본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%A0%84%EA%B8%B0%EB%B0%8F%EC%A0%84%EC%9E%90%EA%B3%B5%ED%95%99%EB%B6%80
최신순
조회순
전기및전자공학부 김용대, 조성환 교수, 2024년 IEEE 석학회원 선임
우리 대학 전기및전자공학부 김용대 교수와 조성환 교수가 국제전기전자공학자협회(이하 IEEE)의 2024년 석학회원(Fellow)으로 선임됐다. IEEE는 세계 최고 권위의 전기, 전자, 컴퓨터, 통신 분야 학회다. 160여 개국에서 40만 명에 이르는 회원을 보유하고 있다. 이중 석학회원(Fellow)은 탁월한 개인 연구 업적, 기술 성취 실적, 전문 분야 총괄 경력 등 7개의 평가 기준 심사를 거쳐 회원의 최상위 0.1% 내에서 선정한다. KAIST 전기및전자공학부에서는 1995년 김충기 명예교수가 석학회원으로 선임된 이후 22명의 교수가 석학회원으로 선임됐다. 2024년처럼 2명 이상의 석학회원이 동시 선임된 것은 2008년 이주장 교수와 유회준 교수, 2009년 경종민 교수, 김종환 교수, 송익호 교수, 2016년 조규형 교수와 김정호 교수, 2023년 서창호 교수와 최경철 교수가 있으며, 2023년에 이어 2년 연속으로 2명의 석학회원이 선임됐다. 김용대 교수는 이동통신, 분산 시스템, 사이버 물리 시스템 등에서 발견되는 취약점을 미리 찾고 이를 개선하는 데 세계적 전문가로 알려져 있다. 아울러, 드론, 5G, 자율 주행 등의 최첨단 기술에서 실제로 가능한 공격을 찾고 이를 입증하고, "직접적인 취약점을 입증"하는 보안전문가로도 세계적 명성을 얻고 있다. 국외 보안 4대 학회에서도 다양한 중책을 맡고 있는 김용대 교수는 향후 5G 이동통신 표준의 설계 취약점들에 대해 분석하고 이를 개선하는 해결책을 개발해 6G 이동통신 표준에 적용되도록 노력할 예정이다. 뿐만 아니라 자율주행차에 대한 안전성 테스팅 방법, 새로운 안티드론 기술 연구 등을 수행할 예정이다. 한편 조성환 교수는 반도체 집적회로설계 전문가로 아날로그 집적회로 분야에서 도전적인 연구로 기술 발전에 중요한 기여를 해 왔다. 우리나라에서는 처음으로 IEEE 회로 및 시스템 소사이어티 최고논문상(Circuits & Systems Society Best Paper Award)을 수상하고 국제반도체회로 학술대회(ISSCC) Outstanding 극동지역 우수논문상(Far-East Paper Award)도 수상했으며, IEEE 반도체 회로 저널(Journal of Solid-State Circuits)과 IEEE 회로 및 시스템 동향(Transactions on Circuits & Systems-I)의 부편집장(Associate Editor), 저명연구자(Distinguished Lecturer) 등을 맡은 바 있다. 이번에 반도체회로 소사이어티(Solid-State Circuit Society)에서 펠로우(Fellow)로 선임됐다. 조성환 교수는 아날로그 회로 기술을 활용해 메모리 반도체와 인공지능 반도체의 성능을 높이는 연구를 수행하고 있으며 관련하여 기술 사업화를 할 예정이다.
2023.12.01
조회수 276
글로벌 인공지능반도체 인재 육성 본격화
우리 대학이 28일 오후 대전 본원 정보전자공학동에서 '인공지능반도체대학원 개원식'을 열었다. 인공지능반도체대학원(책임교수 유회준)은 지난 5월 과학기술정보통신부의 인공지능반도체 분야 석·박사 고급인재 양성사업에 선정돼 설립됐다. 과기부로부터 연 30억 원, 대전광역시에서 연 9억 원을 지원 받는다. 올 가을학기부터 학사 운영을 시작해 12명의 석·박사 과정 학생이 재학 중이며, 향후 5년간 150명의 인재를 배출할 계획이다. 이날 열린 개원식에는 이광형 총장, 이장우 대전광역시장, 더불어민주당 조승래 의원(대전 유성구 갑), 강도현 과기정통부 정책실장, 전성배 정보통신기획평가원장, 방승찬 ETRI 원장과 산학 협력기업 관계자 등이 함께 참석해 현판 제막식을 진행했다. 유회준 책임교수는 "KAIST는 반도체 공정과 설계 등 전 분야에 걸쳐 세계적인 경쟁력을 갖춘 교육과 연구 여건이 완비되었다"라고 전했다.2008년부터 인공지능반도체 기술 개발을 시작한 우리 대학은 오랜 시간 축적해온 독보적인 경험을 바탕으로 인재 양성에 특화된 교육·연구 프로그램을 마련했다.▴인공지능 가속을 위한 회로 및 아키텍처 설계 ▴인공지능반도체 운용 기술 및 구동 프레임워크 개발 ▴초고속·고효율·대규모 인공지능을 위한 뇌과학 기반 도전적인 연구를 수행 등 크게 세 가지 분야의 전공 커리큘럼을 운영 중이다. 또한, '복수지도 제도'가 도입된다. 학생들이 복수의 지도교수를 자유롭게 선택해 분야를 초월한 융합 연구를 수행하도록 돕는 제도다. 인공지능반도체 설계 및 제작을 비롯해 CAD(컴퓨터지원설계), PIM 반도체 관련 아키텍처, 소자, 소프트웨어, 디지털·아날로그 지식재산권(IP)등 다양한 분야를 아우르는 21명의 교원이 참여하고 있다. 국내·외 유수 대학 및 기업과의 공동 연구도 진행된다. 삼성전자, SK 하이닉스 등 글로벌 대표기업과 인공지능반도체 분야를 새롭게 이끌어가고 있는 다수의 스타트업, 한국전자통신연구원 등의 연구기관과 산학협력 컨소시엄을 구성해 인공지능반도체 설계 역량을 높이면서도 산업 현장의 수요를 반영한 실용화 연구를 강화할 방침이다. 세계적이고 도전적인 연구를 수행할 수 있는 환경도 조성한다. 미국 컬럼비아 대학교·코넬 대학교, 스위스 취리히연방공과대학교, 일본 동경대학교 등의 대학의 연구 교류 및 엔비디아(NVIDIA), 메타(Meta), 구글(Google), 애플(Apple) 등 실리콘밸리의 인공지능반도체 기업과 협력한 글로벌 인턴십 프로그램이 제공된다. 이광형 총장은 "인공지능반도체대학원 개원으로 KAIST의 우수한 교육·연구 인프라를 기반으로 반도체 공정과 설계 등 반도체 전 분야에서 세계를 선도할 인재를 양성할 수 있을 것으로 기대한다"라고 밝혔다.
