본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%A0%84%EA%B8%B0%EB%B0%8F%EC%A0%84%EC%9E%90%EA%B3%B5%ED%95%99%EB%B6%80
최신순
조회순
강화학습을 활용한 인공지능으로 자유구조 메타표면 최적화 성공
우리 대학 전기및전자공학부 장민석 교수 연구팀이 KC ML2(반도체 제조 솔루션 기업 KC에서 설립한 연구조직) 박찬연 박사와 공동연구를 통해 강화학습에 기반한 자유 구조의 메타 표면 구조 설계 방법을 제안했다고 25일 밝혔다. 메타 표면은 빛의 파장보다 훨씬 작은 크기의 구조를 이용해 이전에 없던 빛의 성질을 달성하는 나노광학 소자를 뜻한다. 나노광학 소자는 빛의 특성을 미시 단위에서 제어하여, 자율주행에 쓰이는 라이다(LiDAR) 빔조향 장치, 초고해상도 이미징 기술, 디스플레이에 활용되는 발광소자의 광특성 제어, 홀로그램 생성 등에 활용될 수 있다. 최근 나노광학 소자에 대한 기대 성능이 높아지면서, 이전에 있던 소자구조를 훨씬 뛰어넘는 성능을 달성하기 위해 자유 구조를 가지는 소자의 최적화에 관한 관심이 증가하고 있다. 자유 구조와 같이 넓은 설계공간을 가진 문제에 대해 강화학습을 적용해 해결한 사례는 이번이 최초다. 우리 대학 서동진 연구원 및 ML2 남원태 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `ACS 포토닉스(ACS Photonics)' 2022년 2월호 전면 표지논문으로 게재됐다. (논문명 : Structural Optimization of a One-Dimensional Freeform Metagrating Deflector via Deep Reinforcement Learning) 강화학습은 동물이 학습하는 방법을 모방한 인공지능 방법론이다. 동물 행동 심리학에서 `스키너의 상자'라고 알려진 실험이 그 모티브가 되었는데, 해당 실험은 상자 내부에 쥐를 넣고 누르면 먹이가 나오는 지렛대를 함께 두는 방식으로 진행된다. 처음에 무작위 행동을 하던 쥐는 지렛대를 누르면 먹이가 나오는 것을 확인한다. 시간이 지날수록 더 높은 빈도수로 지렛대를 누르게 되는데, 이렇게 어떠한 보상(먹이)이 행동(지렛대를 누르는 행위)을 `강화'하는 것을 관찰할 수 있다. 해당 실험과 매우 유사한 구조를 갖는 강화학습은 행동 주체가 자기를 둘러싼 `환경'으로부터 `보상'을 받으면서 환경에 대해 배워나가는 인공지능 방법론이다. 2016년 이세돌 9단과의 대국에서 승리한 구글 딥마인드의 `알파고(AlphaGo)'가 그 대표적 사례다. 알파고는 바둑판으로 표현되는 환경과의 상호작용을 통해 바둑의 복잡한 규칙을 학습했고, 우주에 있는 원자보다 많다고 알려진 경우의 수 중 최적에 가까운 선택을 할 수 있었다. 최근 인공지능 학계에서 강화학습은 인간의 지능과 가장 유사한 형태의 인공지능 방법론으로 크게 주목받고 있다. 연구팀은 복잡한 환경을 쉽게 학습할 수 있는 강화학습의 특징을 메타 표면 자유 구조의 최적화에 활용하는 아이디어를 제안했다. 이전에 메타 표면 자유 구조 최적화 기술은 너무 많은 경우의 수로 인해 해결하기 어려운 것으로 여겨졌다. 따라서 기존 연구 방향은 주로 간단한 기본도형 등으로 구조를 단순화한 방식을 활용했다. 하지만 해당 방식은 기하학적 구조가 제한된다는 한계가 있었고, 더욱 복잡한 구조에 대한 최적화 기술은 달성하기 어려운 것으로 여겨졌다. 연구팀이 제안한 알고리즘은 아주 간단한 아이디어에서 출발한다. 강화학습의 `행동'을 구조의 구성요소를 하나씩 `뒤집는' 것으로 정의하는 것이다. 이것은 기존에 구조를 전체적으로 생성하는 방식으로만 생각되었던 자유 구조의 최적화에 대한 발상을 뒤집는 것이었다. 연구팀은 해당 방법을 이용해 메타 표면에 대한 특별한 사전지식 없이도 가능한 구조를 넓게 탐색하고 최적 구조를 발견할 수 있음을 보였다. 또한, 많은 입사 조건에서 최신 성능과 비슷하거나 앞서며 특정 조건에서는 100%에 가까운 효율을 달성했다. 이번 연구를 통해 자유 구조 최적화 분야의 새로운 돌파구를 찾을 것으로 기대되며, 광소자뿐 아니라 많은 분야의 소자 구조 최적화에도 활용될 수 있을 것으로 기대된다. 제1 저자인 서동진 연구원은 "강화학습은 복잡한 환경에서 최적의 경우를 찾는 데에 효과적인 알고리즘이다. 이번 연구에서 해당 방법으로 자유 구조의 최적화를 수행하는 것에 성공하는 사례를 남겨 기쁘다ˮ고 말했다. 장민석 교수는 "광공학에 인공지능 기술을 적용하는 분야에서 좋은 결과가 나와 과학의 위상을 높이는 데 기여하기를 희망한다ˮ고 말했다. 한편 이번 연구는 한국연구재단의 중견연구자지원사업(전략연구), 한-스위스 이노베이션프로그램, 그리고 미래소재디스커버리 사업의 지원을 받아 수행됐다.
