본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%A0%84%EA%B8%B0%EB%B0%8F%EC%A0%84%EC%9E%90%EA%B3%B5%ED%95%99%EB%B6%80
최신순
조회순
세계 최대 자율드론 챔피언쉽 대회 세계 3위 쾌거
우리 대학 전기및전자공학부 심현철 교수 연구팀이 2025년 4월 12일 아랍에미리트(UAE) 정부 후원으로 개최된 아부다비 자율 레이싱 대회(Abu Dhabi Autonomous Racing League, 이하 A2RL)의 드론 챔피언십 리그( Drone Championship League, 이하 DCL)에서 세계 3위를 차지하였다. 아부다비 국립 전시 센터 마리나(ADNEC Marina) 대회장에서 개최된 본 선 대회에서는 2024년 가을 예선을 통해 선발된 14개 팀들이 참가해 실력을 겨뤘다. 참가팀들은 ▲최단 비행시간 경연(AI Grand Challenge), ▲4대동시 자율비행, ▲양쪽에서 마주 보면서 고속으로 비행하는 드래그 레이싱, ▲AI 대 인간 조정사 대결 등 총 4개 부문에서 경합을 벌였다. 그 중 8개 팀이 최단 비행시간 경연 준결승에 진출했고, 이 중 KAIST는 네덜란드 델프트공대(TU Delft), UAE 기술혁신연구소(TII), 체코 공과대학(Czech Technical University, CTU)와 함께 결승에 올랐다. 결승에서는 델프트 공대가 1위를 차지했으며, UAE 기술혁신연구소가 2위, KAIST는 그 뒤를 이어 세계 종합 3위의 성과를 거두었다. 또한, 심현철 교수팀은 세계 최초로 개최된 자율비행 드론의 동시 자율비행에서 2위를, 양쪽에서 동시에 마주 보며 출발하는 드래그 레이싱(drag racing)에서도 2위를 차지하며 뛰어난 성과를 거두었다. 심 교수팀은 팀장인 한동훈 박사과정을 비롯해 마울라나 아자리(Maulana Azhari) 박사과정, 유제인 석사과정, 박성준 석사과정 등 총 4명으로 구성되어 있으며, 자체 개발한 영상기반 측위 기술과 고기동 비행 제어 기술을 바탕으로 우수한 기량을 선보여 총 10만 5천 달러의 상금을 수상하게 되었다. 이번 대회는 외부 카메라나 라이다(LiDAR) 없이 단안 카메라만을 활용하여 자율 비행 드론에 적용한 최초의 국제 대회로, 총 12개의 게이트가 설치된 실내 경연장에서 진행되었다. 상금 총액은 100만 달러에 달하며, 드론 기술의 미래를 선도하는 경쟁의 장이 되었다. A2RL DCL 자율비행 대회는 2017년 세계적인 로봇 기술 경연대회인 MBZIRC(Mohamed Bin Zayed International Robotics Competition) 이후 UAE 정부 지원으로 개최된 5번째 대규모 로보틱스 경진대회이다. 특히 이번 대회와 같은 카메라 기반 자율비행 드론 레이싱은 단순한 E-sports를 넘어서 현대전에 게임 체인저로 등장한 1인칭 시점(FPV) 드론에 직접적으로 적용될 수 있는 중요한 기술로서, 세계적으로 주목받고 있다. 심현철 교수는 “코로나로 인한 대회 중단과 연구팀 재편 등 연구 공백과 고속 비행을 제대로 실험할 환경을 구하기 어려운 여건 속에서도, 독자적인 측위 및 제어 기술을 완성해 결국 세계 유수의 연구팀들을 제치고 값진 성과를 거둘 수 있었다”고 밝혔다. 이어 “이번 결과에 만족하지 않고, 더욱더 경쟁력 있는 연구 역량 및 환경을 갖출 수 있다면 앞으로 열릴 국제 대회에서는 압도적인 기술력으로 세계 최고 수준의 성과를 만들어 내겠다”고 각오를 전했다. 심 교수는 2016년 세계적인 로봇 학회 IROS에서 세계 최초로 자율드론 레이싱을 개최한 자율 드론 레이싱 분야의 선구자이며, 같은 대회에서 2016년, 2018년 각각 우승 및 준우승을 차지했다. 또한, 2019년 미국 록히드 마틴(Lockheed Martin)사가 주최한 AlphaPilot 자율 드론 AI 경진대회에서는 3위를, 2019년, 2020년 과기정통부가 개최한 AI 그랜드 챌린지 드론 실내비행 부분에서 2회 연속 우승을 거두며 총 24억원의 후속 연구비를 지원받는 등 꾸준히 우수한 성과를 거두었다. 더불어 2024년 해양 환경에서 자율 로봇(무인 보트, 드론 등)의 기술 능력을 겨루는 국제 대회인 MBZIRC 해양 챌린지(Maritime Challenge)에서 KAIST 기계공학부 김진환 교수팀과 공동으로 참여하여 2등을 차지한 바 있다.