2023.11.28
조회수 331
부드러워져 재사용 불가능한 주사바늘 개발
정맥주사는 혈관에 약물을 직접 주입하는 방법으로 신속한 효과를 유도하고 지속적인 약물 투여를 통한 치료가 가능해 범세계적으로 환자치료에 통용되고 있다. 하지만 금속이나 플라스틱 등 딱딱한 소재로 제작된 주사바늘은 부드러운 생체조직에 손상과 염증을 발생시킬 수 있다. 또한 비용 절감을 위한 비윤리적 주사바늘 재사용을 가능하게 하며, 이는 인체면역 결핍 바이러스(HIV), B형/C형 간염 바이러스 등 심각한 혈액 매개 질환 감염을 초래하기도 한다. 이는 전 세계적인 문제이며, 감염관리의 중요성으로 인해 세계보건기구(WHO)는 재사용이 불가능한 스마트 주사기 개발과 사용을 장려하고 있다. 우리 대학 전기및전자공학부 정재웅 교수 연구팀이 의과학대학원 정원일 교수 연구팀과 공동 연구를 통해 환자 건강증진 및 의료진 안전을 도모할 수 있는 가변 강성 정맥 주사바늘을 개발하는 데 성공했다고 13일 밝혔다. 이번에 개발된 기술은 체온에 의해 주사바늘이 유연해지는 특성을 통해 정맥에 약물 주입 중 주사 삽입 부위의 자유로운 움직임을 보장함과 동시에 주사바늘에 의한 혈관 벽 손상 방지를 도모할 수 있을 것으로 예상된다. 또한 사용 후 찔림 사고나 비윤리적 주사기 재사용에 따른 혈액 매개 질환 감염 문제를 예방할 수 있을 것이라 기대된다. 전기및전자공학부 카렌-크리스티안 아그노(Karen-Christian Agno) 박사과정 연구원과 의과학대학원 양경모 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 바이오메디컬 엔지니어링(Nature Biomedical Engineering)' 10월 30일 字에 게재됐다. (논문명 : A temperature-responsive intravenous needle that irreversibly softens on insertion) 연구팀은 액체금속의 일종인 갈륨(Gallium)을 이용하여 주사바늘 구조를 만들고 이를 생체적합성 폴리머로 코팅해 가변 강성 정맥 주사바늘을 제작했다. 딱딱한 상태의 주사바늘은 상용 정맥 카테터와 비슷한 수준의 생체조직 관통력을 갖는다. 하지만 체내 삽입 후, 갈륨의 액체화로 인해 조직과 같이 부드러운 상태로 변해 혈관 손상 없이 안정적인 약물 전달이 가능하다. 한 번 사용한 주사바늘은 갈륨의 과냉각 현상에 의해 상온에서도 부드러운 상태를 유지해 바늘 찔림 사고나 재사용 문제를 원천적으로 방지할 수 있다. 연구팀은 개발된 정맥 주사바늘의 약물 전달 기능과 생체적합성을 검증하고자 실험 쥐를 대상으로 동물실험을 진행했다. 이식된 가변 강성 정맥 주사바늘은 딱딱한 상용 금속 바늘이나 플라스틱 카테터에 비해 훨씬 낮은 염증 반응을 보여 연구팀은 우수한 생체적합성을 확인했다. 또한 상용 주사바늘과 같이 안정적으로 약물을 전달할 수 있음을 확인했다. 아울러 가변 강성 정맥 주사바늘은 박막형 온도 센서를 탑재할 수 있도록 디자인됐다. 이를 통해 실시간으로 환자의 심부체온을 모니터링하는 것이 가능하며, 또한 잘못된 주사바늘 위치로 인한 혈관이 아닌 다른 조직으로의 약물 누수 감지도 가능해 환자에게 더 나은 의료서비스를 제공할 수 있다. 이번 연구를 주도한 정재웅 교수는 "개발된 가변 강성 정맥 주사바늘은 기존의 딱딱한 의료용 바늘로 인한 문제를 극복해 환자와 의료진 모두의 안전을 보장하고, 주사바늘 재사용으로 인한 감염 문제를 해결할 수 있다는 점에서 가치가 매우 크다”라고 말했다. 한편 이번 연구는 한국연구재단이 추진하는 중견연구자지원사업, 생체신호센서융합기술개발사업, 리더연구자지원사업의 지원을 받아 수행됐다.