2022.02.25
조회수 8982
인간의 촉각 뉴런을 모방한 뉴로모픽 모듈 개발
우리 대학 전기및전자공학부 최양규 교수 연구팀이 지난 2021년 8월에 뉴런과 시냅스를 동일 평면 위에서 동시 집적으로 ‘인간의 뇌를 모방한 뉴로모픽 반도체 모듈’을 개발하고, 연이어서 이번에는 ‘인간의 촉각 뉴런을 모방한 뉴로모픽 모듈’을 개발하는 데에 성공했다고 24일 밝혔다. 개발된 모듈은 인간의 촉각 뉴런과 같이 압력을 인식해 스파이크 신호를 출력할 수 있어, 뉴로모픽 촉각 인식 시스템을 구현할 수 있다. 우리 대학 전기및전자공학부 한준규 박사과정과 초일웅 박사과정이 공동 제1 저자로 참여한 이번 연구는 저명한 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 2022년 1월 온라인판에 출판됐으며, 후면 표지 논문(Back Cover)으로 선정됐다. (논문명 : Self-powered Artificial Mechanoreceptor based on Triboelectrification for a Neuromorphic Tactile System). 인공지능을 이용한 촉각 인식 시스템은 센서 어레이에서 수신된 신호를 인공 신경망을 이용해 높은 정확도로 물체, 패턴, 또는 질감을 인식할 수 있어, 다양한 분야에 걸쳐 유용하게 사용되고 있다. 하지만 이러한 시스템의 대부분은 폰 노이만 컴퓨터가 필요한 소프트웨어를 기반으로 하므로, 높은 전력을 소모할 수밖에 없어 모바일 또는 사물인터넷(IoT) 장치에 적용되기는 어렵다. 한편, 생물학적 촉각 인식 시스템은, 스파이크 형태로 감각 정보를 전달함으로써 낮은 전력 소비만으로 물체, 패턴, 또는 질감을 판별할 수 있다. 따라서 저전력 촉각 인식 시스템을 구축하기 위해, 생물학적 촉각 인식 시스템을 모방한 뉴로모픽 촉각 인식 시스템이 주목을 받고 있다. 뉴로모픽 촉각 인식 시스템을 구현하기 위해서는 인간의 촉각 뉴런처럼 외부 압력 신호를 스파이크 형태의 전기 신호로 변환해주는 구성 요소가 필요하다. 하지만, 일반적인 압력 센서는 이러한 기능을 수행할 수 없다. 연구팀은 마찰대전 발전기(triboelectric nanogenrator, TENG)와 바이리스터(biristor) 소자를 이용해, 압력을 인식해 스파이크 신호를 출력할 수 있는 뉴로모픽 모듈을 개발했다. 제작된 뉴로모픽 모듈은 마찰대전을 이용하기 때문에, 자가 발전이 가능하고 3 킬로파스칼(kPa) 수준의 낮은 압력을 감지할 수 있다. 이는 손가락으로 사물을 만질 때, 피부가 느끼는 압력 정도의 크기다. 연구팀은 제작된 뉴로모픽 모듈을 바탕으로 저전력 호흡 모니터링 시스템을 구축했다. 호흡 모니터링 센서가 코 주위에 설치되면 들숨 및 날숨을 감지하고 복부 주변에 설치되면 복식호흡을 별도로 감지할 수 있다. 따라서 수면 중 무호흡이 일어날 경우, 이를 감지해 경보를 보냄으로써 심각한 상황으로의 진행을 미연에 방지할 수 있다. 연구를 주도한 한준규 박사과정은 "이번에 개발한 뉴로모픽 센서 모듈은 센서 구동에 필요한 에너지를 스스로 생산하는 반영구적 자가 발전형으로 사물인터넷(IoT) 분야, 로봇, 보철, 인공촉수, 의료기기 등에 유용하게 사용될 수 있을 것으로 기대된다ˮ며, "이는 `인-센서 컴퓨팅(In-Sensor Computing)' 시대를 앞당기는 발판이 될 것이다ˮ고 연구의 의의를 설명했다. 한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업, 중견연구사업, 미래반도체사업, BK21 사업 및 반도체설계교육센터의 지원을 받아 수행됐다.
2022.02.25
조회수 9783
다공성 나노소재를 활용한 고신뢰성 시냅스 소자 개발
우리 대학 전기및전자공학부 최신현 교수 연구팀이 다공성 구조를 갖는 *차세대 저항 변화 소자(멤리스터)를 활용해 우리 뇌의 신경전달물질 시냅스를 모방한 고신뢰성 소자(시냅스 소자)를 개발했다고 25일 밝혔다. ☞ 멤리스터(Memristor): 메모리와 레지스터의 합성으로 이전의 상태를 모두 기억하는 메모리 소자. 전원공급이 끊어졌을 때도 직전에 통과한 전류의 방향과 양을 기억한다. 최 교수 연구팀은 기존 양이온 저항 변화 방식과 음이온 저항 변화 방식을 혼합한 하이브리드 형태로 매개체를 구성해, 비정질로 이루어진 다공성 구조 및 버퍼 층을 이용해 고신뢰성 시냅스 소자를 설계했다. 해당 구조는 저온 공정을 통해 형성함으로써 기존 실리콘 상보형 산화금속 반도체(CMOS)에 집적 및 적층 가능해 집적도 높은 대용량 로직/인공신경망 컴퓨팅 시스템 제작에 활발히 응용될 수 있을 것으로 기대된다. 우리 대학 최상현 연구원과 박시온 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)' 1월호에 출판됐다. (논문명 : Reliable multilevel memristive neuromorphic devices based on amorphous matrix via quasi-1D filament confinement and buffer layer) 멤리스터는 저전력으로 인메모리(In-memory) 컴퓨팅, 가중치 저장, 행렬 계산 능력(vector-matrix multiplication) 등으로 차세대 논 폰노이만 구조에 쓰일 수 있는 차세대 소자로 주목받고 있다. 