2025.04.18
조회수 591
외계행성 감지 중적외선 광검출기 혁신, 환경·의료 개척
미국 항공우주국(NASA)의 제임스웹 우주망원경(JWST)은 중적외선 스펙트럼을 활용해 외계 행성 대기의 수증기, 이산화황 등 분자 성분을 정밀하게 분석하고 있다. 이처럼 각 분자가 ‘지문’처럼 고유한 패턴을 나타내는 중적외선 분석의 핵심은, 아주 약한 빛의 세기까지 정밀하게 측정할 수 있는 고감도 광검출기 기술이다. 최근 KAIST 연구진이 중적외선 스펙트럼의 넓은 영역을 감지할 수 있는 혁신적 광검출기 기술을 개발하며 주목을 받고 있다. 우리 대학 전기및전자공학부 김상현 교수팀이 상온에서 안정적으로 동작하는 중적외선 광검출기 기술을 개발하고, 이를 통해 초소형 광학 센서 상용화에 새로운 전환점을 마련했다고 27일 밝혔다. 이번에 개발된 광검출기는 기존 실리콘(Silicon) 기반 CMOS 공정을 활용해 저비용 대량 생산이 가능하며, 상온에서 안정적으로 동작하는 것이 특징이다. 특히 연구팀은 이 광검출기를 적용한 초소형·초박형 광학 센서를 이용해 이산화탄소(CO2) 가스를 실시간으로 검출하는 데 성공, 환경 모니터링 및 유해가스 분석 등 다양한 응용 가능성을 입증했다. 기존 중적외선 광검출기는 상온에서의 높은 열적 잡음(Thermal noise)으로 인해 일반적으로 냉각 시스템이 요구된다. 이러한 냉각 시스템은 장비의 크기와 비용을 증가시켜, 센서의 소형화 및 휴대용 기기 응용을 어렵게 만든다. 또한, 기존 중적외선 광검출기는 실리콘 기반 CMOS 공정과 호환되지 않아 대량생산이 어렵고 상용화가 제한됐다. 이에 연구팀은 실리콘과 같은 주기율표 4족 원소인 저마늄(Germanium) 반도체를 기반으로 한 광학 플랫폼을 활용해, 넓은 대역의 중적외선 검출 성능을 확보하면서도 동시에 상온에서 안정적으로 동작할 수 있는 새로운 형태의 도파로형(waveguide-integrated) 광검출기를 개발했다. ‘도파로’란 빛을 특정한 경로로 손실 없이 효과적으로 유도하는 구조물을 의미한다. 온-칩(on-chip) 상에서 다양한 기능의 광학 회로를 구현하기 위해서는 도파로형 광검출기를 포함해 도파로를 기반으로 하는 광학 소자의 개발이 필수적으로 요구된다. 이번 기술은 기존에 광검출기 동작에 일반적으로 활용되는 밴드갭 흡수 원리와는 다르게 볼로미터 효과(Bolometric effect)*를 활용해 중적외선 스펙트럼 영역 전체를 대응할 수 있기 때문에 다양한 종류의 분자들의 실시간 센싱에 범용적으로 활용될 수 있다. *볼로미터 효과(Bolometric effect): 빛을 흡수하면 온도가 올라가고, 그 온도 변화에 따라 전기적인 신호가 달라지는 원리 연구팀이 개발한 상온 동작 및 CMOS 공정 호환 중적외선 도파로형 광검출기는 기존 중적외선 센서 기술이 가진 냉각 필요성, 대량 생산의 어려움, 높은 비용 문제를 해결하는 혁신적인 기술로 평가된다. 이를 통해 환경 모니터링, 의료 진단, 산업 공정 관리, 국방 및 보안, 스마트 디바이스 등 다양한 응용 분야에 적용 가능하며, 차세대 중적외선 센서 기술의 핵심적인 돌파구를 제공할 것으로 기대된다. 김상현 교수는 “이번 연구는 기존 중적외선 광검출기 기술의 한계를 극복한 새로운 접근 방식이며, 향후 다양한 응용 분야에서 실용화될 가능성이 매우 크다”고 밝혔다. 또한, “특히 CMOS 공정과 호환되는 센서 기술로, 저비용 대량생산이 가능해 차세대 환경 모니터링 시스템, 스마트 제조 현장 등에서 적극 활용될 것”이라고 덧붙였다. 이번 연구 결과는 심준섭 박사(現 하버드대학교 박사후 연구원)가 제1 저자로 참여해 국제 저명 학술지인 ‘빛, 과학과 응용(Light: Science & Applications, JCR 2.9%, IF=20.6)’에 2025년 3월 19일 자 발표됐다. (논문제목: Room-temperature waveguide-integrated photodetector using bolometric effect for mid-infrared spectroscopy applications, https://doi.org/10.1038/s41377-025-01803-3) 한편, 해당 연구는 한국연구재단의 지원을 받아 진행됐다.
2025.03.27
조회수 1085
최경철 교수, SID(국제정보디스플레이학회) 석학회원 선임
우리 대학 전기및전자공학부 최경철 교수가 국제정보디스플레이학회(Society for Information Display, 이하 SID) 학회의 2025년도 석학회원(Fellow)으로 선임됐다고 21일 밝혔다. 석학회원의 임기는 평생이다. 디스플레이 분야에서 미국 전기전자공학자협회(IEEE))와 SID 학회에서 동시에 석학회원으로 선정된 연구자는 전 세계적으로 단 11명뿐이며, 국내에서는 故 이병호 교수(서울대학교)에 이어 두 번째 사례다. 석학회원은 해당 학회 회원 중 상위 0.1%의 뛰어난 연구 성과를 보유한 연구자에게만 주어진다. 최경철 교수는 서울대학교 박사과정 시절부터 디스플레이 연구를 시작해 30년 넘게 해당 분야를 선도해 온 연구자다. 1990년대부터 2014년까지 고효율 플라즈마 디스플레이 패널(이하 PDP) 연구를 주도하며 세계적인 권위자로 자리매김했다. 그러나 PDP 산업의 쇠퇴 이후 플렉시블 디스플레이 연구로 전환해, 플렉시블 OLED 소자에 적용 가능한 세계 최고 수준의 유연 봉지막(Flexible Encapsulation) 기술을 개발했다. 특히, 미래 디스플레이 기술로 주목받는 진정한 입는 디스플레이(Truly Wearable Display) 구현을 목표로, 옷감과 실 위에 OLED 소자를 제작하는 혁신적인 연구를 개척했다. 이러한 성과를 바탕으로 SID 석학회원으로 선정됐다. 또한, 최 교수는 입는 디스플레이 기술을 활용해 상처 치료, 황달 치료, 치매 치료 등 바이오메디컬 응용 연구를 세계 최초로 수행했다. 특히, 상처 치료용 OLED 패치 기술은 현재 상용화 단계에 있다. 전기및전자공학부 최경철 교수는 디스플레이 연구 성과로 머크 상(Merck Award, 2018), SID 학회 최우수 논문상(2020), UDC 혁신연구상(2022), 국가 과제 우수 연구성과 100선(2018, 2025), KAIST 학술상(2014), KAIST 대표연구성과(2019)와 우수연구성과(2024) 등 다수의 상을 받았다. 2023년에는 IEEE 석학회원으로 선정됐으며, 한국공학한림원 정회원으로도 활동하고 있다.