2023.11.13
조회수 1282
변화된 데이터에서 인공지능 공정성 찾아내다
인공지능 기술이 사회 전반에 걸쳐 광범위하게 활용되며 인간의 삶에 많은 영향을 미치고 있다. 최근 인공지능의 긍정적인 효과 이면에 범죄자의 재범 예측을 위해 머신러닝 학습에 사용되는 콤파스(COMPAS) 시스템을 기반으로 학습된 모델이 인종 별로 서로 다른 재범 확률을 부여할 수 있다는 심각한 편향성이 관찰되었다. 이 밖에도 채용, 대출 시스템 등 사회의 중요 영역에서 인공지능의 다양한 편향성 문제가 밝혀지며, 공정성(fairness)을 고려한 머신러닝 학습의 필요성이 커지고 있다. 우리 대학 전기및전자공학부 황의종 교수 연구팀이 학습 상황과 달라진 새로운 분포의 테스트 데이터에 대해서도 편향되지 않은 판단을 내리도록 돕는 새로운 모델 훈련 기술을 개발했다고 30일 밝혔다. 최근 전 세계의 연구자들이 인공지능의 공정성을 높이기 위한 다양한 학습 방법론을 제안하고 있지만, 대부분의 연구는 인공지능 모델을 훈련시킬 때 사용되는 데이터와 실제 테스트 상황에서 사용될 데이터가 같은 분포를 갖는다고 가정한다. 하지만 실제 상황에서는 이러한 가정이 대체로 성립하지 않으며, 최근 다양한 어플리케이션에서 학습 데이터와 테스트 데이터 내의 편향 패턴이 크게 변화할 수 있음이 관측되고 있다. 이때, 테스트 환경에서 데이터의 정답 레이블과 특정 그룹 정보 간의 편향 패턴이 변경되면, 사전에 공정하게 학습되었던 인공지능 모델의 공정성이 직접적인 영향을 받고 다시금 악화된 편향성을 가질 수 있다. 일례로 과거에 특정 인종 위주로 채용하던 기관이 이제는 인종에 관계없이 채용한다면, 과거의 데이터를 기반으로 공정하게 학습된 인공지능 채용 모델이 현대의 데이터에는 오히려 불공정한 판단을 내릴 수 있다. 연구팀은 이러한 문제를 해결하기 위해, 먼저 `상관관계 변화(correlation shifts)' 개념을 도입해 기존의 공정성을 위한 학습 알고리즘들이 가지는 정확성과 공정성 성능에 대한 근본적인 한계를 이론적으로 분석했다. 예를 들어 특정 인종만 주로 채용한 과거 데이터의 경우 인종과 채용의 상관관계가 강해서 아무리 공정한 모델을 학습을 시켜도 현재의 약한 상관관계를 반영하는 정확하면서도 공정한 채용 예측을 하기가 근본적으로 어려운 것이다. 이러한 이론적인 분석을 바탕으로, 새로운 학습 데이터 샘플링 기법을 제안해 테스트 시에 데이터의 편향 패턴이 변화해도 모델을 공정하게 학습할 수 있도록 하는 새로운 학습 프레임워크를 제안했다. 이는 과거 데이터에서 우세하였던 특정 인종 데이터를 상대적으로 줄임으로써 채용과의 상관관계를 낮출 수 있다. 제안된 기법의 주요 이점은 데이터 전처리만 하기 때문에 기존에 제안된 알고리즘 기반 공정한 학습 기법을 그대로 활용하면서 개선할 수 있다는 것이다. 즉 이미 사용되고 있는 공정한 학습 알고리즘이 위에서 설명한 상관관계 변화에 취약하다면 제안된 기법을 함께 사용해서 해결할 수 있다. 제1 저자인 전기및전자공학부 노유지 박사과정 학생은 "이번 연구를 통해 인공지능 기술의 실제 적용 환경에서, 모델이 더욱 신뢰 가능하고 공정한 판단을 하도록 도울 것으로 기대한다ˮ고 밝혔다. 연구팀을 지도한 황의종 교수는 "기존 인공지능이 변화하는 데이터에 대해서도 공정성이 저하되지 않도록 하는 데 도움이 되기를 기대한다ˮ고 말했다. 이번 연구에는 노유지 박사과정이 제1 저자, 황의종 교수(KAIST)가 교신 저자, 서창호 교수(KAIST)와 이강욱 교수(위스콘신-매디슨 대학)가 공동 저자로 참여했다. 이번 연구는 지난 7월 미국 하와이에서 열린 머신러닝 최고권위 국제학술 대회인 `국제 머신러닝 학회 International Conference on Machine Learning (ICML)'에서 발표됐다. (논문명 : Improving Fair Training under Correlation Shifts) 한편, 이 기술은 정보통신기획평가원의 지원을 받은 `강건하고 공정하며 확장가능한 데이터 중심의 연속 학습' 과제 (2022-0-00157)와 한국연구재단 지원을 받은 `데이터 중심의 신뢰 가능한 인공지능' 과제의 성과다.
