본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%83%9D%EB%AA%85%ED%99%94%ED%95%99%EA%B3%B5%ED%95%99%EA%B3%BC
최신순
조회순
김종득 칼럼 국회에 발목 잡힌 지식재산법안
김종득 생명화학공학과 교수가 한국경제 2010년 12월 2일(목)자 칼럼을 실었다. 제목: 국회에 발목 잡힌 지식재산법안 신문: 한국경제 저자: 김종득 생명화학공학과 교수 일시: 2010년 12월 2일(목) 기사보기: 국회에 발목 잡힌 지식재산법안
2010.12.02
조회수 9393
KAIST, 하계 다보스 포럼 초청 받아
- 전 세계 정치, 경제, 과학기술, 교육계 주요 지도자 참석 우리학교는 오는 9월 13일부터 15일까지 중국 텐진시에서 개최되는 “2010년 하계 다보스 포럼”에 참석해 “지속가능성을 통한 성장 동력”이라는 주제로 의제발표를 한다. 우리대학은 포럼 이틀째인 9월14일 화요일 오후 12시부터 “전기자동차(Eelectric Vehicles)” “휴모노이드 로봇공학(Humanoid Robotics)” “차세대 바이오물질(Next Generation of Biomaterials)” “신경공학의 새로운 발전(New Developments in Neuroengineering)”이라는 4개 의제 발표 후, 포럼 참석자들과 의제에 관한 토론을 가질 예정이다. 정재승 바이오및뇌공학과 교수, 이상엽 생명화학공학과 교수, 오준호 기계공학과 교수, 그리고 서남표 총장이 의제 발표자로 나선다. 특히, 세계경제포럼에서는 정재승 교수를 “차세대 글로벌 지도자(Young Global Leaders)”로 이상엽 교수를 “신흥기술을 위한 글로벌 아젠더 위원회(Global Agenda Council on Emerging Technologies)”의 위원으로 각각 선정해 이들의 활발한 활동을 지원해오고 있다. 한편, 서 총장은 이번 행사에서 최고경영자 그룹(CEO Insight Group)에도 초청돼 온라인전기자동차와 모바일하버 관련 오프닝연설을 하며, 벨 연구소(Bell Lab) 김종훈 사장, 렌셀러 폴리테크닉 대학교(Rensselaer Polytechnic Institute)의 셜리 잭슨(Shirley Jackson) 총장과 연구협력을 위한 양해각서(MOU)를 체결할 계획이다. 세계 최대 규모의 국제회의인 ‘다보스 포럼’을 주관하고 있는 세계경제포럼(The World Economic Forum)에서는 지난 2007년부터 신흥 경제를 주도하고 있는 아시아 및 남미 지역 국가, 신규 성장 글로벌 기업, 차세대 글로벌 지도자, 기술혁신과 쇄신을 선도하는 도시나 국가 등이 주 회원으로 구성된 ‘뉴 챔피언스 연례회의(Annual Meeting of the new Champions)’를 개최해오고 있다. 매년 1월에 열리는 ‘다보스 포럼’과는 달리, ‘뉴 챔피언스 연례회의’는 9월에 열려 일명 ‘하계 다보스 포럼(Summer Davos)’이라고도 하며, 중국 다롄과 텐진 시에서 번갈아 가며 개최된다. 세계경제포럼(WEF)은 지난 2009년부터 ‘아이디어스랩(IdeasLab)’이라는 특별 세션을 다보스 포럼(하계 포럼 포함)에 추가했으며, 이 세션을 통해 세계의 유수 대학, 연구기관, 벤처 기업, 비정부기구(NGO), 비영리단체를 초청해 인류발전에 기여할 수 있는 혁신적이고도 창의적인 아이디어를 나누고 논의하는 공간을 제공해왔다. 지금까지 ‘아이디어스랩’에 초청된 대학으로는 유럽경영대학원(INSEAD), 스위스 연방공과대(EPFL-ETH), MIT, 옥스퍼드대, 예일대, 하버드대, 란셀러공대, 칭화대, 케이오대 등이 있으며, KAIST는 한국 대학으로서는 최초로 참여한다. 한국 최고 이공계 연구중심대학으로 성장해온 우리대학은 이번 포럼에서 자체적으로 수행해오던 실험적이면서도 창의적인 연구 프로젝트를 소개하고, 글로벌 리더들과 함께 지속가능한 성장을 통해 인류의 삶을 보다 더 향상시킬 수 있는 혁신기술에 대한 방법을 모색해 보는 의미 있는 시간을 갖는다. 행사는 약 한 시간 반 동안 공개로 진행된다. <참고> 세계경제포럼(The World Economic Forum) 세계경제포럼은 스위스 제네바에 본사를 둔 비영리 독립적인 국제기구로서 1971년 독일 태생인 클라우스 마틴 슈왑(Klaus Martin Schwab, 현 회장) 제네바대학 경영학과 교수에 의해 창립되었다. 창설 초기에는 유럽 재계 최고 경영자들의 모임으로 출발하였으나, 1974년부터 세계 경제 및 국제 사회가 직면한 주요 사안까지 논의하는 장으로 확대되었다. 세계경제포럼은 매년 1월말 스위스 다보스 시에서 연례회의를 개최하고 있으며, 회의 참석자 수는 전 세계 각 국 정상과 기업체 대표를 포함해 약 2,500명에 이른다. 오늘날 ‘다보스 포럼’은 세계 각국 지도자와 재계 및 금융계 최고 경영자들이 모여 각종 정보를 교환하고, 국제 사회의 주요 문제 등을 논의하는 세계적인 회담 장소 가운데 하나가 됐다. 이 밖에도, 세계경제포럼은 2007년부터 주최하기 시작한 ‘하계 다보스 포럼’을 비롯해 기타 주요 지역별 포럼(Regional Forums)을 매년 개최하고 있으며, 싱크 탱크(think tank)로서 광범위한 주제에 대한 연구서도 발간하고 있다.