그러나 현존하는 멤리스터로 실용적인 대용량 인공신경망 컴퓨팅 (Large-scale neural computing) 시스템을 만들기 위해서는 멤리스터 단위 소자의 신뢰성을 확보할 수 있는 연구가 필요하다. 소자의 신뢰성 저하는 전통적으로 비정질 물질 내에 무작위적으로 움직이는 결함 및 이온의 배치에서 기인한다. 최신현 교수는 이러한 문제를 단결정 물질을 사용해 결함 및 이온의 무작위적인 움직임을 제어함으로써 소자 신뢰성 확보에 성공한 바 있다. 하지만 단결정을 이용하는 문제 및 제작에 고온 공정이 필요하므로 기존 실리콘 CMOS에 집적 및 적층이 어려워 집적도를 높이는 데 한계가 있었다. 연구팀은 이번 연구를 통해 기존의 비정질 물질을 사용해 신뢰성을 확보할 수 있는 다공성 구조의 양이온 제어층 및 버퍼층으로 이용되는 음이온 제어층을 설계했고, 이를 통해 적층 및 집적 가능한 소자를 제작했다. 연구팀은 기존 소자 대비 6배 이상 신뢰성을 개선할 수 있었으며, 이와 동시에 인공 시냅스 소자로서 필요한 다른 특성들도 확보할 수 있었다. 연구를 주도한 최신현 교수는 "이번에 개발한 고신뢰성 시냅스 소자는 안정적인 대용량 어레이 제작의 방향성을 제시할 수 있을 것으로 기대되며, 차세대 신소자를 기반으로 한 뉴로모픽 컴퓨팅 등 빅데이터 처리가 필요한 응용 분야에 적합한 플랫폼을 구축하는 데에 기여할 수 있기를 바란다. 또한, 미국, 대만 기업에서 활발히 진행 중인 차세대 신소자 기반 기술 개발이 국내에서도 활성화되기를 희망한다ˮ며 "다른 물질계에서도 구조적으로 적용할 수 있는 방법론을 제시함으로써 활발히 연구가 진행될 것으로 생각된다ˮ고 연구의 의의를 설명했다. 한편 이번 연구는 한국연구재단, 나노종합기술원, 삼성미래기술육성재단의 지원을 받아 수행됐다.
2022.01.25
조회수 9023
전기및전자공학부 박성욱 교수, 제24대 전자파학회장 선임
우리 대학 전기및전자공학부 박성욱교수가 제24대 한국전자파학회장으로 선임됐다. 한국전자파학회는 1989년에 창립되어 올해 33주년을 맞이하며, 현재 만명이 넘는 회원과 SCI 국제학술지(JEES), 국문논문지(등재학술지), 학회지인 ‘전자파기술’ 및 18개의 전문 연구회를 보유한 정보통신기술 분야 4대 학술단체다. 신임 박성욱회장은 차세대소형인공위성1호 발사 등 한국인공위성의 산파역할을 하는 KAIST 인공위성연구소 소장을 최근 역임한 인공위성분야 최고 권위자 중 한명이다. 취임후 언론인터뷰에서 "최근 아랍에미리트(UAE)가 화성 탐사에 성공하면서 국제관계와 경영을 전공하던 학생들이 과학으로 전공을 바꾸기 시작했다”며 “우리나라보다 후발 주자인 UAE 가 이뤄낸 이러한 도전의 변화가 우리나라 학계에서도 꼭 일어나야 한다고 생각한다”고 말했다. 그는 “학회가 더욱 국제적으로 우수한 학회로서 성장하기 위해 많은 관심과 지원을 바란다”고 당부했다. 더불어 박성욱교수는 최근 전자신문에 아래와 같이 6G 위성통신에 대해 기고하였다. 링크 : [통신칼럼] "6G 위성통신, 대형국책사업으로 개발해야" https://m.etnews.com/20220110000127
2022.01.12
조회수 5135
세계 최초 그래프 기반 인공지능 추론 가능한 SSD 개발
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)이 세계 최초로 그래프 기계학습 추론의 그래프처리, 그래프 샘플링 그리고 신경망 가속을 스토리지/SSD 장치 근처에서 수행하는 `전체론적 그래프 기반 신경망 기계학습 기술(이하 홀리스틱 GNN)'을 개발하는데 성공했다고 10일 밝혔다. 연구팀은 자체 제작한 프로그래밍 가능 반도체(FPGA)를 동반한 새로운 형태의 계산형 스토리지/SSD 시스템에 기계학습 전용 신경망 가속 하드웨어와 그래프 전용 처리 컨트롤러/소프트웨어를 시제작했다. 이는 이상적 상황에서 최신 고성능 엔비디아 GPU를 이용한 기계학습 가속 컴퓨팅 대비 7배의 속도 향상과 33배의 에너지 절약을 가져올 수 있다고 밝혔다. 그래프 자료구조가 적용된 새로운 기계학습 모델은 기존 신경망 기반 기계학습 기법들과 달리, 데이터 사이의 연관 관계를 표현할 수 있어 페이스북, 구글, 링크드인, 우버 등, 대규모 소셜 네트워크 서비스(SNS)부터, 내비게이션, 신약개발 등 광범위한 분야와 응용에서 사용된다. 예를 들면 그래프 구조로 저장된 사용자 네트워크를 분석하는 경우 일반적인 기계학습으로는 불가능했던 현실적인 상품 및 아이템 추천, 사람이 추론한 것 같은 친구 추천 등이 가능하다. 이러한 신흥 그래프 기반 신경망 기계학습은 그간 GPU와 같은 일반 기계학습의 가속 시스템을 재이용해 연산 되어왔는데, 이는 그래프 데이터를 스토리지로부터 메모리로 적재하고 샘플링하는 등의 데이터 전처리 과정에서 심각한 성능 병목현상과 함께 장치 메모리 부족 현상으로 실제 시스템 적용에 한계를 보여 왔다. 정명수 교수 연구팀이 개발한 홀리스틱 GNN 기술은 그래프 데이터 자체가 저장된 스토리지 근처에서 사용자 요청에 따른 추론의 모든 과정을 직접 가속한다. 구체적으로는 프로그래밍 가능한 반도체를 스토리지 근처에 배치한 새로운 계산형 스토리지(Computational SSD) 구조를 활용해 대규모 그래프 데이터의 이동을 제거하고 데이터 근처(Near Storage)에서 그래프처리 및 그래프 샘플링 등을 가속해 그래프 기계학습 전처리 과정에서의 병목현상을 해결했다. 일반적인 계산형 스토리지는 장치 내 고정된 펌웨어와 하드웨어 구성을 통해서 데이터를 처리해야 했기 때문에 그 사용에 제한이 있었다. 