2025.03.21
조회수 810
챗GPT 등 대형 AI모델 학습 최적화 시뮬레이션 개발
최근 챗GPT, 딥시크(DeepSeek) 등 초거대 인공지능(AI) 모델이 다양한 분야에서 활용되며 주목받고 있다. 이러한 대형 언어 모델은 수만 개의 데이터센터용 GPU를 갖춘 대규모 분산 시스템에서 학습되는데, GPT-4의 경우 모델을 학습하는 데 소모되는 비용은 약 1,400억 원에 육박하는 것으로 추산된다. 한국 연구진이 GPU 사용률을 높이고 학습 비용을 절감할 수 있는 최적의 병렬화 구성을 도출하도록 돕는 기술을 개발했다. 우리 대학 전기및전자공학부 유민수 교수 연구팀은 삼성전자 삼성종합기술원과 공동연구를 통해, 대규모 분산 시스템에서 대형 언어 모델(LLM)의 학습 시간을 예측하고 최적화할 수 있는 시뮬레이션 프레임워크(이하 vTrain)를 개발했다고 13일 밝혔다. 대형 언어 모델 학습 효율을 높이려면 최적의 분산 학습 전략을 찾는 것이 필수적이다. 그러나 가능한 전략의 경우의 수가 방대할 뿐 아니라 실제 환경에서 각 전략의 성능을 테스트하는 데는 막대한 비용과 시간이 들어간다. 이에 따라 현재 대형 언어 모델을 학습하는 기업들은 일부 경험적으로 검증된 소수의 전략만을 사용하고 있다. 이는 GPU 활용의 비효율성과 불필요한 비용 증가를 초래하지만, 대규모 시스템을 위한 시뮬레이션 기술이 부족해 기업들이 문제를 효과적으로 해결하지 못하고 있는 상황이다. 이에 유민수 교수 연구팀은 vTrain을 개발해 대형 언어 모델의 학습 시간을 정확히 예측하고, 다양한 분산 병렬화 전략을 빠르게 탐색할 수 있도록 했다. 연구팀은 실제 다중 GPU 환경에서 다양한 대형 언어 모델 학습 시간 실측값과 vTrain의 예측값을 비교한 결과, 단일 노드에서 평균 절대 오차(MAPE) 8.37%, 다중 노드에서 14.73%의 정확도로 학습 시간을 예측할 수 있음을 검증했다. 연구팀은 삼성전자 삼성종합기술원와 공동연구를 진행하여 vTrain 프레임워크와 1,500개 이상의 실제 학습 시간 측정 데이터를 오픈소스로 공개(https://github.com/VIA-Research/vTrain)하여 AI 연구자와 기업이 이를 자유롭게 활용할 수 있도록 했다. 유민수 교수는 “vTrain은 프로파일링 기반 시뮬레이션 기법으로 기존 경험적 방식 대비 GPU 사용률을 높이고 학습 비용을 절감할 수 있는 학습 전략을 탐색하였으며 오픈소스를 공개하였다. 이를 통해 기업들은 초거대 인공지능 모델 학습 비용을 효율적으로 절감할 것이다”라고 말했다. 이 연구 결과는 방제현 박사과정이 제1 저자로 참여하였고 컴퓨터 아키텍처 분야의 최우수 학술대회 중 하나인 미국 전기전자공학회(IEEE)·전산공학회(ACM) 공동 마이크로아키텍처 국제 학술대회(MICRO)에서 지난 11월 발표됐다. (논문제목: vTrain: A Simulation Framework for Evaluating Cost-Effective and Compute-Optimal Large Language Model Training, https://doi.org/10.1109/MICRO61859.2024.00021) 이번 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단, 정보통신기획평가원, 그리고 삼성전자의 지원을 받아 수행되었으며, 과학기술정보통신부 및 정보통신기획평가원의 SW컴퓨팅산업원천기술개발(SW스타랩) 사업으로 연구개발한 결과물이다.
2025.03.13
조회수 1633
비오는 날 터치 걱정 끝! KAIST, 인간 촉각 수준 감지
최근 개발된 로봇들은 계란을 섬세하게 집는 수준에 이르렀는데, 이같은 결과는 손 끝에 집적된 압력 센서가 촉각 정보를 제공했기 때문이다. 그러나, 이러한 세계 최고 수준의 로봇들조차도 물 속, 굽힘, 전자기 간섭과 같은 복잡한 외부 간섭 요소들이 존재하는 환경에서 압력을 정확히 감지하는 것은 아직 어렵다. 우리 연구진이 물기가 묻은 스마트폰 화면과 같은 환경에서도 외부 간섭 없이 안정적으로 작동하며, 인간의 촉각 수준에 근접한 압력 센서를 개발하는 데 성공했다. 우리 대학 전기및전자공학부 윤준보 교수 연구팀이 비가 오거나 샤워 후 스마트폰 화면에 물이 묻으면, 터치가 엉뚱하게 인식되는 '고스트 터치'와 같은 외부 간섭의 영향을 받지 않으면서도 높은 해상도로 압력을 감지할 수 있는 압력 센서를 개발했다고 10일 밝혔다. 흔히 터치 시스템으로 사용되고 있는 정전용량 방식 압력 센서는 구조가 간단하고 내구성이 뛰어나 스마트폰, 웨어러블 기기, 로봇 등의 휴먼-머신 인터페이스(Human-Machine Interface) 기술에 널리 활용되고 있다. 그러나 물방울이나 전자기 간섭, 굴곡으로 인한 굽힘 등 외부 간섭 요소에 의해 오작동이 발생하는 치명적인 문제가 있었다. 연구팀은 이와 같은 문제를 해결하기 위해 우선 정전용량 방식 압력 센서에서 발생하는 간섭의 원인을 정확히 파악하고자 했다. 그 결과, 센서 가장자리에서 발생하는 ‘프린지 필드(Fringe Field)'가 외부 간섭에 극도로 취약한 것을 확인했다. 이를 근본적으로 해결하기 위해서는 문제의 원인인 프린지 필드를 억제해야 한다는 결론에 이르렀다. 따라서, 연구팀은 이론적 접근을 통해 프린지 필드에 영향을 미치는 구조적 변수들에 대해 집중적으로 탐구했고 전극 간격을 수백 나노미터(nm) 수준으로 좁힐 경우 센서에서 발생하는 프린지 필드를 수 퍼센트 이하로 억제할 수 있음을 확인했다고 밝혔다. 연구팀은 독자적인 마이크로/나노 구조 공정 기술을 활용해 앞서 설계한 900나노미터(nm) 수준의 전극 간격을 갖는 나노 갭 압력 센서를 개발했다. 개발된 센서는 압력을 가하는 물질에 관계없이 압력만을 신뢰적으로 감지했으며 굽힘이나 전자기 간섭에도 감지 성능에 영향이 없는 것을 검증했다. 