2010.09.13
조회수 12728
10nm대의 초미세 나노패터닝 新기술 개발
- 나노 레터스 誌 발표, 대면적 10nm대 나노패턴의 실용화 가능성 열어 - 복잡하고 다양한 10nm대의 고분해능 나노패턴을 대면적에 효율적으로 제작할 수 있는 기술이 국내연구진에 의해 개발되었다. KAIST 정희태 교수가 주도한 이번 연구결과는 나노분야 세계적인 학술지인 ‘나노 레터스(Nano Letters)’에 온라인으로 최근 (8. 17) 게재되었다. 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 박찬모)이 시행하는 ‘세계수준의 연구중심대학(WCU) 육성사업’과 ‘중견연구자지원사업 도약연구’의 지원을 받아 수행되었다. 정희태 교수 연구팀은 차세대 반도체, 디스플레이 및 나노전자 소자개발에 핵심기술인 10nm대의 고분해능 패턴을 원하는 모양과 크기로 쉽게 대면적에 제작할 수 있는 기술을 개발하였다. 연구팀은 전압차를 이용하여 아르곤(Ar) 입자를 가속시켜, 원하는 목적층에 물리적 충격을 줌으로써 목적층의 물질을 제거하는 이온충격(ion-bombardment) 공정 중에서 나타나는 2차 스퍼터링 (secondary sputtering)이라는 현상을 적용하였다. 이 현상은 이온충격(ion-bombardment)으로 물리적 식각을 할 때 목적층의 물질이 다양한 각분포로 이탈하여 마스크 패턴의 옆면에 흡착하는 현상을 이용한 것으로서, 선 모양, 컵 모양, 가운데가 비어있는 실린더(Hole-cylinder) 모양, 삼각 터널(triangle tunnel) 등 다양한 모양을 가지며, 최대 종횡비(high-aspect-ratio) 20까지 높이를 간단하게 제어할 수 있다. 이렇게 제작된 패턴은 웨이퍼, 유리기판, 쿼츠(Quartz), 금속판 뿐만 아니라 PET필름과 같은 플렉서블 기판에서도 공정이 가능하기 때문에 범용적으로 사용되어 질 수 있다. 연구팀은 투명한 쿼츠셀 위에 금 선 패턴을 제작하여 ITO기판을 대체할 수 있을 만큼 높은 성능을 갖는 투명전극을 제작하여 태양전지에 응용함으로써 다양한 광학/전기적 나노소자에 응용할 수 있음을 보였다. 동 연구는 기존의 리소그라피기술로 제작된 패턴의 해상도를 능가하는 10nm급 패턴을 제작할 수 있는 신기술로 거의 모든 금속(금, 은, 알루미륨, 크롬)과 무기물(ZnO, ITO, SiO2)에 적용가능하며, 기존의 패터닝 방법과 비교하여 낮은 공정비용과 간단한 실험공정으로 고해상도 패턴을 대면적에 균일하게 제작할 수 있다는 장점이 있다. 정희태 교수는 “10nm급의 고해상도 미세패턴 제작기술은 미래산업 전반에 걸쳐 매우 중요한 기술군으로, 그동안 나노분야에서 극복해야 할 핵심과제였습니다. 본 연구는 이러한 문제점을 비교적 간단한 방법으로 극복하고 향후 태양광 발전, 반도체 및 바이오소자의 효율증대에 적용가능한 기술”이라고 연구의의를 설명하였다.