그래프처리 및 그래프샘플링 외에도, 연구팀의 홀리스틱 GNN 기술은 인공지능 추론 가속에 필요한 다양한 하드웨어 구조, 그리고 소프트웨어를 후원할 수 있도록 다수 그래프 기계학습 모델을 프로그래밍할 수 있는 장치수준의 소프트웨어와 사용자가 자유롭게 변경할 수 있는 신경망 가속 하드웨어 프레임워크 구조를 제공한다. 연구팀은 홀리스틱 GNN 기술의 실효성을 검증하기 위해 계산형 스토리지의 프로토타입을 자체 제작한 후, 그 위에 개발된 그래프 기계학습용 하드웨어 *RTL과 소프트웨어 프레임워크를 구현해 탑재했다. 그래프 기계학습 추론 성능을 제작된 계산형 스토리지 가속기 프로토타입과 최신 고성능 엔비디아 GPU 가속 시스템(RTX 3090)에서 평가한 결과, 홀리스틱 GNN 기술이 이상적인 상황에서 기존 엔비디아 GPU를 이용해 그래프 기계학습을 가속하는 시스템의 경우에 비해 평균 7배 빠르고 33배 에너지를 감소시킴을 확인했다. 특히, 그래프 규모가 점차 커질수록 전처리 병목현상 완화 효과가 증가해 기존 GPU 대비 최대 201배 향상된 속도와 453배 에너지를 감소할 수 있었다. ☞ RTL (Registor Transistor Logic): 저항과 트랜지스터로 구성한 컴퓨터에 사용되는 회로 정명수 교수는 "대규모 그래프에 대해 스토리지 근처에서 그래프 기계학습을 고속으로 추론할 뿐만 아니라 에너지 절약에 최적화된 계산형 스토리지 가속 시스템을 확보했다ˮ며 "기존 고성능 가속 시스템을 대체해 초대형 추천시스템, 교통 예측 시스템, 신약 개발 등의 광범위한 실제 응용에 적용될 수 있을 것ˮ이라고 말했다. 한편 이번 연구는 미국 산호세에서 오는 2월에 열릴 스토리지 시스템 분야 최우수 학술대회인 `유즈닉스 패스트(USENIX Conference on File and Storage Technologies, FAST), 2022'에 관련 논문(논문명: Hardware/Software Co-Programmable Framework for Computational SSDs to Accelerate Deep Learning Service on Large-Scale Graphs)으로 발표될 예정이다. 해당 연구는 삼성미래기술육성사업 지원을 받아 진행됐고 자세한 내용은 연구실 웹사이트(http://camelab.org)에서 확인할 수 있다.
2022.01.10
조회수 8607
USRG팀(심현철 교수, 김보성, 이승욱) 과기부 장관표창 수상
우리 대학 전기및전자공학부 심현철 교수 연구팀(Unmanned System Research Group, 이하 USRG)이 9일(목) 「인공지능 그랜드 챌린지 간담회 」에서 과학기술정보통신부 장관 표창을받았다. 심현철 교수와 김보성, 이승욱 박사과정 학생(전기및전자공학부)이 수상하는 이번 장관상은‘국내 인공지능 기술 고도화 및 산업 발전’에 크게 공헌함을 인정받아 선정됐다. 먼저 USRG팀은 2019년과 2020년 「인공지능 자율주행 챌린지 대회」에서 2년 연속 우승을 달성했다. 이 대회는 드론에 탑재된 센서로 벽, 창문, 기둥 등의 장애물을 인식하고 피하며 목적지까지 안전하게 비행하는 대회이다. USRG팀은 2019년 대회에서 자체 개발한 미션 플래너와 위치 추정·장애물 회피·제어 알고리즘으로 터널 구간까지 통과하여 1위를 차지했다. 2020년에는 보다 복잡해진 동적 장애물 회피와 박스에 물병을 투하하는 미션을 유일하게 모두 완료했고, 3차 비행 동안 계속 기록을 단축하며 최종 우승했다. 이어, 2021년 NASA JPL과 협업하여 ‘DARPA Subterranean Challenge Final Event’에 Team CoSTAR의 일원으로 참가했다. NASA JPL 및 MIT, Caltech, LTU 등 해외 유수 대학들로 구성된 이 연구팀은 3차원 항법과 경로 계획, AI 기반의 객체 인식·위치 추정 알고리즘을 탑재한 지상 로봇과 드론을 개발했다. 그 결과 본선 최종연습에서 1, 2위를 기록하고 3일차 대회에서 5위를 달성했다. 연구팀은 이 대회에서 동굴 환경 내 위치 오차 5cm 이내의 3차원 위치 추정 알고리즘과 3차원 장애물 회피 경로 계획 알고리즘을 개발했다. 아울러 동굴 환경에서 60회 이상의 자율 비행 테스트를 진행하며 본 알고리즘 시스템의 안정성을 검증했다. 또한, 동 연구진은 2021년 10월 세계 최초 Indy Car 기반 자율주행 레이싱 대회인 Indy Autonomous Challenge(IAC)에 참가했다. 이에 고속 자율주행에 적합한 모델 예측 제어 기반의 시스템과 Head-to-head 레이싱을 위한 장애물 회피 및 추월 전략 알고리즘을 개발했다. 해당 연구 논문은 2021 ICRA 워크샵에서 Best Paper Award Winner에 선정되기도 하였다. USRG 팀의 심현철 교수는 “박사과정 중 복잡한 실내를 자유롭게 비행하는 드론을 만들고 싶었으나 당시 기술로는 불가능했다. 그리하여 기술이 발전함에 따라 이 같은 드론을 남들보다 먼저 연구했다. 최신 인공지능 기술을 적용하며 예전에는 상상할 수 없었던 우수한 성능의 드론을 만들 수 있게 되어 매우 뜻깊다”라고 소감을 전했다. 이어, “선뜻 시작하기 어려운 주제를 맡아 그간 열심히 수행한 학생들과 같이 공을 나눌 수 있어 더욱 기쁘다. 앞으로 이런 도전적인 연구를 적극적으로 수행하는 학생들이 더 많아졌으면 좋겠다”라고 강조했다.