또한, 연구팀은 개발한 센서의 특성을 활용해 인공 촉각 시스템을 구현했다. 인간의 피부에는 메르켈 원반(Merkel's disc)라는 압력 수용기가 있어 압력을 감지하는데, 이를 모사하기 위해서는 외부 간섭에는 반응하지 않고 오직 압력에만 반응하는 압력 센서 기술이 필요했지만 기존 기술들로는 이러한 조건을 만족시키기가 어려웠다. 윤준보 교수 연구팀이 개발한 센서는 이러한 제약을 모두 극복했으며, 밀도 또한 메르켈 원반 수준에 도달해 무선으로 정밀한 압력 감지가 가능한 인공 촉각 시스템을 구현하는 데 성공했다. 더 나아가, 다양한 전자기기로의 응용 가능성을 확인하기 위해 포스 터치 패드 시스템 역시 개발해 압력의 크기와 분포를 간섭 없이 높은 해상도로 얻을 수 있음을 검증했다고 밝혔다. 윤준보 교수는 “이번 나노 갭 압력 센서는 비 오는 날이나 땀이 나는 상황에서도 기존 압력 센서처럼 오작동하지 않고 안정적으로 동작한다. 많은 사람들이 일상에서 겪어온 불편을 해소할 수 있을 것으로 기대한다.”라고 말했다. 전기및전자공학부 양재순 박사, 정명근 박사과정 그리고 성균관대 반도체융합공학과 유재영 조교수(KAIST 박사 졸업)가 제1 저자로 수행한 이번 연구는 저명 국제 학술지 `네이처 커뮤니케이션즈 (Nature Communications)'에 2025년 2월 27일 출판됐다. (논문 제목: Interference-Free Nanogap Pressure Sensor Array with High Spatial Resolution for Wireless Human-Machine Interfaces Applications, https://doi.org/10.1038/s41467-025-57232-8) 한편, 이번 연구는 한국연구재단의 중견연구지원사업과 선도연구센터지원사업의 지원을 받아 수행됐다.
2025.03.10
조회수 1850
전기및전자공학부 신태인 박사, DesignCon 2025 국제학회서 ‘최우수논문상’ 선정
우리 대학 반도체 설계 분야에서 세계적인 권위를 지닌 국제학회 ‘디자인콘(DesignCon) 2025’에서 전기및전자공학부 김정호 교수 연구실(KAIST TERA Lab) 신태인 박사(28세)가 ‘최우수 논문상’ 수상자로 선정됐다고 28일 밝혔다. 신태인 박사는 3년 전 ‘DesignCon 2022’에서도 최우수 논문상 수상자로 선정된 바 있다. 당시 김정호 교수 연구실(KAIST TERA Lab)은 전체 논문 제출자 가운데 오직 8명에게만 주어지는 최우수 논문상의 영예를 신태인 박사를 포함해 김성국·최성욱·김혜연 씨 등 4명의 학생이 동시에 수상해 산·학·연 관계자들로부터 많은 관심을 받았다. ‘디자인콘(DesignCon)’은 반도체 및 패키지 설계 분야에서 권위를 인정받는 국제학회다. 인텔, 엔비디아, 구글, 마이크론, 램버스, 텍사스인스트루먼트(TI), AMD, IBM, 앤시스(ANSYS) 등 글로벌 빅테크 기업 소속 연구원과 엔지니어, 전 세계 유명 대학(원) 학생들이 해마다 미국 실리콘밸리에서 열리는 학술대회를 겸한 학회에 참가한다. ‘디자인콘(DesignCon)’은 매년 6월 말 논문 초안을 모집하고 12월 말까지 접수된 전체 논문을 심사한다. ‘디자인콘(DesignCon)’에 접수되는 논문은 대부분 실무와 밀접한 관련이 있거나 곧바로 제품에 적용할 수 있는 실용적인 기술에 관한 내용을 담고 있다. 접수된 전체 논문 가운데 20편 이내 논문이 최우수 논문상 후보로 뽑힌다. 이후 열리는 학술대회에 해당 논문의 저자가 직접 참석해서 45분간의 구두 발표를 포함해, 엄중한 심사 절차를 거친 후 8편의 논문이 최우수 논문상으로 선정된다. 신태인 박사도 최우수 논문상 후보로 뽑힌 같은 연구실 소속 김혜연 박사과정 학생, 안현준 석사과정 학생과 함께 올 1월 28일부터 사흘간 미국 실리콘밸리 산호세에서 열린 ‘DesignCon 2025’ 국제학회에 참석해 구두 발표하는 과정을 거쳤다. 테라랩 관계자는 “신태인 박사는 2024년 말 접수, 채택된 전체 100여 편의 논문 중 해당 분야의 기술혁신에 기여한 점을 인정받아 심사위원들로부터 좋은 평가를 받았다”고 설명했다. 신 박사의 논문 주제는 ‘강화학습을 활용한 전력 잡음 지터 기반 HBM 통합 전력 무결성 설계(PSIJ Based Integrated Power Integrity Design for HBM Using Reinforcement Learning: Beyond the Target Impedance)’. 이 논문에서 신 박사는 고대역폭 메모리(HBM) 패키지의 전력 무결성 설계를 위해 시간 정보가 포함된 전력 잡음 지터(Power supply noise induced jitter)를 기준으로, 지터에 영향을 주는 설계 요소를 인공지능(AI)을 활용, 설계를 최적화할 수 있다는 방법론을 제시해, 주목을 받았다. 특히 신 박사의 논문은 “기존 임피던스 기반의 전력 분배망 설계의 한계를, 인공지능 강화학습과 전력 잡음 지터를 활용해 효과적으로 전력 무결성을 향상, 설계할 수 있음을 검증한 점과 인공지능(AI)을 활용한 연구의 독창성 측면에서 심사위원들로부터 높은 평가를 받았다”고 테라랩 관계자는 강조했다. 신태인 박사는 “대규모 인공지능(AI) 구현을 위해 점점 더 고속화돼 가는 차세대 HBM 기반 패키지 시스템 설계에 있어, 제안한 방법론을 기반으로 반도체 신호 및 전력 무결성 설계의 토대를 마련하겠다”고 포부를 밝혔다. 한편, 김정호 교수 연구실은 올 3월 현재 석사과정 17명, 박사과정 10명 등 모두 27명의 학생이 반도체 전·후공정에 들어가는 다양한 패키지와 인터커넥션 설계를 강화·모방 학습과 같은 인공지능(AI) 머신러닝(ML)을 활용해 최적화하는 연구를 수행 중이다. 이 밖에 대규모 인공지능(AI) 구현을 위한 HBM 기반 컴퓨팅 아키텍트와 관련한 연구도 함께 진행 중이다.