2010.09.08
조회수 13154
김도현교수, 교육과학기술부장관상 수상
- 반도체 실리콘 기판에 존재하는 나노스케일 결함의 해석 및 전산모사 기술 개발 - 우리학교 생명화학공학과 김도현 교수가 "NANO KOREA 2010" 심포지엄에서 반도체 실리콘 기판내의 나노스케일 결함 해석 기술로 "나노연구혁신부문 교육과학기술부 장관상"을 수상하였다. 김도현 교수는 반도체 회로의 미세화에 따라 나노스케일 결함에 대한 중요성이 커지는 시점에 이를 예측하고 해석할 수 있는 전산모사 기술을 개발한 연구 성과를 인정받았다. 김 교수팀은 원자단위의 해석 모델을 이용하여, 반도체용 실리콘 기판 내 수nm에서 수십nm까지의 결함을 해석하는 모델을 개발하였으며, 이를 통해 실리콘 단결정 성장 공정과 반도체 Fab 공정을 연계해서 기판 내의 결함을 해석할 수 있는 전산모사를 수행함으로써 실제 결함의 생성과 성장거동을 성공적으로 예측하였다. [그림1] 결정성장시 생성되는 산소농도 차이에 의해 발생되는 Nano-void의 분포를 나타내었으며 이를 원자 모델을 이용해서 산소농도에 따른 Nano-void 형성를 예측한 결과 [그림2] 결정성장시 발생한 결함이 반도체 Fab 공정에서 oxygen precipitate로 성장하는 과정을 전산모사를 통해 나타낸 결과 [붙임] 용어 설명 반도체 회로 미세화 : 반도체의 Design rule로 Moore"s law에 의해 반도체의 회로 밀도가 18개월 주기로 2배로 늘어나게 된다. 이러한 밀도의 증가를 위해서는 회로 선폭의 감소와 함께 이에 따른 기판의 요구품질도 지속적으로 높아지게 된다. 결정성장 : 다결정 실리콘을 단결정 실리콘으로 성장시키는 방법으로서, 본 연구는 반도체용으로 많이 사용되고 있는 CZ법 (Czochralski)에 대한 연구다. 결함의 종류 : 결함의 종류에는 void성 결함과 precipitate성 결함이 존재한다. Void 성 결함은 vacancy간의 결합을 통해 형성되며, precipitate성 결함은 주로 oxygen과의 결합으로 발생한다. 결함의 영향 : 반도체 칩을 제작하는 중에 회로 설계 영역 즉 표면에서 수 nm까지의 영역에 결함이 존재하는 경우에는 oxidation 두께의 차이가 발생하여 반도체의 불량을 초래할 수 있다. [그림3] 반도체 수율에 미치는 Grown-in 결함의 영향
2010.08.19
조회수 13608
이상엽 교수, 가상세포 방법론 개발
- 미국 국립과학원회보 게재, "가상세포 시스템 활용 대사특성 예측 기술 개발" - 우리학교 이상엽 교수 연구팀이 생명체의 세포를 체계적으로 분석하여 세포 전체의 대사적 특성을 정확하게 예측할 수 있는 "가상세포 방법론"을 개발했다. 이 연구는 교육과학기술부 "미래기반기술사업(시스템생물학 연구개발)의 지원을 받아 수행되었으며, 연구결과는 세계적 저명 학술지인 「미국 국립과학원 회보 (PNAS)」誌" 8월 2일자 온라인판에 게재되었다. 환경문제와 질병에 대한 관심도가 나날이 높아짐에 따라 의학적인 용도 및 일상생활에 널리 쓰이는 화학물질이나 바이오연료 등을 바이오기반으로 생산하는 것이 더욱 중요해 지고 있다. 이러한 유용한 물질들은 상당수 미생물을 사용하여 개발하는데, 이를 위해 미생물의 체계적인 분석과 개량 연구가 필요하다. 이에, 전체적인 관점에서 복잡한 생명체의 대사를 체계적으로 파악할 수 있는 방법의 개발이 요구되어 왔다. 가상세포는 컴퓨터시스템으로 실제세포를 모사하여 연구하고자하는 생명체의 세포를 체계적으로 분석하는 중요한 도구이다. 이상엽교수 연구팀은 생명체의 정확한 모사를 위한 가상세포 시스템을 개발하였다. 이를 이용하여 얻어진 가상세포 예측 결과들은 실제 세포 실험으로 측정된 결과와 비교하여 정확도가 획기적으로 개선되었다. 이로써 보다 정확한 가상세포 예측이 가능하여 실제 생명체의 분석연구에서 시간과 비용을 큰 폭으로 줄일 수 있게 되었다. 이번 가상세포 방법론의 개발은 국내뿐 아니라 세계생명공학 분야에서 새로운 패러다임을 제공하여, 생명체의 분석과 개량연구에 소모되는 시간과 비용을 절감할 수 있게 되었으며, 또한 이번에 개발한 방법론은 게놈 염기서열이 분석된 모든 생명체에 적용이 가능하기 때문에 다양한 산업적, 의학적 응용을 위한 미생물 개발에 활용될 수 있을 것으로 기대된다.