2023.10.30
조회수 795
10월 이달의 과학기술인상에 신영수 교수 선정
과학기술정보통신부와 한국연구재단은 ‘이달의 과학기술인상’ 10월 수상자로 신영수 우리 대학 전기전자공학부 교수를 선정했다. ‘이달의 과학기술인상’은 우수한 연구개발 성과로 과학기술 발전에 공헌한 연구개발자를 매월 1명씩 선정해 과기정통부 장관상과 상금 1000만원을 주는 상이다. 신영수 교수가 연구한 반도체 포토리소그래피는 패턴이 새겨진 마스크에 빛을 비춰 웨이퍼에 소자를 형성해가는 과정으로 반도체 수율을 결정하는 가장 중요한 공정이다. 웨이퍼에 다각형을 만들기 위해서는 마스크에 훨씬 복잡한 패턴을 그려 넣어야 한다. 이런 패턴을 찾아가는 과정을 OPC(Optical Proximity Correction)라고 한다. 기존 OPC는 마스크 형상을 고치고 시뮬레이션으로 웨이퍼 이미지를 확인하는 과정을 반복해야 해 시간이 걸린다. 이에 신 교수는 마스크 형상과 웨이퍼 이미지의 집합을 이용해 기계학습 모델을 만들었다. 이후 더 빠르고 해상도가 높은 OPC 최적화 기술을 개발했다. 마스크 형상과 웨이퍼 이미지 집합을 대량으로 갖고 있다면 이 집합을 이용해 뇌를 훈련하듯 기계학습 모델을 만들 수 있다는 점에 착안해 성과를 냈다. 신 교수는 또 생성형 인공지능으로 기존에 없었던 레이아웃 패턴을 생성하는 방법도 개발했다. 이렇게 생성된 레이아웃 패턴과 기존 샘플 패턴을 같이 활용해 리소그래피 최적화에 적용하자 모델 정확도가 높게 나타났다. 이 기술은 반도체 공정을 개선하고 해외 의존도가 높은 OPC 솔루션의 자립도를 높여 국내 반도체 산업 발전에 기여할 전망이다. 신 교수는 “기존 반도체 리소그래피 연구와 달리 머신러닝과 인공지능을 적용했다는 점에서 차별성이 크다”며 “소수 외국회사가 독점하면서 발생하는 라이선스 비용과 기술개발 정체 문제를 해결하는 데 기여하기를 기대한다”고 했다.
2023.10.04
조회수 1309
10배 이상 생체신호 정밀 측정 ‘SUPPORT’ 개발
최근 유전공학 기술의 발전으로 형광현미경을 활용해 살아있는 생체조직 내 신호를 형광신호로 변환하여 연속적으로 촬영하고 측정하는 기술들이 개발되어 활용되고 있다. 그러나, 생체조직에서 방출되는 형광신호가 미약하기 때문에 빠르게 변화하는 신경세포의 전기신호 등의 신호를 측정할 경우, 매우 낮은 신호대잡음비를 가지게 되어 정밀한 측정이 어려워지게 된다. 우리 대학 전기및전자공학부 윤영규 교수 연구팀이 기존 기술 대비 10배 이상 정밀하게 생체 형광 신호 측정을 가능하게 하는 인공지능(AI) 영상 분석 기술을 개발했다고 20일 밝혔다. 윤 교수 연구팀은 별도의 학습 데이터 없이, 낮은 신호대잡음비를 가지는 형광현미경 영상으로부터 데이터의 통계적 분포를 스스로 학습해 영상의 신호대잡음비를 10배 이상 높여 생체신호를 정밀 측정할 수 있는 기술을 개발했다. 이를 활용하면 각종 생체 신호의 측정 정밀도가 크게 향상될 수 있어 생명과학 연구 전반과 뇌 질환 치료제 개발에 폭넓게 활용될 수 있을 것으로 기대된다. 윤 교수는 “이 기술이 다양한 뇌과학, 생명과학 연구에 도움이 되길 바라는 마음을 담아 ‘서포트(SUPPORT, Statistically Unbiased Prediction utilizing sPatiOtempoRal information in imaging daTa)라는 이름을 붙였다”며, “다양한 형광 이미징 장비를 활용하는 연구자들이 별도의 학습 데이터 없이도 쉽게 활용가능한 기술로, 새로운 생명현상 규명에 폭넓게 활용될 수 있을 것”이라고 말했다. 공동 제1 저자인 엄민호 연구원은 "서포트(SUPPORT) 기술을 통해 관측이 어려웠던 생체 신호의 빠른 변화를 정밀하게 측정하는 것에 성공하였고, 특히 밀리초 단위로 변하는 신경세포의 활동전위를 광학적으로 정밀하게 측정할 수 있어 뇌과학 연구에 매우 유용할 것이다”라고 하였으며, 공동 제1 저자인 한승재 연구원은 “서포트 기술은 형광현미경 영상 내 생체 신호의 정밀 측정을 위해 개발됐지만, 일반적인 타임랩스 영상의 품질을 높이기 위해서도 폭넓게 활용가능하다”라고 말했다. 이 기술은 전기및전자공학부 윤영규 교수팀의 주도하에 신소재공학과 장재범 교수, 의과학대학원 김필한 교수, 충남대학교, 서울대학교, 하버드대학(Harvard University), 보스턴대학(Boston University), 앨런 연구소(Allen Institute), 웨스트레이크대학(Westlake University) 연구진들과 다국적, 다학제간 협력을 통해서 개발됐다. 이번 연구는 한국연구재단의 지원을 받아 수행됐으며 국제 학술지 `네이처 메소드(Nature Methods)'에 9월 19일 자로 온라인 게재되었으며 10월호 표지 논문으로 선정됐다. (논문명 : Statistically unbiased prediction enables accurate denoising of voltage imaging data)