2025.02.28
조회수 1875
챗GPT를 이용한 개인정보 악용 가능성 규명
최근 인공지능 기술의 발전으로 챗GPT와 같은 대형 언어 모델(이하 LLM)은 단순한 챗봇을 넘어 자율적인 에이전트로 발전하고 있다. 구글(Google)은 최근 인공지능 기술을 무기나 감시에 활용하지 않겠다는 기존의 약속을 철회해 인공지능 악용 가능성에 대한 논란이 불거진 점을 상기시키며, 연구진이 LLM 에이전트가 개인정보 수집 및 피싱 공격 등에 활용될 수 있음을 입증했다. 우리 대학 전기및전자공학부 신승원 교수, 김재철 AI 대학원 이기민 교수 공동연구팀이 실제 환경에서 LLM이 사이버 공격에 악용될 가능성을 실험적으로 규명했다고 25일 밝혔다. 현재 OpenAI, 구글 AI 등과 같은 상용 LLM 서비스는 LLM이 사이버 공격에 사용되는 것을 막기 위한 방어 기법을 자체적으로 탑재하고 있다. 그러나 연구팀의 실험 결과, 이러한 방어 기법이 존재함에도 불구하고 쉽게 우회해 악의적인 사이버 공격을 수행할 수 있음이 확인됐다. 기존의 공격자들이 시간과 노력이 많이 필요한 공격을 수행했던 것과는 달리, LLM 에이전트는 이를 평균 5~20초 내에 30~60원(2~4센트) 수준의 비용으로 개인정보 탈취 등이 자동으로 가능하다는 점에서 새로운 위협 요소로 부각되고 있다. 연구 결과에 따르면, LLM 에이전트는 목표 대상의 개인정보를 최대 95.9%의 정확도로 수집할 수 있었다. 또한, 저명한 교수를 사칭한 허위 게시글 생성 실험에서는 최대 93.9%의 게시글이 진짜로 인식됐다. 뿐만 아니라, 피해자의 이메일 주소만을 이용해 피해자에게 최적화된 정교한 피싱 이메일을 생성할 수 있었으며, 실험 참가자들이 이러한 피싱 이메일 내의 링크를 클릭할 확률이 46.67%까지 증가하는 것으로 나타났다. 이는 인공지능 기반 자동화 공격의 심각성을 시사한다. 제1 저자인 김한나 연구원은 "LLM에게 주어지는 능력이 많아질수록 사이버 공격의 위협이 기하급수적으로 커진다는 것이 확인됐다”며, "LLM 에이전트의 능력을 고려한 확장 가능한 보안 장치가 필요하다”고 말했다. 신승원 교수는 “이번 연구는 정보 보안 및 AI 정책 개선에 중요한 기초 자료로 활용될 것으로 기대되며, 연구팀은 LLM 서비스 제공업체 및 연구기관과 협력하여 보안 대책을 논의할 계획이다”라고 밝혔다. 전기및전자공학부 김한나 박사과정이 제1 저자로 참여한 이번 연구는 컴퓨터 보안 분야의 최고 학회 중 하나인 국제 학술대회 USENIX Security Symposium 2025에 게재될 예정이다. (논문명: "When LLMs Go Online: The Emerging Threat of Web-Enabled LLMs") DOI: 10.48550/arXiv.2410.14569 한편 이번 연구는 정보통신기획평가원, 과학기술정보통신부 및 광주광역시의 지원을 받아 수행됐다.
2025.02.24
조회수 1978
최대 11배 빨라진 PIM 반도체 네트워크 개발
최근 인공지능, 빅데이터, 생명과학 등 연구에 사용되는 메모리 대역폭이 차지하는 비중이 높아, 메모리 내부에 연산장치를 배치하는 프로세싱-인-메모리(Processing-in-Memory, 이하 PIM) 반도체에 대한 연구개발이 활발히 진행되고 있다. 국제 공동 연구진이 기존의 PIM 반도체가 내부장치를 활용하면서도 통신을 할때 반드시 PIM 반도체 외부로 연결되는 CPU를 통해야한다는 문제점으로 발생한 병목현상을 해결했다. 우리 대학 전기및전자공학부 김동준 교수 연구팀이 미국 노스이스턴 대학(Northeastern Univ.), 보스턴 대학(Boston Univ.)와 스페인 무르시아 대학(Universidad de Murcia)의 저명 연구진과‘PIM 반도체 간 집합 통신에 특화된 인터커넥션 네트워크 아키텍처’를 통한 공동연구로 PIM 반도체의 통신 성능을 비약적으로 향상하는 기법을 개발했다고 19일 밝혔다. 김동준 교수 연구팀은 기존 PIM 반도체가 갖는 메모리 내부 연산 장치 간 통신 구조의 한계를 밝히고, 기존에 메모리 내부에 존재하는 데이터 이동을 위한 버스 구조를 최대한 활용하면서 각 연산장치를 직접적으로 상호 연결하는 *인터커넥션 네트워크 구조를 적용함으로써 PIM 반도체의 통신 성능을 극대화하는 기법을 제안했다. ※ 인터커넥션 네트워크(interconnection network): 다중 연산 장치를 포함하는 대규모 시스템 설계에 쓰이는 연산 장치 간 연결 구조를 말한다. 인터커넥션 네트워크는 다중 연산 장치를 포함하는 시스템 설계의 필수 요소 중 하나로써 시스템 규모가 커질수록 더욱 중요해지는 특징이 있다. 이를 통해 PIM 반도체를 위한 연산 과정에서 통신 처리를 위한 CPU의 개입을 최소화해 PIM 반도체 시스템의 전체적인 성능과 활용성을 높인 PIM 반도체에 특화된 인터커넥션 네트워크 구조를 개발했다. 메모리 공정은 복잡한 로직의 추가가 어렵다는 문제점이 있는데 김동준 교수팀이 개발한 네트워크 구조는 PIM에서 비용 효율적인 인터커넥트를 구현했다. 이 구조는 병렬 컴퓨팅과 기계학습 분야에서 널리 활용되는 집합 통신(Collective communication) 패턴에 특화돼 있으며, 각 연산장치의 통신량과 데이터 이동 경로를 미리 파악할 수 있다는 집합 통신의 결정성(determinism) 특징을 활용해 기존 네트워크에서 비용을 발생시키는 주요 구성 요소들을 최소화시켰다. 