2010.08.04
조회수 11161
[디지틀조선] '글로벌 명문대학' 카이스트
우리학교가 디지틀조선 Biz & News 브리핑이라는 프로그램에 "글로벌 명문대학 카이스트를 가다"라는 제목으로 방영됐다. 이 방송에서는 우리대학이 최근 국내외 대학 평가기관에서 괄목할 만한 순위 상승을 보이며 국내 대학의 선진화를 이끄는 주역으로 자리잡아가고 있다고 설명했다. 특히, 최근 연임에 성공해 두번째 임기를 맞은 서남표 총장의 인터뷰와, 가장 많은 성과를 내는 것으로 유명한 이상엽 교수 인터뷰 및 오준호 교수의 휴보랩 등이 크게 소개됐다. 제목: "글로벌 명문대학" 카이스트를 가다 방송: 디지틀조선 Biz & News 브리핑일시: 2010년 7월 31일(토) 방송보기: [크로스미디어리포트] "글로벌 명문대학" 카이스트를 가다
2010.08.02
조회수 12385
이상엽 교수, 초고분자량 거미 실크 단백질 생산기술 개발
- 초고분자량의 거미 실크 단백질이 거미줄을 강하게 만든다는 사실 밝혀 -- 첨단 초강력 섬유소재로의 활용 기대 - 우리학교 이상엽 특훈교수는 서울대 박명환 교수팀과 공동으로 세계적으로 이제까지 생산하지 못했던 ‘초고분자량의 거미 실크 단백질’을 대사공학으로 개량된 대장균을 이용하여 생산하였다고 발표하였다. 이 초고분자량의 단백질로 만든 거미 실크 섬유는 강철보다 강한 성질을 나타냄을 밝혔다.이 연구는 교육과학기술부가 2009년부터 추진하고 있는 ‘신기술융합형 성장동력사업(바이오제약 사업본부장 수원대 임교빈 교수, 분자생물공정 융합연구단장 KAIST 김정회 교수)의 지원을 받아 수행되었으며, 연구결과는 특허 출원 중으로 세계적 저명 학술지인 「미국 국립과학원 회보 (PNAS)」誌’ 7월 26일자 온라인판에 게재되었다. 거미가 만드는 초고분자량의 실크 섬유는 미국 듀폰(Dupont)社의 고강력 합성섬유인 케블라(Kevlar)에 견줄 강도를 갖고 있으며, 탄성력이 뛰어나 의료산업 등 다양한 분야에서 활용될 수 있는 것으로 알려져 있다. 거미 실크 섬유의 우수한 특성 때문에 그동안 효모, 곤충, 동물세포, 형질전환식물, 대장균을 비롯한 여러 생체 시스템을 활용하여 거미실크를 대량 생산하는 기술을 개발하려는 많은 시도가 있어 왔다.그러나 지금까지는 글리신 등 특정 아미노산이 반복적으로 많이 존재하는 거미 실크 단백질의 특수성으로 인해 고분자량의 거미실크를 인공적으로 생산할 수 없었다. 이러한 기존 기술의 한계와 달리, 우리학교 생명화학공학과 이상엽 교수 연구팀은 고분자량의 거미실크 단백질 (황금 원형 거미; Nephila clavipes 유래)을 생산하는 대장균을 대사공학적으로 새로이 개발하고, 이를 활용함으로써 고성능의 거미실크섬유를 인공적으로 합성하는데 성공하였다. 우선, 연구팀은 비교 단백체 분석 등 시스템 대사공학 기법을 이용하여 거미 실크 단백질을 생산할 때 대장균 내에 글리실-tRNA의 부족 현상이 일어남을 밝혀냈다. 그리고 이 문제의 해결을 위해 관련 유전자들을 증폭 또는 제거 하는 등 대장균의 대사를 재구성함으로써 대장균으로부터 세계 최고 수준의 반복단위수를 가진 285 kDa에 달하는 거미실크 단백질을 성공적으로 합성해 낼 수 있었다. 또한, 대장균에서 생산된 거미 실크 단백질을 분리‧정제한 후에 생체 모방 기술을 이용한 스피닝 작업을 통해 실크 섬유 형태로 제작하였다. 이렇게 만들어진 거미 실크 섬유의 물성을 측정한 결과 강도 (tenacity) 508 MPa, 인장탄성율 (Young"s modulus) 21 GPa를 보여 케블라 수준의 강도를 가지게 된다는 사실을 확인하였다. 기존에는 285 kDa이나 되는 큰 거미 실크 단백질의 생산이 불가능하여 고강도의 거미 실크 섬유를 만들 수 없었는데, 이번 연구를 통해 가능하게 되었다. 이상엽 교수는 “이번 연구는 바이오기반 화학 및 물질 생산시스템 개발의 핵심기술인 시스템 대사공학적 방법을 통해 기존의 석유화학 제품과 대체 가능한 고성능의 섬유를 생산하는 기반기술을 확립하였다는 데 그 의의가 있으며, 향후 생산시스템 향상과 물성 연구를 계속 수행하여 실용화하고 싶다.”라고 밝혔다.