2021.12.09
조회수 8976
우리 대학, CES 2022 자율주행 레이싱 참가
우리 대학이 2022년 1월 5일부터 8일까지 미국 라스베이거스에서 열리는 세계 최대 전자·정보기술 전시회 CES 2022(Consumer Technology Association)의 공식행사인 ‘자율주행 레이싱’에 참가한다. 1월 7일 라스베이거스 모터스피드웨이(IMS)에서 개최 예정인 ‘CES 2022 자율주행차 레이싱’은 대학팀들의 기술력을 기반으로 자율주행 성능 향상과 상용화를 독려하고 대중에게 성과를 공유하고자 추진됐다. 이 대회는 지난 10월 23일 미국 인디애나폴리스에서 열린 ‘인디 자율주행 챌린지(Indy Autonomous Challenge, IAC)’에 이은 대회다. IAC 대회에서 심현철 교수 무인시스템 연구팀은 총 9개 팀 중 코스를 완주한 최종 4개 팀에 들어 CES 2022 참가권을 획득했다. 그 결과 아시아 유일 팀으로 CES 2022 자율주행 레이싱에 출전해 미국·유럽 대학들과 최고 속도를 겨룰 예정이다. IAC 대회 참가 당시 심현철 교수 연구팀은 정찬영 박사 과정 학생을 팀장으로 하여 경기 진행 신호와 레이싱 규정을 준수하는 동시에 200km/h의 고속 자율주행이 가능한 소프트웨어를 성공적으로 구현했다. CES 2022 자율주행 레이싱에서는 인디 레이싱용 IL-15차량을 자율주행차로 개조한 AV-21 차량을 사용하며, 최대 300km/h까지 주행이 가능하다. 특히 눈여겨볼 점은 이번 대회에서는 레이싱 차량 2대 간의 1:1 자율주행 경주를 통해 토너먼트 형식으로 순위를 겨룬다는 것이다. 이에, 연구팀은 소프트웨어의 성능을 더욱 향상하여 최고 주행 속도를 내는 것은 물론이고, 다른 차량과 안정적으로 나란히 달리는 정밀측위 기술 개발에도 주안점을 두고 있다. 심현철 교수는 “이와 같은 기술은 미래의 자율주행차량이 다른 차들과 함께 고속으로 안전하게 장거리를 이동하는 데 있어 핵심 요소다. 서울-대전을 200km/h의 자율주행으로 간다고 가정할 때, 운전 피로도를 거의 느끼지 않고 1시간 내 도착이 가능하다. 또한 고속철도나 도심 항공처럼 막대한 인프라 구축 비용이 필요하지 않고 기상 조건의 영향도 크게 받지 않기 때문에 고속 자율주행은 우리나라 환경에 맞는 장거리 이동의 새로운 주역이 될 것”이라고 강조했다. 이어, “최근 10년간 CES 행사에서 자율주행이 중요한 주제로 떠올라 많은 기업이 적극적으로 참여하고 있어 매우 기쁘다. 우리 연구팀이 자체적으로 개발한 고속 자율주행기술로 세계 최고 대학 연구팀들과 경쟁하게 되어 큰 보람을 느낀다”라고 참가 소감을 전했다. 한편, CES 2022 자율주행 레이싱은 CES 주관사인 미국소비자기술협회(Consumer Technology Association, CTA)와 에너지시스템즈네트워크(Energy System Network, ESN)가 공동으로 주최한다. 우리 대학 외에도 IAC 대회 우승자인 독일 뭔헨공대와 매사추세츠공대(MIT), 스위스 취리히공대(ETH), 피츠버그대(PIT), 로체스터공대(RW), 캐나다 워털루 대학 등이 대회에 출전할 예정이다.