기존 PIM 반도체들이 통신하기 위해서는 CPU를 거쳐야만 하기 때문에 상당한 성능 손실이 있었다. 하지만, 연구팀은 PIM 특화 인터커넥션 네트워크를 적용하면 기존 시스템 대비 어플리케이션 성능을 최대 11배 향상했다고 밝혔다. 그 이유는 PIM 반도체의 내부 메모리 대역폭 활용률을 극대화하고 PIM 메모리 시스템의 규모가 커짐에 따라 통신 성능의 확장성이 함께 증가했기 때문이다. 최근 미국 전기전자공학회(IEEE) 컴퓨터 아키텍쳐 분야에서는 한국 최초로 2025 IEEE 펠로우(석학회원)로 선임되었고 이 연구를 주도한 김동준 교수는 “데이터 이동(data movement)을 줄이는 것은 PIM을 포함한 모든 시스템 반도체에서 핵심적인 요소이며, PIM은 컴퓨팅 시스템의 성능과 효율성을 향상할 수 있지만 PIM 연산장치 간 데이터 이동으로 인해 성능 확장성이 제약될 수 있어 응용 분야가 제한적이고, PIM 인터커넥트가 이에 대한 해법이 될 수 있다”고 연구의 의의를 설명했다. 전기및전자공학부 손효준 박사과정이 제1 저자로 참여한 이번 연구는 미국 네바다주 라스베이거스에서 열리는 컴퓨터 구조 분야 최우수 국제 학술대회인 ‘2025 IEEE International Symposium on High Performance Computer Architecture, HPCA 2025’에서 올 3월에 발표될 예정이다. (논문명: PIMnet: A Domain-Specific Network for Efficient Collective Communication in Scalable PIM) 한편 이번 연구는 한국연구재단, 삼성전자, 정보통신기획평가원 차세대지능형반도체기술개발사업의 지원을 받아 수행됐다.
2025.02.19
조회수 1789
김정호 교수, 한국반도체학술대회 ‘2025 강대원 상’ 수상
우리 대학 전기및전자공학부 김정호 교수가 회로·시스템 분야 '2025년 강대원 상'을 한국반도체학술대회 상임운영위원회로부터 수상한다. 김 교수는 HBM 개발에 기여한 공로를 인정받아 SK하이닉스 이강욱 부사장과 함께 수상한다. 시상식은 13일 오후 강원도 하이원그랜드호텔에서 한국반도체산업협회 · 한국반도체연구조합 · DB하이텍이 공동으로 주관, 개최하는 ‘제32회 한국반도체학술대회(KCS 2025)’ 개막식에서 진행된다. 강대원 상은 세계 최초로 모스펫(MOSFET)과 플로팅게이트를 개발해, 반도체 기술 발전에 신기원을 이룩한 고(故) 강대원 박사를 기리기 위해 제정되었으며, 한국반도체학술대회 상임운영위원회가 지난 2017년 열린 제24회 반도체 학술대회부터 강대원 박사를 이을 인재들을 발굴, 선정해서 시상하고 있다. 김정호 교수는 ‘HBM 아버지’로 불리는 인공지능 반도체 분야의 세계적 권위자이다. 지난 20년 이상 HBM 관련 설계 기술을 세계적으로 주도해 왔다. 특히 HBM 실리콘관통전극(TSV), 인터포저, 신호선 설계(SI), 전력선 설계(PI) 등을 연구하며 세계적으로 연구의 독창성을 인정받고 있다. 이것뿐만 아니라 2010년부터 HBM 상용화 설계에 직접 참여하고 있다. 그 결과, 현재의 인공지능 시대를 가능하게 했다는 평가를 받는다. 최근에는 6세대 HBM인 HBM4를 비롯해, HBM5, HBM6와 같은 차세대 HBM 구조와 아키텍트를 주도적으로 연구 중이다. 여기에 한 걸음 더 나아가 HBM 설계를 인공지능으로 자동화하려는 시도를 병행하고 있다. 특히 강화학습과 생성 인공지능을 결합해 HBM의 전기적, 열적 최적화 연구를 세계적 수준으로 이끌며, 이 분야의 연구를 선도하고 있다. 작년 6월에는, 삼성전자와 공동으로 KAIST에 ‘시스템아키텍트대학원’을 설립해 인공지능 반도체 분야 H/W 및 S/W 동시 설계가 가능한 고급 전문 인력을 양성하는 데 힘쓰고 있으며, 2018년부터 삼성전자 산학협력센터장을 맡고 있다. 또 네이버 ‧ 인텔과 협력해 KAIST에 AI 공동연구센터(NIK AI Research Center)를 설립하는 등 AI 반도체 설계와 더불어 AI 클라우드, AI 데이터 센터 성능 최적화를 목표로 반도체 산업의 신생태계 구축에도 기여하고 있다. IEEE(국제전기전자공학자학회) 석학회원(Fellow)인 김 교수는 이와 같이 반도체 분야 연구와 교육을 통해 산업 발전에 기여한 공로를 인정받아 KAIST 학술상, KAIST 연구대상, KAIST 국제협력상, IEEE 기술 업적상 등을 수상했으며. IEEE 등 여러 국제학회에서 20여 차례에 걸쳐 '최고 논문상‘을 받는 등 학술적인 면에서도 큰 성과를 거두고 있다. ‘강대원 상’은 한국반도체학술대회 상임운영위원회가 세계적인 반도체 연구자인 고(故) 강대원 박사의 업적을 재조명하기 위해 지난 2017년, 처음 제정한 상이다. 강 박사는 미국 벨연구소에 입사해 1960년 이집트 출신 아탈라 박사와 트랜지스터 모스펫(MOS-FET)을 개발, 현대 반도체 기술의 핵심 토대를 마련했다. 또 플래시메모리 근간인 플로팅게이트를 세계 최초로 개발하기도 했다. 한편 한국반도체산업협회와 한국반도체연구조합, DB하이텍이 12~14일 강원도 하이원그랜드호텔에서 개최하는 32회 한국반도체학술대회에는 삼성전자·SK하이닉스·DB하이텍 등 반도체 기업을 포함해 국내 4,200명 이상의 반도체 분야 산·학·연 전문가와 학생이 참석해 역대 최대 규모인 1,659편 논문을 발표하는 등 연구 성과를 공유한다.