2010.07.28
조회수 17643
양승만칼럼 빛의 반도체 광자결정
양승만 생명화학공학과 교수가 디지털타임스 2010년 7월 23일(금)자 칼럼을 실었다. 제목: 빛의 반도체 광자결정 신문: 디지털타임스 저자: 양승만 생명화학공학과 교수 일시: 2010년 7월 23일 (금) 기사보기: 빛의 반도체 광자결정
2010.07.23
조회수 8837
이상엽교수 미국산업미생물공학회 펠로우 선정
우리학교는 생명화학공학과 이상엽(생명과학기술대학 학장, 바이오융합연구소 공동소장) 특훈교수가 미국 산업미생물공학회(Society for Industrial Microbiology) 2010년 펠로우(Fellow)로 선정됐다고 30일 밝혔다. 미국 산업미생물공학회는 미생물의 시스템대사공학 연구를 통해 바이오매스로부터 화학 및 물질생산에 기여하는 등 세계적 업적을 낸 이상엽 특훈교수를 2010년 유일한 펠로우로 선정했다. 이 학회는 1972년부터 매년 한 두명의 펠로우를 펠로우 어워드 수여를 통해 선정해 왔으며 이 교수는 60번째다. 1949년 창시된 61년 전통의 미국 산업미생물공학회는 전 세계 산업생명공학 관련 전문가들이 모여 바이오 기반 화학, 연료, 의약품 등의 생산에 필요한 연구를 다루는 학회다. 이 교수는 대사공학, 합성생물학, 시스템생물학을 융합해 시스템대사공학을 창시했다. 이를 바탕으로 바이오매스 기반의 친환경 화학공정을 개발하는 세계적인 전문가로 이번 달 17일 막을 내린 세계대사공학회의 의장이기도 하다. 한편, 이상엽 교수는 2006년 미국 미생물학술원(American Academy of Microbiology) 펠로우, 국내 최초로 2007년 사이언스誌를 발간하는 미국과학진흥협회(American Association for the Advancement of Science) 펠로우, 올해는 미국공학한림원(National Academy of Engineering) 외국회원에도 우리나라에서는 두 번째로 선정된 바 있다.