2021.12.09
조회수 5442
사물인터넷 기반 다수의 뇌 신경회로 동시 원격제어 시스템 개발
우리 연구진이 인터넷을 이용해 뇌 신경회로를 원격 제어할 수 있는 무선 네트워크 기술을 개발했다. 이 기술을 활용하면 시간과 장소에 구애받지 않고 목표 동물의 뇌 신경회로를 정교하게 제어할 수 있다. 우리 대학 전기및전자공학부 정재웅 교수 연구팀이 미국 워싱턴 대학교(Washington University in St. Louis), 미국 콜로라도 대학교(University of Colorado Boulder) 연구팀과의 공동 연구를 통해 사물인터넷 기반의 뇌 신경회로 원격제어 시스템을 개발했다고 8일 밝혔다. 이번 개발 기술은 많은 시간과 인력이 있어야 하는 뇌 연구 및 다양한 신경과학 연구를 자동화시켜 다양한 퇴행성 뇌 질환과 정신질환의 발병 기전 규명과 치료법 개발의 가속화에 크게 기여할 것으로 기대된다. 또한, 먼 거리에 있는 환자의 질환을 원격으로 치료하는 원격 의료 구현에도 활용될 수 있을 것으로 예상된다. 우리 대학 전기및전자공학부 라자 콰지(Raza Qazi) 연구원과 김충연 박사과정, 그리고 워싱턴대 카일 파커(Kyle E. Parker) 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 바이오메디컬 엔지니어링(Nature Biomedical Engineering)' 11월 25일 字에 게재됐다. (논문명 : Scalable and modular wireless-network infrastructure for large-scale behavioural neuroscience) 전 세계적으로 고령화 시대에 접어드는 현 상황에서 알츠하이머병, 파킨슨병과 같은 뇌 질환들로 고통받는 환자 수가 급증하고 있다. 이에 따라 근본적인 뇌 질환 치료법을 개발하기 위해 뇌 기능 및 뇌 질환 발병기전을 규명하기 위한 뇌 연구가 매우 시급하지만, 뇌 연구의 진행 속도가 뇌 질환 환자의 증가 속도를 따라잡지 못하고 있어서 뇌 연구의 효율성을 극대화하기 위한 새로운 기술 개발이 절실히 요구된다. 기존 뇌 연구에 사용되던 대부분의 신경과학 장치들은 외부 장비와 선으로 연결된 유선 방식으로 구동됐지만, 이러한 방식은 피실험 동물들을 물리적으로 제약할 뿐 아니라 실험 진행자의 직접적인 개입이 불가피해 피실험 동물의 행동에 영향을 주는 `관찰자 효과'를 발생시켜서 정확한 뇌 연구 결과 도출을 어렵게 만든다. 아울러 모든 과정에서 실험자의 직접적인 조작이 요구돼 연구에 많은 시간과 인력, 비용이 발생하게 한다. 연구팀은 사물인터넷(Internet of Things; IoT) 기술을 접목해 다양한 다수의 뇌 이식용 기기들을 인터넷 원격으로 동시 제어하거나 예약된 스케줄에 따라 기기들이 자동으로 구동되도록 하는 무선 네트워크 시스템을 개발했다. 이를 통해 시간과 장소에 상관없이 목표 동물들의 특정 뇌 회로를 원격 제어하는 것을 가능하게 했다. 이 시스템은 사용자가 인터넷 웹사이트 기반의 무선 네트워크 플랫폼을 통해 뇌 이식용 장치의 원격제어, 자동화된 데이터 수집, 뇌 회로 제어 스케줄링 등의 다양한 기능을 손쉽게 구현할 수 있도록 설계됐다. 연구팀은 이 시스템의 뇌 신경회로 자동 원격제어 기능을 사용해 자체 제작한 무선 장치(뉴럴 임플란트)가 이식된 수십 마리의 쥐의 뇌 신경회로를 광유전학적 방법으로 사람의 개입 없이 정교하게 원격 자동 제어함으로써, 완전 자동화된 뇌 연구 실험에 적용 가능함을 입증했다. 이 실험을 통해 쥐의 먹이 섭취량, 활동량, 그리고 다른 쥐들과의 사회적 상호작용 빈도를 성공적으로 조절함으로써, 예약이 설정된 대로 다수 동물의 뇌 신경회로를 동시에 독립적으로 원격 제어할 수 있음을 보였다. 정 교수는 "개발된 원격제어 기술은 동물을 활용한 뇌 연구에 필요한 인간개입을 최소화함으로써 뇌 연구의 효율을 높이고 실험의 불확실성을 크게 줄일 수 있을 것ˮ이라며 "이 기술은 뇌 연구를 넘어, 많은 동물 실험을 필요로 하는 신약 개발, 병원 방문 없이 뇌 질환 및 다양한 질병을 치료하기 위한 원격 의료 구현에도 적용될 수 있을 것이다ˮ라고 말했다. 연구팀은 이 기술이 더욱 광범위하게 뇌 과학 연구 및 치료에 사용될 수 있게 하도록, 인공지능 기반의 실시간 뇌파 원격 모니터링 기술을 개발해 본 시스템과 접목하기 위한 연구를 계획하고 있다. 한편 이번 연구는 KAIST 글로벌 특이점 연구사업, 한국연구재단이 추진하는 중견연구자지원사업 및 바이오의료기술개발사업, 미국 국립보건원의 지원을 받아 수행됐다.
2021.12.08
조회수 8708
전기및전자공학부 최재혁 교수팀, '제22회 대한민국 반도체 설계대전' 대통령상 수상
우리 대학 전기및전자공학부 최재혁 교수 연구실(연구실명: 집적회로 시스템 연구실, Integrated Circuits and System Lab)에서 ‘제22회 대한민국 반도체 설계대전’의 대통령상 수상자를 배출했다. ‘제22회 대한민국 반도체 설계대전’은 산업통상자원부와 한국반도체산업협회가 공동으로 주관하는 반도체 설계 전문 공모전으로, 반도체 설계분야 대학(원)생들의 설계 능력을 배양하고, 창의적인 아이디어를 발굴하는 것을 목표로 한다. 대통령상 수상자는 최재혁 교수 연구실의 박선의 박사과정, 조윤서 박사과정, 방주은 박사과정 학생으로 6G 통신에서 통신을 방해하는 잡음(noise)을 획기적으로 낮추는 ‘초 저잡음 신호’를 생성할 수 있는 CMOS(상보형금속산화반도체) 공정 기반의 칩을 개발해 대통령상에 선정됐다. 6G 통신은 최대 20 기가bps(Gbps)의 전송 속도를 갖는 5G 통신 대비 최대 50배 빠른 1 테라bps(Tbps)를 목표로 연구가 진행되고 있다. 일반적으로 통신 주파수 대역이 올라갈수록 넓은 통신 대역폭을 사용할 수 있어 데이터 전송 속도를 높일 수 있기 때문에, 6G 통신에서 요구하는 높은 데이터 전송 속도를 위해서는 100 기가헤르츠(GHz) 이상 주파수 대역의 사용이 필수적이다. 하지만, 이러한 높은 주파수 대역에서 반송파로 사용될 수 있는 정확한 기준 신호를 CMOS 공정을 이용해 만드는 것은 큰 난제였다. CMOS 공정이 초소형, 저전력 디자인에 유리함에도 불구하고, 그 동작 주파수와 고주파 대역 이득(gain)에 한계가 있고, 저잡음 특성이 SiGe, InP 등의 현존하는 다른 공정에 비해 불리하기 때문에 100 기가헤르츠(GHz) 이상의 주파수 대역에서 초 저잡음 성능을 달성하기 어려웠기 때문이다. 하지만, 최재혁 교수팀 학생들이 개발한 칩에서는 이러한 한계를 극복하고, CMOS 공정을 사용해 처음으로 100 기가헤르츠(GHz) 이상 대역에서 고차 변‧복조 기술을 지원할 수 있는 초 저잡음 신호 생성 기술을 선보였다. 이 기술은 CMOS 공정 기반으로도 6G 통신에서 요구하는 초 저잡음 성능을 달성할 수 있다는 것을 보여줌으로써, 장차 상용화될 6G 통신 칩의 가격 경쟁력과 집적도를 높이는 데 기여할 것으로 기대된다. 대통령상 수상팀에게는 상금 500만 원과 부상이 수여되며, 시상식은 11월 22일 코엑스에서 진행된다.
