당길 수 있을 것이다ˮ 라고 말했다. 한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업, 중견연구사업, 미래반도체사업 및 반도체설계교육센터의 지원을 받아 수행됐다.
2021.08.06
조회수 10657
광 네트워크 기반 GPU 메모리 시스템 개발
소수의 글로벌 기업 주도하에 개발/생산되던 *GPU(Graphic Processing Unit)의 메모리 시스템을, *이종 메모리와 *광 네트워크를 활용해 용량과 대역폭 모두를 대폭 향상한 기술이 우리 연구진에 의해 개발됐다. ☞ 이종 메모리: 서로 다른 특성을 가진 메모리를 통합한 메모리 ☞ 광 네트워크: 빛으로 변환된 신호를 사용하여 정보를 전달하는 통신 수단. ☞ GPU: 여러 프로세스를 병렬적으로 빠르게 처리할 수 있는 연산 장치. 우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 운영체제 연구실)이 *3D XPoint 메모리(이하 XPoint)와 *DRAM 메모리를 통합한 이종 메모리 시스템에서 광 네트워크로 통신하는 `옴-지피유(Ohm-GPU)' 기술 개발에 성공함으로써 기존 DRAM을 단독으로 사용한 *전기 네트워크 기반의 GPU 메모리 시스템 대비 181% 이상의 성능 향상을 성취했다고 2일 밝혔다. ☞ 3D XPoint 메모리: DRAM에 비해 용량이 크지만 데이터 전송 속도가 느린 메모리. ☞ DRAM 메모리: 3D XPoint에 비해 데이터 전송 속도가 빠르지만 용량이 작은 메모리. ☞ 전기 네트워크: 전기적인 신호를 사용해 정보를 전달하는 통신 수단. 기존 GPU는 다수의 연산 장치로 구성되어 있어 연산 속도가 매우 빠르다는 장점이 있으나, DRAM을 단독으로 사용하는 메모리 시스템의 낮은 메모리 용량과 좁은 데이터 전송 대역폭으로 인해 연산 성능을 충분히 활용하지 못한다는 문제가 있다. 용량을 증가시키는 대안으로 DRAM을 XPoint로 대체하는 방법이 있으나, 이때 8배 큰 메모리 용량을 얻을 수 있는 반면 읽기/쓰기의 성능이 4배, 6배로 낮아진다. 또한, 대역폭을 증가시키는 대안으로 *HBM(High Bandwidth Memory) 기술을 활용할 수 있으나, 단일 면적 내 장착할 수 있는 전기 채널(*구리 선) 개수의 한계로 인해 GPU 메모리 시스템이 요구하는 고대역폭을 만족하기 어렵다. ☞ HBM: 3D로 DRAM을 쌓아 고대역폭을 얻을 수 있는 메모리. ☞ 구리 선(Copper wire): 전기 신호가 전달되는 통로. 정 교수팀이 개발한 Ohm-GPU 기술은 대용량 XPoint와 고성능의 DRAM을 통합한 이종 메모리 시스템을 채택함으로써, 기존 메모리 시스템과 동일한 성능을 가지면서도 메모리의 용량을 증가시켰다. 또한, 단일 광 채널(*광섬유)로 서로 다른 파장의 다중 광신호를 전달할 수 있는 광 네트워크의 장점을 활용해 메모리 대역폭을 대폭 넓힘으로써 기존 GPU 메모리 시스템의 한계점들을 전면 개선했다. ☞ 광섬유(Optic fiber): 광 신호가 전달되는 통로. Ohm-GPU 기술은 GPU 내부에 있는 메모리 컨트롤러 및 인터페이스를 수정해 이종 메모리의 모든 메모리 요청을 광신호로 처리한다. 메모리 요청은 일반적으로 DRAM 캐시 메모리에서 처리되지만, DRAM에 없는 데이터는 XPoint로부터 읽어와야 한다. 이때, 발생하는 이종 메모리 간 데이터 이동의 오버헤드(대기 시간)는 1) 연산을 위한 메모리 접근과 데이터 이동을 위한 메모리 접근의 광 파장을 다르게 설정하고, 2) 메모리 컨트롤러 개입을 최소화하고 XPoint 컨트롤러가 이종 메모리 간 데이터 이동을 수행함으로써 완화했다. 