2010.06.30
조회수 12076
‘세계 산업생물공학 자문회의’창립회의 열려
전 세계의 생물공학 기업들이 참여하는 ‘세계 산업생물공학 자문회의(World Council on Industrial Biotechnology)’ 창립회의가 제주 신라호텔 한라홀에서 18일 개최됐다. 이번 창립 회의에는 전 세계 생물공학 회사의 CEO, CTO 등의 주요 기업인들, 또 세계 경제 포럼(WEF)의 Global Agenda Council(GAC) 회원들 및 국내 관련 기업들의 사장단 등 총 24명이 참여했다. 주요 참석자로는 제이 키슬링 미국 공동 바이오에너지 연구원장, 윌리엄 프로빈 미국 듀퐁사 바이오 총괄 책임자 등 16명의 해외인사와 이상엽 KAIST교수를 비롯하여 승도영 GS 칼텍스 기술연구소장, 유진녕 LG화학 부사장, 박성칠 대상 사장, 길영준 삼성전자 전무, 김진수 CJ제일제당 대표이사 사장, 박한오 바이오니아 대표이사 사장 등 국내인사 8명이 참여했다. 이번 회의에서는 각 대표들의 기조연설 후, 산업 바이오공학의 현재 수준과 전략 글로벌 트렌드에 대한 토론 및 앞으로 산업 바이오공학 연구의 발전 방향 및 정책에 관한 심도 있는 토론을 했다. 초대 의장에는 KAIST 이상엽교수와 브리티시 패트롤리움(BP)사의 수석 바이오과학자 존 피어스(John Pierce)가 공동의장으로 선출됐다. 자문단은 앞으로 세계 산업생명공학 관련 전문가 집단으로서 각국의 정책수립 등에 자문을 하는 역할을 하게 된다. 한편, 이상엽 교수는 세계최고 효율의 숙신산 생산기술 개발, 필수 아미노산인 발린과 쓰레오닌의 고효율 맞춤형 균주 개발, 바이오 에탄올보다 성능이 우수한 바이오부탄올 생산 균주 개발 등 재생산 가능한 바이오매스로부터 화학물질을 효율적으로 생산하는 핵심기술인 대사공학 분야의 세계적 전문가로 손꼽히고 있다. 특히, 이번 창립회의에 앞서 제주에서 열린 제8회 국제대사공학회의 의장으로 학회를 개최하는 등 세계 대사공학 분야에서 왕성한 활동을 하고 있다. (보충자료) 주요 참석자 <국외인사> 앨런 베리(노보자임스 미국지사장) Alan Berry (Director, Novozymes, USA) 로엘 보벤버그 (네델란드 DSM사 대표) Roel Bovenberg (Director, DSM, Netherlands) 더그 카메론(미국 파이퍼 제프리사 이사) Doug Cameron (Managing Director, Piper Jaffray & Co., USA) 동 팡 첸(퍼메니시 아로매틱스 중국지사 부장) Dong-Fang Chen (Vice President, Firmenich Aromatics Co., Ltd., China) 앤드류 하간(스위스 세계경제포럼 화학공업 책임자) Andrew Hagan (Head of Chemical Industry, World Economic Forum, Switzerland) 제이 키슬링(미국 조인트 바이오에너지 연구원장) Jay Keasling (CEO, Joint BioEnergy Institute, USA) 랄프 켈레(독일 에보니크사 부장) Ralf Kelle (Vice President, Evonik, Germany) 투루 모리(일본 미쯔비시 화학 주식회사 부장) Tooru Mori (General Manager, Mitsubishi Chemical Corp., Japan) 올리버 피플스(미국 메타볼릭스 창업자 및 최고과학자) Oliver Peoples (Founder & CSO, Metabolix, USA) Director 토마스 람사이어 존 피어스(영국 브리티시 페트롤리엄사 수석 바이오과학자) Thomas Ramseier John Pierce (Chief Bioscientist, BP, UK) 윌리엄 프로빈(미국 듀퐁스사 이사) William Provine(Director, DuPont, USA), 크리스토프 쉴링(미국 게노매티카사 최고경영자) Christophe Schilling (CEO, Genomatica, USA) 최고과학자 마크 버크, 필립 소실리(프랑스 메타볼릭 개발사 최고기술자) CSO Mark Burk, Philippe Soucaille (CTO, Metabolic Explorer, France) 그레고리 스테파노폴러스(미국 MIT 석좌교수) Gregory Stephanopoulos (Chair Professor, MIT, USA), 그레그 위티드(미국 다니스코 선임과학자) Gregg Whited (Senior Staff Scientist, Danisco, USA), 완 자오티안 (중국 COFCO사 부사장) (Vice President, COFCO Corp., China) <국내인사> 이상엽 KAIST 석좌교수 승도영 GS 칼텍스 기술연구소장 유진녕 LG화학 부사장 박성칠 대상 사장 길영준 삼성전자 전무 김진수 CJ제일제당 대표이사 사장 박한오 바이오니아 대표이사 사장 노항덕 SK 케미컬 전무