2021.11.22
조회수 6102
국제 컴퓨터 기술 활용 협업 및 소셜 컴퓨팅 학술대회 최우수논문상 수상
우리 대학 전기및전자공학부 이성주 교수 연구팀이 지난 10월 23일부터 10월 27일에 열린 세계컴퓨터연합회(ACM) 주최로 진행된 제24회 컴퓨터 기술활용 협업 및 소셜 컴퓨팅 학술대회(International Conference on Computer-Supported Cooperative Work and Social Computing, 이하 CSCW)에서 최우수 논문상과 방법론 우수상을 수상했다고 18일 밝혔다. CSCW 는 1986년에 시작됐으며 집단과 공동체를 위한 기술을 디자인하고 활용하는 연구 분야에 초점을 맞추고 있으며, 인간-컴퓨터 상호작용(Human Computer Interaction, HCI)과 소셜 컴퓨팅 분야의 최우수 학회 중 하나로 오래동안 각광받고 있다. 올해 340개의 논문이 발표되며, 최우수 논문상은 제출된 논문의 최상위 1% 논문에만 주어진다. 또한, 방법론 우수상은 올해 신설된 상으로, 획기적인 방법론을 제시하고 구현한 논문에게 주어진다. 이번 논문(Reflect, not Regret: Understanding Regretful Smartphone Use with App Feature-Level Analysis)은 조현성 우리 대학 졸업생 (現 미국 카네기멜론대학교 박사과정), 최다은 학사과정, 김동휘 박사과정, 강완주 박사과정, 최은경 미국 메릴랜드 대학 교수가 참여했다. 연구팀은 스마트폰 화면의 사용자 인터페이스(User Interface) 배치를 기반으로, 사용자가 모바일 애플리케이션 내의 어떤 형태(feature)를 사용하는지 추출해 분석하는 방법론을 개발했다. 예를 들면, 인스타그램 앱에서, 팔로잉 포스트, 팔로잉 스토리 보기, 검색, 대화창 등 다양한 형태(feature)가 존재하는데, 형태별로 세분화된 스마트폰 사용 분석을 가능하게 했다. 이 기술을 기반으로, 특정 형태 사용 패턴은 후회가 되는 스마트폰 사용에 영향을 준다는 것을 밝혔다. 이성주 교수는 "많은 사람들이 스마트폰을 편리하게 사용하지만 과도한 사용으로 문제가 제기되고 있고, 앱 안의 다양한 형태로 세분화한 사용 분석을 가능하게 한 독창적 방법론이 학문적으로 인정받았다ˮ며 "현실적으로 디지털 웰빙에 기여할 수 있다는 점이 높게 평가되어 수상하게 된 것 같다ˮ라고 소감을 밝혔다. 우리 대학 전기및전자공학부 학부장 강준혁 교수는 이성주 교수와 학부생이 포함된 연구팀의 세계적 학술대회 수상을 더욱 높이 평가했다. 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단과 정보통신기술진흥센터의 지원을 받아 수행됐다.