개발된 Ohm-GPU 기술은 기존 DRAM을 단독으로 사용하는 전기 네트워크 기반의 GPU 메모리 시스템 대비 다양한 그래 프처리, 과학응용 실행 등에서 181%의 성능 향상을 달성했다. 이는 인공지능(AI), 빅데이터, 클라우드 컴퓨팅 등 대용량, 고대역폭의 데이터 전송을 요구하는 고성능 가속기의 메모리 시스템을 대체할 수 있을 것으로 기대된다. 정명수 교수는 "GPU 메모리 시스템 기술은 일부 해외 유수 기업이 주도하고 있지만, 이번 연구성과를 기반으로 GPU 및 GPU와 유사한 모든 고성능 가속기 메모리 시스템 관련 시장에서 우위를 선점할 가능성을 열었다는 점에서 의미가 있다ˮ라고 강조했다. 한편 이번 연구는 올해 10월에 열릴 컴퓨터 구조 분야 최우수 학술대회인 `마이크로(International Symposium on Microarchitecture, MICRO), 2021'에 관련 논문(논문명: Ohm-GPU: Integrating New Optical Network and Heterogeneous Memory into GPU Multi-Processors)으로 발표될 예정이며, 이를 통해 정교수 팀은 스토리지 및 메모리 관련 연구로 2021, 당해, 전 세계 컴퓨터 구조에서 가장 잘 알려진 4개의 최우수 학술대회 모두에서 그 결과를 공유한다. 해당 연구에 대한 자세한 내용은 연구실 웹사이트(http://camelab.org)에서 확인할 수 있다.
2021.08.03
조회수 8356
서창호 교수, IEEE 정보이론 소사이어티 젊은 과학자상 수상
우리 대학 전기전자공학부 서창호 교수가 국제전기전자공학회(IEEE) 정보이론 소사이어티(Information Theory Society)에서 박사학위 취득 후 10년 이내 젊은 학자에게 수여하는 `제임스 매시 연구-교육 상(James L. Massey Research & Teaching Award for Young Scholars)' 상을 받았다. 정보이론 소사이어티 연구-교육 부문 유일한 상이자, 과거 수상자 모두 미국 유수 대학 교수라는 점에서 뜻깊은 상이다. 과거 수상자는 메사추세츠 공과대학(MIT), 스탠포드(Stanford), 코넬(Cornell), 텍사스대학교 오스틴캠퍼스(UT Austin), 서던캘리포니아대학교(USC), 캘리포니아대학교 샌디에이고캠퍼스(UCSD) 교수이고, 미국 대학 이외의 교수로는 최초의 수상이다. 서창호 교수는 정보이론 및 인공지능(AI) 분야에서 활발히 연구 활동을 하고 있으며, 뉴립스(NeurIPS), 국제머신러닝학회(ICML), IEEE 정보이론 트랜잭션(Transactions on Information Theory) 등 유명 국제 학회와 학술지에 꾸준히 논문을 게재했다. 현재에는 신뢰할 수 있는 인공지능(Trustworthy AI)을 개발하는 연구를 진행 중이다. 서창호 교수는 수년간 교내 수업 개발에 기여한 바를 인정받아 KAIST 내에서 주는 교육 부문 대상인 `임형규 링크제네시스 최우수교원상(LINKGENESIS Best Teacher Award)'를 수상한 바가 있다. 또한, 구글 (Google)과의 인공지능 교육과정 공동개발의 일환으로 수업 교재를 자체 개발했고 이는 교과서 텍스트북으로 발간될 예정이다. 수상자가 소개된 국제전기전자공학회(IEEE) 정보이론 소사이어티 공식 홈페이지에는 서창호 교수의 학력과 다양한 수상 기록을 소개하며, 동 학회 부 편집장(Associate Editor) 등 활발한 학회봉사 활동도 소개하고 있다. 우리 대학 동문이며, 전기전자공학부 학부 담당 부학부장이기도 한 서창호 교수는 이번 수상이 학부 및 KAIST 홍보에 조금이라도 도움이 되면 좋겠다는 소감을 밝혔다. 시상식은 7월 13일 온라인으로 개최된 IEEE 국제 정보이론 심포지엄(International Symposium on Information Theory)에서 이뤄졌다. 아래는 공식 수상 소식 및 과거 수상자 목록이 기재된 홈페이지다. 1. https://www.itsoc.org/news/changho-suh-wins-2021-james-l-massey-award 2. https://www.itsoc.org/honors/massey-award