2010.06.18
조회수 13372
양승만 교수, 인조오팔로부터 초소형 분광분석기 제조
- Advanced Materials 3월 5일자 표지 논문으로 소개 돼 - 초정밀 극미량 물질 인식센서로 활용 오팔은 크기가 수백 나노미터(머리카락 굵기의 약 100 분의 1정도)의 유리구슬이 차곡차곡 쌓여 있는 것으로서, 그것이 아름다운 색을 띄는 것은 오팔이 선택적으로 반사하는 파장영역대의 빛만을 우리가 볼 수 있기 때문이다. 이렇게 오팔보석이 발산하는 아름다운 색깔은 색소에 의한 것이 아니라 이 물질을 이루는 구조가 규칙적인 나노구조로 되어 있기 때문이며 이러한 구조를 광결정이라 한다. 이러한 구조의 광결정은 특정한 파장 영역대의 빛만을 완전히 선택적으로 반사시키는 기능을 보유하게 된다. 생명화학공학과 양승만 교수팀 (광자유체집적소자 창의연구단)은 파장이 서로 다른 빛들을 반사하는 오팔 광결정을 미세소자에 연속적으로 도입하여 무지개 같은 띠 모양으로 제작할 수 있는 기술을 확보했으며 이를 이용해 극미량의 물질을 정밀하게 분석할 수 있는 칩 크기 수준의 미세분광기를 최근 제조했다. 사람마다 고유한 지문을 갖듯이 물질을 이루는 분자도 고유한 지문을 갖는데 이는 분자마다 특정 파장의 빛만을 선택적으로 흡수하거나 방출하는 독특한 스펙트럼을 갖기 때문이다. 따라서, 물질을 구성하는 분자를 광학적으로 인식하기 위해서는 분광분석기 (spectrometer)라는 기기가 필요하며 이는 물질이 갖고 있는 다양한 광정보 처리를 위해 광자소자 및 분석소자를 구성하는데 꼭 필요한 요소 중 하나이다. 그러나 기존의 분광기는 파장에 따른 빛의 공간적 분할을 위한 격자(grating) 및 빛의 진행에 필요한 공간을 요구하므로 고가의 큰 장치로만 제작이 가능하였다. 최근에 많은 주목을 받고 있는 생명공학의 산업적 이용이나 신약개발을 위해서는 부피가 나노리터(10-9L)~펨토리터(10-15L) 정도의 극미량의 샘플을 처리해야 하므로 분석실험실을 반도체 칩과 같이 초소형화한 소위 ‘칩위의 실험실: Lab on a Chip’이 필연적으로 요구된다. 이를 구현하기 위해서는 칩 내부에 분광분석기와 같은 분석소자를 설계해 도입해야 하나 기존의 기술로는 현실적으로 불가능 했다. 이번 연구 결과는 초소형 분석소자의 실용성을 구현하는데 크게 기여한 점을 인정받아 국제적 저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 3월호 표지논문(cover paper)으로 게재됐다. 또한, 나노기술 분야의 세계적 포털사이트인 Nanowerk (http://www.nanowerk.com/)는 이번 연구결과를 ‘광결정으로 미세 분광기를 만들다(Photonic crystals allow the fabrication of miniaturized spectrometers)’라는 제목의 스포트라이트(Spotlight)로 소개하기도 했다. 칩규모의 초소형 물질감지소자는 세계적인 연구그룹들이 활발히 개발 중이다. 이번 연구의 결과는 초소형 분광분석기 구조를 자기조립법으로 만든 최초의 사례로서 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소이다. 그림1. 반사색이 연속적으로 변하는 광결정 분광기의 저배율 및 고배율 사진 (분광기가 손톱크기로 초소형화 되었음을 확인할 수 있다) 기본 원리는 아래 그림과 같이 다른 반사스펙트럼을 갖는 콜로이드 광결정을 패턴화하면 미지의 빛이 입사할 경우 반사하는 빛의 세기만을 통해 입사한 미지의 빛의 스펙트럼을 알아낼 수 있다는 것이다. 이러한 아름다운 반사색을 보이는 광결정은 오팔보석, 공작새 깃털, 나비날개, 딱정벌레 등 자연계에 많이 존재하는데 양 교수 연구팀에서는 이를 규칙적으로 패턴화하여 전체 가시광 영역에서 배열한 것이다. 이러한 광결정을 이용하면 공간에 따른 빛의 세기분포를 파장에 따른 빛의 세기분포 즉 스펙트럼으로 물질을 이루는 분자를 재분석해낼 수 있다. 이는 기존의 분광기와는 달리 긴 진행거리를 요구하지 않기 때문에 소형화가 가능하고 신호의 검출은 미세검출기 배열을 통해 가능할 것으로 예상된다. 그림2. 가시광 영역에서 반사스펙트럼을 갖는 콜로이드 광결정 (내부의 나노구조는 나비날개와 공작새 깃털 구조의 광결정와 유사하다) <용어설명>○ 콜로이드 : 물질의 분산상태를 나타내는 것인데, 보통의 분자나 이온보다 크고 지름이 1nm~100nm 정도의 미립자가 기체 또는 액체 중에 분산된 것은 콜로이드 상태라고 부른다. 예를 들어, 생물체를 구성하는 물질 대부분이 콜로이드 상태로 존재한다.
2010.03.16
조회수 16810
오준호, 강석중 교수, KAIST특훈교수로 임명!