2023.09.20
조회수 1117
세계 최초로 체내 OLED 빛치료 구현
빛 치료는 외과적 혹은 약물적 개입 없이도 다양한 긍정적 효과를 불러일으킬 수 있어 최근 꾸준히 주목받고 있다. 하지만 피부 내에서 빛의 흡수 및 산란 등의 한계로 인해 보통 피부 표면 등 체외 활용에 국한되며 내과적 중요성이 있는 체내 장기에는 적용하기 어려운 문제가 있었다. 우리 대학 전기및전자공학부 유승협 교수, 서울아산병원 소화기내과 박도현 교수, 그리고 한국전자통신연구원 실감소자연구본부로 이루어진 공동연구팀이 유기발광다이오드(organic light-emitting diode, OLED) 기반 *카테터를 세계 최초로 구현해, 빛 치료를 체내 장기에도 적용할 수 있는 길을 열었다고 13일 밝혔다. ☞ 카테터(catheter): 주로 환자의 소화관이나 기관지, 혈관의 내용물을 떼어 내거나 약제나 세정제 등을 신체 내부로 주입하는 등에 쓰이는 고무 또는 금속 재질의 가는 관. 공동연구팀은 카테터 형태의 OLED 플랫폼을 개발해 십이지장과 같은 튜브 형태의 장기에 직접 삽입할 수 있는 OLED 빛 치료기기를 개발, 이를 현대의 주요 성인병 중 하나인 제2형 당뇨병 개선 가능성을 확인하고자 했다. 공동연구팀은 기계적으로 안정적이면서도 수분 환경에서도 잘 동작할 수 있는 초박막 유연 OLED를 개발했고, 이를 원통형 구조 위를 감싸는 형태로 전 방향으로 균일한 빛을 방출하는 OLED 카테터를 구현했다. 그뿐만 아니라, 면 광원으로서 OLED가 갖는 특유의 저 발열 특성으로 체내 삽입 시 열에 의한 조직 손상을 방지했으며, 생체적합성 재료 활용을 통해 생체에 미치는 부작용을 최소화했다. 공동연구팀은 OLED 카테터 플랫폼을 통해 제2형 당뇨병 쥐 모델 (Goto-Kakizaki rat, GK rat)을 대상으로 동물실험을 진행했다. 십이지장에 총 798 밀리주울 (mJ)의 빛 에너지가 전달된 실험군의 경우 대조군에 비해 혈당 감소와 인슐린 저항성이 줄어드는 추세를 확인했다. 또한 간 섬유화의 저감 등 기타 의학적 개선 효과도 확인할 수 있었다. 이는 체내에 OLED 소자를 삽입하여 빛 치료를 진행한 세계 최초의 결과다. ☞ 밀리주울 (mJ): 천분의 일 주울 (Joule)로, 에너지의 단위이다. 광원에서 나오는 빛의 양은 단위 시간당 에너지의 단위인 밀리와트 (mW)로 통상 나타내는데, 밀리주울은 밀리와트에 시간 (초)을 곱하여 계산된다. 본 연구에서는 OLED 카테터로부터 1.33 밀리와트의 붉은색 빛을 10분간 (600초) 쪼여 총 798 mJ의 빛 에너지를 전달하였다. 우리 대학 유승협 교수 연구실의 심지훈 박사와 채현욱 박사과정, 울산대학교 의과대학 서울아산병원 박도현 교수 연구실의 권진희 박사과정이 공동 제1 저자로 수행한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스 (Science Advances)’ 2023년 9월 1일 자 온라인판에 게재됐다. (논문명: OLED catheters for inner-body phototherapy: A case of type 2 diabetes mellitus improved via duodenal photobiomodulation) 유승협 교수는 “생체 의료 응용으로의 OLED 기술 확보는, 주로 디스플레이 분야 또는 조명 분야에 국한된 OLED 산업의 새로운 지평을 여는데 중요한 과제 중 하나로서, 이번 연구는 새로운 응용분야를 발굴하고 원천기술 확보함에 있어 소자-의학 그룹 간의 체계적인 융합 연구와 협업의 중요성을 잘 보여주는 사례”라고 말했다. 또한 서울아산병원 박도현 교수는 “십이지장 내 OLED 광조사가 장내 마이크로바이옴에 영향을 주어 장내 유익균의 증가 및 유해균의 감소를 통한 제2형 당뇨병의 혈당 개선, 인슐린 저항성 감소 및 간 섬유화 억제를 일으키는 것으로 보인다. OLED의 이상적 광 특성을 활용해 인체 내에서 빛 치료 가능성을 본 연구로서 향후 다양한 응용 가능성이 기대된다. 다만, 본 결과는 소형 동물에서 얻어진 것으로, 소동물-대동물-사람 등의 순차적인 검증 단계가 필요하며, 그 원리에 관한 연구가 함께 수반되어야 한다”라고 말하며, 이번 연구의 중요성을 강조했다. 이번 연구는 한국연구재단 선도연구센터 사업(인체부착형 빛 치료 공학연구센터) 및 한국전자통신연구원 연구운영비지원사업 (ICT 소재⦁부품⦁장비 자립 및 도전 기술 개발)의 지원을 받아 수행됐다.