2021.07.27
조회수 9017
전기및전자공학부 최준일 교수, IEEE 닐 세퍼드상 수상
우리 대학 전기및전자공학부 최준일 교수가 2021년 국제전기전자공학회(IEEE) 이동체공학 학술회(Vehicular Technology Society)의 닐 세퍼드 상(Neal Shepherd Memorial Award) 수상자로 선정됐다. 닐 세퍼드 상(Neal Shepherd Memorial Award)은 이동체/이동통신 분야 저명 국제 학술지인 IEEE 이동기술 분과(Transactions on Vehicular Technology) 저널에 출판된 지난 5년간의 통신 채널(Propagation) 관련 논문 중 가장 우수한 논문에 주어지는 최우수 논문상이다. 최준일 교수는 이미 2015년과 2019년에 각각 IEEE 신호처리 학술회(Signal Processing Society)와 IEEE 통신 학술회(Communications Society)에서 최우수 논문상을 수상한 바 있다. 통신 분야에서 한국인이 만 40세 이전에 IEEE 학술회로부터 최우수 논문상을 3번 이상 받은 경우는 최준일 교수가 최초이며, 세계적으로도 매우 드물다. 최준일 교수는 부따 바(Vutha Va) 박사(당시 박사과정 학생, 현재 삼성리서치 아메리카 연구원), 로버트 히스(Robert Heath) 교수 (당시 텍사스대학교 오스틴캠퍼스, 현재 노스캐롤라이나 주립대학교)가 공동으로 저술한 아래 논문으로 이번에 상을 수상했다. "The Impact of Beamwidth on Temporal Channel Variation in Vehicular Channels and its Implications" IEEE Transactions on Vehicular Technology, vol. 66, no. 6, pp. 5014-5029, Jun. 2017. 이 논문은 밀리미터파를 사용하는 차량 간 통신 환경에서 통신에 사용하는 빔 폭에 따른 무선통신 채널의 특성을 규명한 연구에 관한 것으로 현재 약 150회의 인용 횟수(구글 학술검색 기준)를 기록하고 있다. 일반적으로 밀리미터파는 무선 채널의 변동성으로 차량 간 통신 환경에 적합하지 않다고 알려졌는데, 최준일 교수는 해당 연구를 통해 밀리미터파가 차량 간 통신 시스템에도 사용될 수 있는 것을 최초로 밝혔고, 차량 간 통신에 최적화된 빔 폭을 찾는 방식을 개발했다. 최준일 교수는 "이번에 국제전기전자공학회 이동체공학 학술회의 잭 뉴바우어(Jack Neubaeur) 상을 전기및전자공학부 강준혁 학부장님께서 수상하셨는데, IEEE 이동체공학 학술회 역사상 같은 소속 연구자가 동시에 최우수 논문상을 받은 것은 최고, 최초 연구를 지향하는 KAIST에서도 매우 이례적인 일ˮ이라며 국민들과 KAIST 구성원들에게 감사하다는 소감을 밝혔다. 시상식은 9월에 열리는 국제전기전자공학회 이동체공학 학술회 최대 학회인 이동체공학 학술회의(Vehicular Technology Conference, VTC)에서 개최될 예정이었으나 코로나19 상황으로 개최되지 않는다. 대신 국제전기전자공학회 VTC2021 가을 학회 홈페이지와 이동체공학 학술회 뉴스레터에 수상 소식이 게시되며, 수상자 리스트는 영구적으로 IEEE 이동체공학 학술회 홈페이지에 게시될 예정이다.