2025.02.12
조회수 1477
수면 무호흡증 실시간 진단 센서 개발
이산화탄소는 주요 호흡 대사 산물로서, 날숨 내 이산화탄소 농도의 지속적인 모니터링은 호흡·순환기계 질병을 조기 발견 및 진단하는 데 중요한 지표가 될 뿐만 아니라, 개인 운동 상태 모니터링 등에 폭넓게 사용될 수 있다. 우리 연구진이 마스크 내부에 부착하여 이산화탄소 농도를 정확히 측정하는데 성공했다. 우리 대학 전기및전자공학부 유승협 교수 연구팀이 실시간으로 안정적인 호흡 모니터링이 가능한 저전력 고속 웨어러블 이산화탄소 센서를 개발했다고 10일 밝혔다. 기존 비침습적 이산화탄소 센서는 부피가 크고 소비전력이 높다는 한계가 있었다. 특히 형광 분자를 이용한 광화학적 이산화탄소 센서는 소형화 및 경량화가 가능하다는 장점에도 불구하고, 염료 분자의 광 열화 현상으로 인해 장시간 안정적 사용이 어려워 웨어러블 헬스케어 센서로 사용되는 데 제약이 있었다. 광화학적 이산화탄소 센서는 형광 분자에서 방출되는 형광의 세기가 이산화탄소 농도에 따라 감소하는 점을 이용하며, 형광 빛의 변화를 효과적으로 검출하는 것이 중요하다. 이를 위해 연구팀은 LED와 이를 감싸는 유기 포토다이오드로 이루어진 저전력 이산화탄소 센서를 개발했다. 높은 수광 효율을 바탕으로 형광 분자에 조사되는 여기 광량이 최소화된 센서는 수 mW 수준을 소비하는 기존 센서에 비해 수십 배 낮은 171μW의 소자 소비전력을 달성했다. 연구팀은 또한 이산화탄소 센서에 사용되는 형광 분자의 광 열화 경로를 규명해 광화학적 센서에서 사용 시간에 따라 오차가 증가하는 원인을 밝히고, 오차 발생을 억제하기 위한 광학적 설계 방법을 제시했다. 이를 기반으로, 연구팀은 기존 광화학적 센서의 고질적 문제였던 광 열화 현상에 따른 오차 발생을 효율적으로 감소시키고 동일 재료에 기반한 기존 기술은 20분 이내인데 반해 최대 9시간까지 안정적으로 연속 사용이 가능하며, 이산화탄소 감지 형광 필름 교체시 다회 활용도 가능한 센서를 개발했다. 개발된 센서는 가볍고(0.12 g), 얇으며(0.7 mm), 유연하다는 장점을 기반으로 마스크 내부에 부착되어 이산화탄소 농도를 정확히 측정했다. 또한, 실시간으로 들숨과 날숨을 구별해 호흡수까지 모니터링 가능한 빠른 속도와 높은 해상도를 보였다. 유승협 교수는 "개발한 센서는 저전력, 고안정성, 유연성 등 우수한 특성을 가져 웨어러블 디바이스에 폭넓게 적용될 수 있어 과탄산증, 만성 폐쇄성 폐질환, 수면 무호흡 등 다양한 질병의 조기 진단에 사용될 수 있다”면서 “특히, 분진 발생 현장이나 환절기 등 장시간 마스크 착용 환경에서의 재호흡에 따른 부작용 개선에도 사용될 것으로 기대된다ˮ 라고 밝혔다. 신소재공학과 김민재 학사과정과 전기및전자공학부 최동호 박사과정이 공동 제1 저자로 참여한 이번 연구는 Cell 자매지인 `디바이스(Device)' 온라인판에 지난달 22일 공개됐다. (논문명: Ultralow-power carbon dioxide sensor for real-time breath monitoring) DOI: https://doi.org/10.1016/j.device.2024.100681 한편 이번 연구는 산업통상자원부 소재부품기술개발사업, 한국연구재단 원천기술개발사업, KAIST 학부생 연구참여 프로젝트 (URP) 프로그램의 지원을 받아 수행됐다.
2025.02.10
조회수 1894
스스로 학습·수정하는 뉴로모픽 반도체칩 개발
기존 컴퓨터 시스템은 데이터 처리 장치와 저장 장치가 분리돼 있어, 인공지능처럼 복잡한 데이터를 처리하기에는 효율적이지 않다. KAIST 연구팀은 우리 뇌의 정보 처리 방식과 유사한 멤리스터 기반 통합 시스템을 개발했다. 이제 원격 클라우드 서버에 의존하지 않고 의심스러운 활동을 즉시 인식하는 스마트 보안 카메라부터 건강 데이터를 실시간으로 분석할 수 있는 의료기기까지 다양한 분야에 적용될 수 있게 되었다. 우리 대학 전기및전자공학부 최신현 교수, 윤영규 교수 공동연구팀이 스스로 학습하고 오류를 수정할 수 있는 차세대 뉴로모픽 반도체 기반 초소형 컴퓨팅 칩을 개발했다고 17일 밝혔다. 연구팀이 개발한 이 컴퓨팅 칩의 특별한 점은 기존 뉴로모픽 소자에서 해결이 어려웠던 비이상적 특성에서 발생하는 오류를 스스로 학습하고 수정할 수 있다는 것이다. 예를 들어, 영상 스트림을 처리할 때 칩은 움직이는 물체를 배경에서 자동으로 분리하는 법을 학습하며 시간이 지날수록 이 작업을 더 잘 수행하게 된다. 이러한 자가 학습 능력은 실시간 영상 처리에서 이상적인 컴퓨터 시뮬레이션에 견줄 만한 정확도를 달성하며 입증됐다. 연구팀의 주요성과는 뇌와 유사한 구성 요소의 개발을 넘어, 신뢰성과 실용성을 모두 갖춘 시스템으로 완성한 것에 있다. 연구팀은 세계 최초로 즉각적인 환경 변화에 적응할 수 있는 멤리스터 기반 통합 시스템을 개발하며, 기존 기술의 한계를 극복하는 혁신적인 해결책을 제시했다. 이 혁신의 핵심에는 멤리스터(memristor)*라고 불리는 차세대 반도체 소자가 있다. 이 소자의 가변 저항 특성은 신경망의 시냅스 역할을 대체할 수 있게 되고, 이를 활용해 우리 뇌세포처럼 데이터 저장 및 연산을 동시에 수행할 수 있다. *멤리스터: 메모리(memory)와 저항(resistor)의 합성어로 두 단자 사이로 과거에 흐른 전하량과 방향에 따라 저항값이 결정되는 차세대 전기소자 연구팀은 저항 변화를 정밀하게 제어할 수 있는 고신뢰성 멤리스터를 설계하고, 자가 학습을 통해 복잡한 보정 과정을 배제한 효율적인 시스템을 개발했다. 