2023.09.13
조회수 1630
생물의 후각을 모방한 단일 뉴로모픽 소자 개발
우리 대학 전기및전자공학부 최양규 교수, 기계공학과 박인규 교수 공동 연구팀이 ‘생물의 후각 뉴런을 모방한 단일 뉴로모픽 소자’을 개발하는 데에 성공하였다고 밝혔다. 과거‘인간의 후각을 모방한 뉴로모픽 모듈'을 개발하는 데에 성공했던 연구팀은, 기존에 센서와 뉴런 소자가 분리되어 별도 센서의 신호를 받아 스파이크 출력을 했던 뉴로모픽 모듈에서 한 층 더 발전된, 단일 소자만으로 가스 감지 및 스파이크 신호 출력이 가능한 뉴로모픽 소자를 개발하였다. 이상원 박사과정이 제 1저자로 참여하고 강민구 박사과정이 공동저자로 참여한 이번 연구는 저명 국제 학술지 ‘Cell’ 자매지인 ‘Device’에 2023년 9월 온라인판에 정식 출판됐다. (논문명 : An Artificial olfactory sensory neuron for selevtive gas detection with in-sensor computing). 인공지능을 활용한 가스 센서는 혼합 가스를 정확하게 분류할 수 있다는 점에서 산업 안전, 호흡 모니터링, 음식 모니터링 등 많은 분야에서 사용되고 있다. 그러나 기존의 센서들은 센서의 신호를 받아 디지털화하는 아날로그-디지털 변환기(ADC)가 별도로 필요할 뿐 아니라, 소프트웨어를 통해 인공지능을 구현하기 때문에 프로세서와 메모리 간 반복적인 데이터 이동이 필요한 폰노이만 아키텍처를 이용한다. 그에 따라 높은 전력이 소모되어 배터리로 구동되어야 하는 모바일, 사물인터넷 장치 등 실상황에서 활용성이 떨어진다. 한편, 인간의 후각 뉴런은 스파이크 형태로 감각 정보를 전달하고, 이를 뇌에서 병렬적으로 처리함으로써 낮은 전력 소비로도 가스를 감지할 수 있다. 초저전력 소모를 위하여, 이를 모방해 센서 단에서 스파이크 형태로 신호를 전달하는 뉴로모픽 후각 시스템이 주목을 받고 있으며, 기존 연구의 경우 별도의 센서 신호를 받아 뉴런 소자 및 회로에서 스파이크 신호로 변환을 하는 방식이었다. 그에 따라 센서와 뉴런 장치 간 별도의 패키징 공정이 필요하고, 두 장치 간에 발생하는 신호 지연 및 전력 소모도 추가로 발생하게 된다. 연구팀은 스파이크 신호를 출력할 수 있는 silicon nanowire field-effect transistor (SiNW-FET) 상부에 수소와 암모니아에 반응성을 가지는 palladium과 platinum nanoparticle을 코팅하여, 가스를 감지하여 스파이크 출력 변화를 보이는 단일 후각 뉴런 소자를 개발하였다. 즉 센서와 뉴런 소자를 별도로 공정하는 것이 아닌 가스 감지 기능을 하는 인공 뉴런 단일 소자를 개발한 것이다. 연구팀은 제작된 뉴런 소자에, 마찬가지로 field-effect transistor 기반의 단일 시냅스 소자를 연결하여 수소와 암모니아를 구분하는 뉴로모픽 모듈을 개발했다. 가스 감지 뉴런과 시냅스 모두 완전한 Si CMOS 공정 시스템을 이용하여 모듈을 개발하였기 때문에 이후 대규모 공정을 안정적으로 할 수 있다는 점에서 의미가 크다. 연구를 주도한 이상원 박사과정은 “개발된 뉴로모픽 모듈은 IoT 분야에서 호흡 모니터링이나 위험 가스 감지 등에 유용하게 사용될 것으로 기대된다"며, 특히 "자체적으로 가스 감지가 가능한 단일 뉴런 소자 개발은 인-센서 컴퓨팅 분야에서 의미 있는 발전이 될 것이다"고 연구의 의의를 설명했다. 한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업, 국가반도체연구실지원핵심기술개발사업, 중견연구사업, 국민위해인자대응기술개발사업 및 반도체설계교육센터의 지원을 받아 수행됐다.
2023.09.12
조회수 1304
반도체공학대학원 출범
우리 대학이 30일 오전 반도체 국가첨단전략산업을 이끌어갈 최고급 연구개발 인력을 양성하는 KAIST 반도체공학대학원 출범식을 개최했다. 이날 행사에는 이광형 총장, 이석봉 대전광역시 경제과학부시장, 이용필 산업통상자원부 첨단산업정책관, 박흥수 나노종합기술원 원장과 반도체 산학 관계자 등이 함께 참석해 현판 제막식을 열고 반도체공학대학원 개원을 축하했다. 우리 대학은 2023년 5월 반도체특성화대학원 지원사업에 선정됐다. 5년간 연평균 45명 이상의 석·박사 과정 학생을 모집해 반도체 소자·소재 및 패키징 분야에서 고급 석·박사 인재를 양성할 계획이다. 이를 위해, 전기및전자공학부·신소재공학과·생명화학공학과·기계공학과·물리학과 등 5개 학과 32명의 교원이 초학제적으로 참여한다. 또한, 삼성, SK하이닉스 등의 종합반도체 기업을 포함해 10개의 반도체기업이 컨소시엄을 구성한다. 반도체공학대학원은 설계-시뮬레이션-공정·소자제작·평가에 이르는 전주기 반도체 교육·연구 환경을 구축하고 산학연 기술교류·프로젝트 연구진행·교육 협업을 통한 산학연 교류 및 인재 연계 구조를 마련한다. 미래 반도체 산업 변화에 대응하기 위한 실습장비를 확충해 반도체 전문 실험 및 실습을 체계적으로 수행할 수 있는 환경도 구축한다. 이에 더해, 반도체 기술의 융합화·복합화 등에 따른 산업계 수요를 바탕으로 더 창의적이고 도전적인 인재 양성 교과과정을 운영할 예정이다. 이날 행사에서는 우리 대학 내의 반도체 연구 역량을 결집하고 미래 반도체 분야를 선도하기 위한 '반도체혁신연구소'의 출범식도 동시에 진행됐다. 이광형 총장은 "KAIST 반도체공학대학원은 세계 최고 수준의 반도체 연구와 교육 역량을 바탕으로 혁신적 반도체 고급 인재를 양성하고 학제 간 융합과 산학연 컨소시엄을 통해 창의적인 초격자 반도체 연구 혁신을 이루는 교두보가 될 것"이라고 말했다.한편, KAIST 반도체공학대학원은 2023년 석·박사과정 학생 선발을 마치고 가을학기부터 교육과정을 운영한다.