2021.07.23
조회수 9180
강준혁 교수, IEEE 잭 뉴바우어 상 수상
우리 대학 전기및전자공학부 강준혁 교수(전기및전자공학부 학부장)가 2021년 국제전기전자공학회(IEEE) 이동체공학 학술회의(Vehicular Technology Conference, VTS) `잭 뉴바우어 상(Jack Neubauer Memorial Award)'를 수상했다고 2일 밝혔다. 잭 뉴바우어 상(Jack Neubauer Memorial Award)은 이동체/이동통신 분야 저명 국제 학술지인 IEEE 이동기술 분과(Transactions on Vehicular Technology) 저널에 출판된 지난 5년간의 논문 중 가장 우수한 논문에 주어지는 최우수 논문상이다. 강준혁 교수(교신저자)와 우리 대학 박사 졸업생인 정성아 경북대학교 전자공학부 교수(당시 하버드대학 박사후연구원), 그리고 영국 킹스 칼리지 런던(King’s College London) 오스왈도 시메오네(Osvaldo Simeone) 교수가 공동으로 저술한 아래 논문이 최우수 논문으로 선정됐다. (논문명: Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path Planning, IEEE Transactions on Vehicular Technology, Vol. 67, No. 3, pp. 2049-2063, March 2018. 이 논문은 무인 비행체가 모바일 기기의 계산을 돕기 위한 엣지 컴퓨팅을 수행할 때 자원의 배분과 비행체의 궤적을 최적화하는 연구에 관한 것으로 현재 약 400회의 인용 횟수(구글 스칼라(Google Scholar) 기준)를 기록하고 있다. 수상 소식은 IEEE VTC2021 가을 학회 홈페이지와 IEEE 이동기술 분과 뉴스레터에 게시되며, 수상자 리스트는 영구적으로 IEEE 이동기술 분과 홈페이지에 게시된다. 위 상을 수상한 강준혁 교수는 “최적화 이론을 이용해 무인 비행체를 이용한 엣지 컴퓨팅을 제안하고, 파워 소모를 최소화하는 무인 비행체의 궤적과 자원 활당에 대한 연구를 수행한 결과를 국제적으로 인정받아 매우 기쁘다ˮ며, “앞으로 제안된 기술을 활용해 연합학습에 적용하는 등 인공지능 분야로 연구를 확대 진행할 계획이다ˮ 라고 소감을 밝혔다. 시상식은 원래 이동기술 분과 최대 학회 이동체공학 학술회의(VTC)에서 개최되지만 코로나19 상황으로 올해는 개최되지 않는다.
2021.07.05
조회수 9131
3차원 적층형 화합물 반도체 소자 제작 성공
우리 대학 전기및전자공학부 김상현 교수 연구팀이 *모놀리식 3차원 집적의 장점을 극대화해 기존의 통신 소자의 단점을 극복하는 화합물 반도체 소자 집적 기술을 개발했다고 14일 밝혔다. ☞ 모놀리식 3차원 집적: 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로 궁극적 3차원 집적 기술로 불린다. 우리 대학 전기및전자공학부 정재용 박사과정이 제1 저자로 주도하고 한국나노기술원 김종민 박사, 광주과학기술원 장재형 교수 연구팀과의 협업으로 진행한 이번 연구는 반도체 올림픽이라 불리는 ‘VLSI 기술 심포지엄(Symposium on VLSI Technology)’에서 발표됐다. (논문명 : High-performance InGaAs-On-Insulator HEMTs on Si CMOS for Substrate Coupling Noise-free Monolithic 3D Mixed-Signal IC). VLSI 기술 심포지엄은 국제전자소자학회(International Electron Device Meetings, IEDM)와 더불어 대학 논문의 채택비율이 25%가 되지 않는 저명한 반도체 소자 분야 최고 권위 학회다. 반도체 소자는 4차 산업 혁명의 특징인 초연결성 구현을 위한 핵심 통신 소재 및 부품으로서 주목받고 있다. 