이번 연구는 실시간 학습과 추론을 지원하는 차세대 뉴로모픽 반도체 기반 통합 시스템의 상용화 가능성을 실험적으로 검증했다는 점에서 중요한 의미를 가진다. 이 기술은 일상적인 기기에서 인공지능을 사용하는 방식을 혁신하여 AI 작업 처리를 위해 원격 클라우드 서버에 의존하지 않고 로컬에서 처리할 수 있게 되어, 더 빠르고 사생활 보호가 강화되며 에너지 효율성이 높아질 것이다. 이 기술 개발을 주도한 KAIST 정학천 연구원과 한승재 연구원은 “이 시스템은 책상과 자료 캐비닛을 오가며 일하는 대신 모든 것이 손이 닿는 곳에 있는 스마트 작업 공간과 같다. 이는 모든 것이 한 곳에서 처리돼 매우 효율적인 우리 뇌의 정보 처리 방식과 유사하다”고 설명했다. 전기및전자공학부 정학천 석박통합과정생과 한승재 석박사통합과정생이 제 1저자로 연구에 참여했으며 국제 학술지 `네이처 일렉트로닉스 (Nature Electronics)'에 2025년 1월 8일 자로 온라인 게재됐다. (논문 제목: Self-supervised video processing with self-calibration on an analogue computing platform based on a selector-less memristor array, https://doi.org/10.1038/s41928-024-01318-6) 이번 연구는 한국연구재단의 차세대지능형반도체기술개발사업, 우수신진연구사업, PIM인공지능반도체핵심기술개발사업, 정보통신기획평가원의 한국전자통신연구원연구개발지원사업의 지원을 받아 수행됐다.
2025.01.22
조회수 2685
뇌 오가노이드의 매우 작은 전기신호도 측정 가능하다
오가노이드*는 인체 조직을 높은 정확도로 모사하기 때문에 질병 모델 개발이나 약물 스크리닝뿐만 아니라 개인 맞춤형 의학에도 활용이 가능하다. 하지만 매우 작은 크기의 전기 신호가 발생하는 심장과 뇌 오가노이드는 전기생리신호를 측정하는 것이 매우 어려웠다. 한국 연구진이 다양한 오가노이드에 손쉽게 적용가능한 전기생리신호 모니터링 시스템을 개발하는 데 성공했다. *오가노이드 : 인간유래 줄기세포를 기반으로 제작되는 3차원 형태의 세포 집합체로, 동물 실험 모델과 2차원 세포 배양 모델을 대체할 실험 모델로 큰 주목을 받고 있다. 우리 대학 전기및전자공학부 이현주 교수 연구팀이 한국생명공학연구원(원장 김장성, KRIBB) 국가아젠다연구부 손미영 부장 연구팀 및 줄기세포융합연구센터 이미옥 박사 연구팀과 공동 연구를 통해 오가노이드의 비침습적 전기생리신호 측정을 위한 고신축성 돌출형 미세전극 어레이 플랫폼을 개발했다고 14일 밝혔다. 기존의 오가노이드 관련 연구는 유전자 분석을 위주로 진행되어 왔으며, 상대적으로 오가노이드의 기능성에 대한 연구는 미비한 상태다. 효과적인 약물 평가와 정밀한 생물학 연구를 위해서는 오가노이드의 3차원 형태와 상태를 보존하며 그 기능을 실시간으로 모니터링할 수 있는 기술의 개발이 필요하다. 이 중 전기신호가 발생하는 심장과 뇌 오가노이드의 전기생리신호 측정의 경우, 오가노이드의 제작 방식에 따라 그 크기가 수백 마이크로미터(μm)부터 수 밀리미터(mm)까지 다양하고 형태가 불규칙하기 때문에 오가노이드를 파괴하지 않고 외부 표면에 전극을 밀착하여 측정하는 것은 매우 어려운 일이다. 연구팀은 오가노이드의 크기와 형태에 맞춰 스스로 늘어나 그 표면에 밀착할 수 있는 고신축성 돌출형 미세전극 어레이를 개발했다. 또한, 이를 활용해 오가노이드에서 발생하는 전기생리신호의 실시간 변화를 성공적으로 측정하여 평가했다. 연구팀은 미소 전자 기계 시스템(Micro Electro Mechanical Systems; MEMS) 공정을 개발해 서펜타인(Serpentine) 구조 기반의 고신축성 미세전극 어레이를 제작했으며, 전기증착 공정을 통해 돌출형 미세전극을 제작했다. 돌출형 미세전극은 오가노이드에 전극을 좀 더 강하게 밀착시켜 주어 오가노이드에는 손상이 가하지 않으면서도 안정적으로 전기생리신호를 측정할 수 있게 하였다. 이현주 교수는 “다양한 크기의 오가노이드에 활용 가능한 고신축성 돌출형 미세전극 어레이를 개발하여 실시간으로 오가노이드의 상태를 평가할 수 있다. 이번 기술은 신약 개발 시 실험동물을 대체하거나 재생 치료제로써 사용되는 오가노이드의 품질 평가에 바로 적용할 수 있을 것”이라고 말했다. 이번 연구 결과는 전기및전자공학부 김기업 박사과정과 한국생명공학연구원 이영선 박사과정이 제1 저자로 참여했으며, 국제 학술지 ‘어드밴스드 머티리얼스 (Advanced Materials)’지에 지난 12월 15일 자 온라인에 게재됐다. (논문명: Highly Stretchable 3D Microelectrode Array for Noninvasive Functional Evaluation of Cardiac Spheroids and Midbrain Organoids), DOI: https://doi.org/10.1002/adma.202412953 한편, 이번 연구는 산업통상자원부 3D생체조직칩기반신약개발플랫폼구축기술개발사업 및 과학기술정보통신부 국산연구장비기술경쟁력강화사업, 바이오의료기술개발사업의 지원을 받아 수행됐다.
2025.01.14
조회수 2847
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 28