2023.08.30
조회수 1886
차세대 XR 초정밀 위치 인식기술 최초 개발
초정밀 위치 인식기술로 사물인터넷 기기와 로봇의 미세한 움직임을 조종하고, 나아가서는 초실감형 XR 및 초정밀 스마트 팩토리 등 가상 세계에서 현실과 연결을 시키게 하는 인식기술을 세계 최초로 개발해서 화제다. 우리 대학 전기및전자공학부 김성민 교수 연구팀이 무전원 태그를 통해 세계 최초로 160m 장거리에서 7mm(5m 단거리 0.35mm)의 정확도와 1,000개 이상의 위치를 동시 인식하는 초정밀·대규모 사물인터넷(IoT) 위치인식 시스템을 개발했다고 8일 밝혔다. 연구진이 최초 개발한 무선 태그는, 그 신호가 방해 신호와 주파수 영역에서 완전히 분리되어 신호의 질을 100만 배 이상 향상시킨다. 이를 이용하여 초정밀 위치 인식이 가능해지는 원리다. 해당 기술을 접목하면 XR에서 다량의 사물인터넷을 손가락의 미세한 움직임만으로 쉽게 제어할 수 있는 등, 몰입감을 크게 높일 수 있다. 또한 1,000개 이상의 태그를 0.5초 이하에 동시 인식할 수 있어, 수많은 기기를 실시간 조작할 수 있다. 이 기술은 현존하는 실내외 위치인식 기술 중 작동 범위, 정확도 및 규모에서 성능이 월등하여 그 의미가 깊다. 특히, 최신 실내 측위 기술인 차세대무선기술(UWB, Ultra Wide Band)에 비해 300배의 정확도, 10배의 탐지 거리, 100배의 확장성을 갖는다. 즉, 현재에 비해 훨씬 많은 기기를 정밀하게 다룰 수 있음을 의미한다. 또한, 실외 측위에 한정되는 GPS 위치 인식 기술과 달리 다양한 실내외 환경에서 활용될 수 있다. 본 기술의 태그는 스스로 무선 신호를 생성하는 대신, 주변의 신호를 반사하여 통신한다. 마치 거울과 같은 원리로, 신호 생성에 필요한 전력을 아낄 수 있어 초저전력으로 동작한다. 이에 태양전지 등 무전원으로 동작하거나 코인 전지 하나로 40년 이상 구동할 수 있어, 대량 운용에 적합하다. 전기및전자공학부 배강민 박사과정과 문한결 박사과정이 공동 주 저자로 참여한 이번 연구는 모바일 시스템 분야의 최고 권위 국제 학술대회인 `ACM 모비시스(ACM MobiSys)' 2023에 지난 6월 발표됐다. (논문명: Hawkeye: Hectometer-range Subcentimeter Localization for Large-scale mmWave Backscatter) 김성민 교수는 “이번 성과를 통해 스마트팩토리 등 산업체를 넘어, XR(확장현실) 등 민간에서도 포괄적으로 사용가능한 IoT(사물인터넷) 상호적용 기술로, 전방위적인 위치인식 기술의 보급을 가능하게 할 것으로 기대된다”고 말했다. 한편 이번 연구는 삼성미래기술육성사업과 정보통신기획평가원의 지원을 받아 수행됐다.
2023.08.08
조회수 1359
2.4배 가격 효율적인 챗GPT 핵심 AI반도체 개발
오픈AI가 출시한 챗GPT는 전 세계적으로 화두이며 이 기술이 가져올 변화에 모두 주목하고 있다. 이 기술은 거대 언어 모델을 기반으로 하고 있다. 거대 언어 모델은 기존 인공지능과는 달리 전례 없는 큰 규모의 인공지능 모델이다. 이를 운영하기 위해서는 수많은 고성능 GPU가 필요해, 천문학적인 컴퓨팅 비용이 든다는 문제점이 있다. 우리 대학 전기및전자공학부 김주영 교수 연구팀이 챗GPT에 핵심으로 사용되는 거대 언어 모델의 추론 연산을 효율적으로 가속하는 AI 반도체를 개발했다고 4일 밝혔다. 연구팀이 개발한 AI 반도체 ‘LPU(Latency Processing Unit)’는 거대 언어 모델의 추론 연산을 효율적으로 가속한다. 메모리 대역폭 사용을 극대화하고 추론에 필요한 모든 연산을 고속으로 수행 가능한 연산 엔진을 갖춘 AI 반도체이며, 자체 네트워킹을 내장하여 다수개 가속기로 확장이 용이하다. 이 LPU 기반의 가속 어플라이언스 서버는 업계 최고의 고성능 GPU인 엔비디아 A100 기반 슈퍼컴퓨터보다 성능은 최대 50%, 가격 대비 성능은 2.4배가량 높였다. 이는 최근 급격하게 생성형 AI 서비스 수요가 증가하고 있는 데이터센터의에서 고성능 GPU를 대체할 수 있을 것으로 기대한다. 이번 연구는 김주영 교수의 창업기업인 ㈜하이퍼엑셀에서 수행했으며 미국시간 7월 12일 샌프란시스코에서 진행된 국제 반도체 설계 자동화 학회(Design Automation Conference, 이하 DAC)에서 공학 부문 최고 발표상(Engineering Best Presentation Award)을 수상하는 쾌거를 이뤘다. DAC은 국제 반도체 설계 분야의 대표 학회이며, 특히 전자 설계 자동화(Electronic Design Automation, EDA)와 반도체 설계자산(Semiconductor Intellectual Property, IP) 기술 관련하여 세계적인 반도체 설계 기술을 선보이는 학회다. DAC에는 인텔, 엔비디아, AMD, 구글, 마이크로소프트, 삼성, TSMC 등 세계적인 반도체 설계 기업이 참가하며, 하버드대학교, MIT, 스탠퍼드대학교 등 세계 최고의 대학도 많이 참가한다. 세계적인 반도체 기술들 사이에서 김 교수팀이 거대 언어 모델을 위한 AI 반도체 기술로 유일하게 수상한 것은 매우 의미가 크다. 이번 수상으로 거대 언어 모델의 추론에 필요한 막대한 비용을 획기적으로 절감할 수 있는 AI 반도체 솔루션으로 세계 무대에서 인정받은 것이다. 우리 대학 김주영 교수는 “미래 거대 인공지능 연산을 위한 새로운 프로세서 ‘LPU’로 글로벌 시장을 개척하고, 빅테크 기업들의 기술력보다 우위를 선점하겠다”라며 큰 포부를 밝혔다.