특히 통신 신호, 양자 신호는 아날로그 형태의 신호이고 신호전달 과정에서 신호의 크기가 약해지거나 잡음이 생겨 신호의 왜곡이 생기기도 한다. 따라서 이러한 신호를 주고받을 때 고속으로 신호의 증폭이 필요한데 이러한 증폭 소자에서는 초고속, 고출력, 저전력, 저잡음 등의 특성이 매우 중요하다. 또한 통신 기술이 발전함에 따라 이를 구성하는 시스템은 점점 더 복잡해져 고집적 소자 제작기술이 매우 중요하다. 통신 소자는 통상적으로 두 가지 방식으로 구현된다. 실리콘(Si)을 사용해 집적도 높은 Si CMOS를 이용해 증폭 소자를 구현하는 방법과 *III-V 화합물 반도체를 증폭 소자로 제작하고 기타 소자들을 Si CMOS로 제작해 패키징 하는 방식이 있다. 그러나 각각의 방식은 단점이 존재한다. 기존의 실리콘(Si) 기술은 물성적 한계로 인해 차단주파수 특성 등 통신 소자에 중요한 소자 성능 향상이 어려우며 기판 커플링 잡음 등 복잡한 신호 간섭에 의한 잡음 증가 문제가 존재한다. 반면, III-V 화합물 반도체 기술은 소자 자체의 잡음 특성은 우수하지만 다른 부품과의 집적/패키징 공정이 복잡하고 이러한 패키징 공정으로 인해 신호의 손실이 발생하는 문제가 존재한다. ☞ III-V 화합물 반도체: 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체로 전하 수송 특성 및 광 특성이 매우 우수한 소재 연구팀은 이러한 문제 해결을 위해 증폭 소자 이외의 소자 및 디지털 회로에서 좋은 성능을 낼 수 있는 Si CMOS 기판 위에 아날로그 신호 증폭 성능이 매우 우수한 III-V 화합물 반도체 *HEMT를 3차원 집적해 Si CMOS와 III-V HEMT의 장점을 극대화하는 공정 및 소자 구조를 제시했다. 3층으로 소자를 쌓아나감으로써 같은 기판 위에 집적할 수 있는 방식이다. 이와 동시에 기판 신호 간섭에 의한 잡음을 제거할 수 있음을 증명했다. ☞ HEMT: High-Electron Mobility Transistor 연구팀은 하부 Si CMOS의 성능 저하 방지를 위해 300oC 이하에서 상부 III-V 소자를 집적하는 웨이퍼 본딩 등의 초저온 공정을 활용해 상부 소자 집적 후에도 하부 Si CMOS의 성능을 그대로 유지할 수 있었다. 또한 고성능 상부 III-V 소자 제작을 위해서 InGaAs/InAs/InGaAs의 양자우물 구조를 도입해 높은 전자 수송 특성을 실현했으며 100 나노미터(nm) 노드 공정 수준으로도 세계 최고 수준의 차단 주파수 특성을 달성했다. 이는 10 나노미터(nm) 이하 급의 최첨단 공정을 사용하지 않고도 그 이상의 우수한 성능을 낼 수 있는 융합 기술로 향후 기존과 다른 형태의 파운드리 비즈니스 방식의 도입 가능성을 증명했다고 할 수 있다. 더불어 연구진은 이러한 3차원 집적 형태로 소자를 제작함으로써 기존에 SI CMOS에서 존재하는 기판 간섭에 의한 잡음을 해결할 수 있음을 실험을 통해 최초로 증명했다. 김상현 교수는 “디지털 회로 및 다양한 수동소자 제작에 최적화된 Si CMOS 기판 위에 증폭기 등의 능동소자 특성이 현존하는 어떤 물질보다 우수한 III-V 화합물 반도체 소자를 동시 집적할 가능성을 최초로 입증한 연구로, 향후 통신 소자 등에 응용이 가능할 것으로 생각한다”라며 “이번 기술은 향후 양자 큐빗의 해독 회로에도 응용할 수 있어 그 확장성이 매우 큰 기술이다. 다양한 분야에서 활용할 수 있도록 후속 연구에 힘쓰겠다”라고 말했다. 한편 이번 연구는 한국연구재단 지능형반도체기술개발사업, 경기도 시스템반도체 국산화 연구지원 사업 등의 지원을 받아 수행됐다.
2021.06.14
조회수 51956
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
19
20
>
다음 페이지
>>
마지막 페이지 26