2021.11.18
조회수 8347
최성율 교수, 2021 소부장 산업공헌 유공 국무총리표창 수상
우리 대학 전기및전자공학부 최성율 교수(소재부품장비 기술자문단장 및 기술가치창출원장)가 10월 13일부터 15일까지 일산 킨텍스에서 열린 2021 소부장 뿌리기술대전 시상식에서 소재부품장비(소부장) 산업공헌 유공 국무총리 표창을 수상했다. 소부장 산업공헌 유공 포상은 국내 소재부품장비 산업 발전 및 기술혁신, 소부장 육성 정책의 수립·시행 및 현안 해결에 기여한 유공자에게 주어지는 상이며, 최성율 교수는 2019년 출범한 우리 대학 소부장 기술자문단의 단장으로서, 기업지원 협력체계를 구축하고 소부장 산업 경쟁력 강화를 위한 정책 발굴에 노력해왔다. 최성율 단장을 중심으로 우리 대학 전·현직 교수 155인이 기업의 기술애로점에 대한 선제적·전방위적·전주기적 기술자문을 수행하고 있는 기술자문단은, 일본의 수출규제와 화이트리스트 배제 조치에 영향을 받는 중소·중견기업이 적극적으로 대응할 수 있는 창구를 제공하기 위해 국내 최초의 소부장 산업기술 전담 자문조직으로 출범하였으며, 출범 이후부터 현재까지 75개 기업을 대상으로 100회 이상 자문을 수행했다. 최성율 단장은 과학기술정보통신부 국가연구협의체(N-TEAM) 사업단장, 산업통상자원부 대학 소재부품장비 기술전략자문단 단장으로 소부장 지원 국가과제 수행을 이끌며 국내 소부장 분야 중소·중견기업의 기술애로 해소에도 크게 기여하고 있다. 또한 금년도부터 최성율 단장이 기술가치창출원장 역할을 수행함으로써 기관 차원의 전사적, 전주기적 지원체계를 구축하고 있다. 이 외에도 소부장 경쟁력강화위원회, 대중소기업 상생협의회, 국가연구인프라 위원회 등 다양한 국가 정책 위원회 활동을 통해 정부의 소부장 산업 정책 발굴에 기여하고 있으며, 한국지식재산보호원과 협력해 국내 소부장 기업의 지식재산권 보호 및 분쟁 대응 지원에도 앞장서고 있다. 최성율 단장은 "이번 국무총리 표창 수상은 개인의 성과이기보다는 기술자문단에 참여해 주시고 지원해 주신 우리 교수님들과 구성원을 대표해서 받는 것이라 생각한다. 일본의 수출규제와 이후 팬데믹으로 인한 글로벌 밸류체인 교란으로 어려움을 겪는 중소·중견기업을 돕기 위해 출범한 기술자문단에 헌신적으로 참여해 주신 교수님들과 사무국 직원들, 그리고 성원해 주신 모든 구성원들께 깊이 감사드린다"며, "앞으로도 우리나라 소부장 기업들이 글로벌 경쟁력 선도기업으로 발전하는데 도움이 되도록 더 노력하겠다"라고 전했다.
2021.10.21
조회수 7129
김수예, 우상현, 이해범 박사과정, '2021 구글 PhD 펠로우' 선정
우리 대학 전기및전자공학부 박사과정 김수예 학생(지도교수 김문철)과 우상현 학생(지도교수 권인소), 그리고, 김재철 AI대학원 박사과정 이해범 학생(지도교수 황성주)이 ‘2021 구글 PhD 펠로우’에 선정됐다. 구글 PhD 펠로우십은 컴퓨터과학과 관련된 유망 연구 분야에서 우수한 성과를 낸 대학원생을 지원하는 장학 프로그램으로 올해는 전 세계에서 75명이 선발됐다. 선정된 펠로우에게는 1만 달러의 장학금과 구글 각 분야 전문가 멘토와의 일대일 연구 토의, 피드백 등의 혜택이 주어진다. 김수예, 우상현 학생은 “기계 지각, 음성기술 및 컴퓨터 비전(Machine Perception, Speech Technology and Computer Vision)” 분야에서 펠로우로 선정됐다. 김수예 학생은 딥러닝 기반 이미지 및 영상 화질 개선, 우상현 학생은 컴퓨터비전 분야의 탁월한 연구 성과를 인정받아 선정됐다. 이해범 학생은 머신러닝(Machine Learning) 분야에서 메타학습 분야의 탁월한 연구 성과들을 인정받아 선정됐다. 김수예 학생은 딥러닝 기반 이미지 및 영상 화질 개선에 대한 탁월한 연구 성과를 인정받았다. 특히 초해상화와 HDR 영상 복원, 그리고, 초해상화와 프레임 보간을 동시에 처리하는 딥러닝 기반 방법을 각각 최초로 제안하는 등, 관련 연구 성과를 CVPR, ICCV, AAAI 등의 유수 컴퓨터 비전 및 인공지능(AI) 분야 국제학술대회에 발표했다. 또한 연구 인턴십을 통해 구글 리서치 및 어도비 리서치의 연구진과 협력하며 다양한 고품질 영상 변환 연구를 수행하고 있다. 우상현 학생은 시각적 인식 및 추론 분야의 탁월한 연구 성과를 인정받았다. 그가 제안한 인간의 주의 집중 매커니즘(Attention Mechanism)에 기반한 효과적인 딥러닝 모델 디자인, 자기 지도 및 시뮬레이터를 활용한 효율적인 학습 방법론들이 주목을 받았다. 모델과 학습 방법론에 대한 다양한 연구 성과들은 CVPR, ECCV, NeurIPS 등 유수의 컴퓨터비전 및 인공지능 분야 최고 국제학술대회에서 발표됐다. 특히, 2018년도 ECCV에서 발표되었던 논문 Convolutional Block Attention Module (CBAM)은 여러 컴퓨터비전 응용들에 활용되면서 현재 구글 스칼라기준 피 인용수 2700회를 넘었다. 그는 2020년 마이크로소프트 펠로우십 (Microsoft Reserach Asia PhD Fellowship)에도 선발된 바 있다. 이해범 학생은 메타학습 분야의 탁월한 연구 성과, 특히 기존의 메타학습 프레임워크의 여러 가지 한계점들을 다양한 측면에서 효과적으로 극복한 것으로 평가받는다. 구체적으로는 기존의 인위적인 태스크 분포에서 벗어나 불균형이 심한 현실적인 태스크 분포를 다뤘고, 메타지식의 실용성을 높였으며, 대규모의 태스크 상황에서도 메타학습이 가능하도록 했다. 이러한 다양한 연구들은 NeurIPS, ICML, ICLR 등 기계학습 및 딥러닝 분야의 최고 학회에 다수 선정됐으며, 특히 ICLR 2020에 구두발표 및 NeurIPS 2020에 스포트라이트 발표로 선정됐다. 시상식은 COVID-19 상황으로 인해, 8월 31일부터 9월 1일 양일간 가상으로 열린 구글 PhD 펠로우십 서밋(Google PhD Fellowship Summit)에서 진행됐으며, 수상자 리스트는 구글 홈페이지에 게시돼 있다. (홈페이지 주소 : https://research.google/outreach/phd-fellowship/recipients)
2021.10.18
조회수 8502
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 26