2023.08.04
조회수 2537
초고효율 진청색 OLED 구현 기술 개발
우리 대학 전기및전자공학부 유승협 교수 연구팀이 경상국립대학교(총장 권순기) 화학과 김윤희 교수 연구팀과의 협력을 통해, 세계 최고 수준의 높은 효율을 갖는 진청색 유기발광다이오드(organic light-emitting diode, OLED) 소자를 구현하는 데 성공했다고 3일 밝혔다. 유승협 교수 연구실의 김형석 박사(現 규슈 대학 연수연구원), 경상국립대학교 천형진 박사(現 임페리얼 칼리지 런던 연수연구원), KAIST 이동균 박사과정(유승협 교수 연구실)이 공동 제1 저자로 수행한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’2023년 5월 31일 자 온라인판에 게재됐다. (논문명: Toward highly efficient deep-blue OLEDs: Tailoring the multiresonance-induced TADF molecules for suppressed excimer formation and near-unity horizontal dipole ratio). (DOI: https://www.science.org/doi/10.1126/sciadv.adf1388) OLED는 스마트폰, 태블릿과 같은 모바일 기기는 물론 프리미엄 TV나 모니터 등의 첨단디스플레이 기술로 활용되고 있는 발광소자로, 화질이 선명하고, 두께가 얇으며, 폴더블이나 롤러블 디스플레이 등에 핵심인 유연한 소자의 제작이 가능한 점 등 여러 고유한 장점을 갖고 있다. 이들 응용에서는 빛의 삼원색을 이루는 적·녹·청 광원의 충분한 효율과 수명을 확보하고 동시에 높은 색 순도의 삼원색을 확보하는 것이 매우 중요한데, 청색 OLED 소자에서 이 세 요건을 동시에 확보하는 기술은 대표적인 난제로 여겨지고 있다. 연구팀은 이에 고효율 진청색 OLED 소자 구현에 초점을 맞춰, 양자점 디스플레이 수준의 뛰어난 색 순도 구현이 가능한 차세대 발광체인 다중 공명 효과 기반 열 활성화 지연 형광체의 설계에 주목했다. 해당 효과를 이용한 붕소계 재료는 뛰어난 색 순도 구현의 장점을 갖고 있으나, 평평한 분자구조로 인해 분자 간 강한 상호작용이 생겨 낮은 농도에서만 진청색이 가능한 한계가 있어, OLED 소자의 충분한 효율 확보를 위해 발광 분자의 농도를 높이면 발광체 자체가 가진 색 순도 장점을 충분히 살리지 못하는 어려운 문제가 있다. 연구팀은 합성이 매우 까다로운 것으로 알려진 기존의 붕소계 재료에 비해 합성 과정을 단순화하면서 이성질체 합성을 최소화해 낮은 수율을 개선했을 뿐만 아니라, 분자 동역학 관점에서 분자 간 상호작용을 억제할 수 있는 분자구조를 성공적으로 규명하고, 이를 분자 설계를 통해 구현함으로써 색 순도와 효율이 저하되는 난제를 해결했다. 해당 연구가 그간 시행착오를 반복하며 경험적으로 이루어졌던 것과 달리, 연구팀은 종합적이고 분석적인 방법론을 정립, 최대 효율을 이끌어 낼 수 있는 구조를 이론적으로 예측했으며, 설계한 고효율 유기 발광 소재를 이용한 소자 구조에 접목해 35% 이상의 최대 외부 양자효율을 가진 진청색 OLED 구현에 성공했다. 이는 해당 파장에서의 진청색 OLED 단위 소자의 효율 중 세계 최고 수준의 결과다. 유승협 교수는 “고효율의 진청색 OLED 기술의 확보는 OLED 디스플레이를 궁극의 기술로 완성하는데 필수적인 과제 중 하나로서, 이번 연구는 난제 해결에 있어 소재-소자 그룹 간의 체계적인 융합 연구와 협업의 중요성을 잘 보여주는 사례”라고 말했다. 이번 연구는 산업통상자원부의 디스플레이 혁신공정 플랫폼 구축사업, 과기정통부의 미래소재디스커버리 사업, 중견연구자사업, 그리고 삼성미래기술육성사업의 지원을 받아 수행됐다.
2023.07.03
조회수 1628
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 23