우리학교는 KAIST 최고의 영예를 갖게 되는 특훈교수(Distinguished Professor)에 기계공학과 오준호(56세, 좌측사진) 교수, 신소재공학과 강석중(60세) 교수 등 2명을 지난 3월 1일 추가로 임명했다. 이로써 우리학교는 2007년 3명, 2008년 2명, 2010년 2명 등 총 7명을 특훈교수로 임명하게 됐다. 오 교수는 2004년 12월에 한국 최초의 휴머노이드 로봇인 ‘휴보(HUBO)‘를 개발했다. 적은 연구비로 3년이라는 단기간에 휴보를 개발해 국민에게 자부심과 긍지를 심어줬다. 2009년 10월에는 휴보의 성능개선작업을 통해 달리는 휴보를 탄생시켜 한국을 로봇강국으로 이끌고 있다. 또한 휴보(Hubo)를 미국 휴머노이드 로봇연구의 플랫폼으로 제공하는 성과를 거뒀다.이러한 그의 연구 성과는 국.내외 각종 언론 및 다큐멘터리 프로그램에 소개됐다. 이외에도 초정밀 가속도계 기술을 국산화 했고, 모바일하버 개발에 참여해 탁월한 연구개발 성과를 냈다.이러한 공로를 인정받아 2005년에는 ‘올해의 KAIST인 상’, 2010년에는 ‘KAIST 연구대상’을 수상했고, 지난해 12월에는 로봇산업 발전에 기여한 공로를 인정받아 ‘대통령상’을 수상했다. 강 교수는 소결(Sintering) 및 다결정체 입자성장과 관련된 연구분야의 세계적인 권위자다. 특히 비정상 입자성장과 액상소결에 대한 이론적 성과는 매우 독창적이며, 현재까지 의문시 되어왔던 문제점을 해결하여 많은 논문이나 교과서에서 인용되고 있다. 또한 그의 소결이론은 금속, 세라믹 신소재 부품제조과정에서 나타나는 소결현상을 해석할 수 있는 기초지식을 제공해 산업발전에도 크게 기여하고 있다. 이러한 연구결과는 권위 있는 재료공학 분야 학술지에 게재되었으며, 10회의 기조, 주제강연(Plenary and Keynote Lecture)과 100여회의 초청강연으로 발표되는 등 그 연구의 우수성을 세계적으로 인정받고 있다. 강 교수는 이러한 학문적 성과를 인정받아 2007년에는 (재)인촌기념회에서 수여하는 ‘제21회 인촌상’을 수상한 바 있다. KAIST 특훈교수는 세계적 수준의 연구업적과 교육성과를 이룬 교수 중에서 선발되는 KAIST 최고의 명예로운 직이다. 특별인센티브가 지급되며, 정년 이후에도 비전임직으로 계속 근무할 수 있다.특훈교수는 총장, 부총장, 단과대학장, 학과장의 추천을 받은 후, 국내외 전문가의 평가를 거쳐 임명하며, 교수 총 정원의 3%내에서 선발할 수 있도록 되어 있다.이 제도는 2007년 3월 처음으로 시행됐으며, 첫 특훈교수로 전기전자공학과 김충기 교수, 생명화학공학과 이상엽 교수, 물리학과 장기주 교수 등 3명이 선정됐고, 2008년 5월에는 화학과 유룡 교수, 전산학과 황규영 교수 등 2명이 임명된바 있다. KAIST는 특훈교수제 등의 새로운 제도를 적극 활용하여 발전 가능성이 높은 연구분야의 우수 교수를 집중 유치, 세계 최고 수준의 교수진을 구축하고 있다. <용어설명> ○ 소결(Sintering)소결은 금속이나 세라믹 분말부터 성형체를 만든 후 열에너지를 가해줌으로서 부품 소재를 만드는 데 이용되는 공정을 일컫는다. 소결은 선사시대 토기를 만들 때부터 사용해 온 기술로서, 최근에는 분말야금 소재, 세라믹 소재를 제조하는 데에 활용된다. 많은 자동차용 부품, 전자부품(다층세라믹 콘덴서 등), 기계부품 등이 소결 제품이다. ○ 다결정체 우리가 사용하는 대부분의 금속, 세라믹 벌크소재는 작은 단결정들(nm~mm 크기)의 집합체인 다결정체이다. 다결정체를 가공하거나 열처리 하는 중에는 결정체의 평균입자 크기가 증가하는 입자성장이 일어나며 입자성장 양상에 따라 다결정체의 조직이 변화하고 물리적 성질도 변화한다.
2010.03.04
조회수 13670
<<
첫번째페이지
<
이전 페이지
21
22
23
24
25
26
27
28
29
30
>
다음 페이지
>>
마지막 페이지 30