본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%B0%94%EC%9D%B4%EC%98%A4%EB%B0%8F%EB%87%8C%EA%B3%B5%ED%95%99%EA%B3%BC
최신순
조회순
피오릴로 교수, 사이언스誌 논문 게재
우리 대학 바이오및뇌공학과 크리스토퍼 피오릴로(Christopher Fiorillo, 43세) 교수의 논문 ‘가치의 이차원: 도파민 신경세포는 보상적인 가치에는 반응하나 처벌에는 반응 없어(Two Dimensions of Value: Dopamine Neurons Represent Reward but not Aversivenss)’이 세계최고 권위의 학술지인 사이언스(Science) 8월 2일자에 게재됐다. 뇌세포의 신경전달물질(neurotransmitter) 가운데 하나인 도파민(dopamine)은 인간 및 동물의 행동과 인식, 자발적인 움직임, 동기부여, 처벌과 보상, 기분, 학습, 기억 등에 지대한 영향을 미친다. 도파민을 포함해 가치에 민감하게 반응하는 신경세포(value-sensitive neurons)들은 외부에서 오는 자극(stimuli)을 ‘좋다’ 혹은 ‘나쁘다’ 등 가치(value)를 평가하고 그에 따른 행동을 유발한다. 기존의 생리학 또는 계산신경과학분야의 연구에서는 도파민계 뉴런(neuron, 신경세포)들이 반응하는 가치를 일직선상에 연속으로 배열한 ‘총체적인 가치(total value)’로 간주했다. 마치 빛의 강도를 어두운 것(dark)에서부터 점점 더 밝게(bright) 나타내듯이 나쁘다(bad)와 좋다(good), 잃은 것(loss)과 얻은 것(gain), 위험(danger)과 안전(safety) 등 서로 상반된 가치가 양 끝에 배치되고 그 중간은 단계별 가치가 지속적으로 연결되어 있는 일차원적인 직선으로 가치가 존재한다는 것이다. 따라서 도파민의 경우 부정적인 것과 긍정적인 것을 모두 다 표현한다고 여겼다. 하지만 이번에 피오릴로 교수가 수행한 원숭이를 이용한 동물실험 연구결과에 따르면 도파민 뉴런들은 보상적인(reward) 가치에는 민감하게 반응하지만 쓴맛이나 불쾌감과 같은 처벌적인(aversiveness) 가치에는 둔감하게 반응했다. 이는 보상과 처벌이 일직선상에 배열된 연속적인 가치가 아니라 별개의 범주에 속하는 가치라는 것이다. 도파민은 보상(reward)을 받는 것보다 보상을 기대하는(predict) 정도에 따라 더 반응한다고 알려져 있다(보상예측오류, reward prediction error). 예상하지 않았던 보상 혹은 기대했던 것보다 더 큰 보상을 받았을 경우 도파민은 활발하게 생성(activation)되지만 기대했던 보상이 없거나 또는 예상보다 더 적은 보상에는 도파민 생성이 평소보다 낮아지는 억제(inhibiting) 현상을 보인다. 만일 가치가 일차원적으로 존재한다면 예상했던 처벌보다 덜 심한 처벌(예를 들어 좀 더 덜 쓴 주스나 덜 짠 소금물)을 받았을 경우 보상에서처럼(예상했던 것보다 더 큰 보상을 받았을 때) 도파민이 생성되어야 하나 실험 결과에서는 도파민이 전혀 생성되지 않았다. 이처럼 도파민계 뉴런이 처벌에 반응하지 않았다면 처벌을 나타내는 또 다른 뉴런이 존재한다는 것을 시사한다. 이 뉴런들도 보상에 반응하는 도파민계 뉴런처럼 외부 자극에 ‘더 활발하게 반응하거나 또는 억제되는’ 모습을 보일 것이라고 예측했다. 피오릴로 교수는 “이번 연구에서 신경전달물질이 반응하는 네 가지 종류의 가치를 발견했다고 볼 수 있다”며 “보상 받는 것(reward-On), 보상 받지 못하는 것(reward-Off), 처벌 받는 것(aversive-On), 처벌 받지 않는 것(aversive-Off) 가운데 도파민은 보상받는 것(reward-On)만을 나타내는데, 나머지 세 종류의 가치에 반응하는 신경전달물질은 아마 별도로 존재할 것”이라고 말했다. 이와 함께 “흥미롭게도 뇌 속에는 도파민과 여러 면에서 유사한 종류의 신경전달물질(세로토닌, 노르에피네프린, 아세틸콜린)이 존재하는데 이들이 나머지 세 종류의 가치를 신호하는 신경전달물질일 가능성이 있다”고 덧붙였다. 지난 2009년 KAIST에 부임한 크리스토퍼 피오릴로 교수는 2000년 미국 오레곤 보건대학(Oregon Health & Science University)에서 신경과학(neuroscience) 분야로 박사학위를 받았다. 스위스 프리부르대학(Fribourg University)과 영국 캠브리지대학(University of Cambridge)에서 박사 후 연구원으로 근무했다. KAIST로 옮기기 전 미국 스탠포드대학에서 연구한 논문 ‘도파민 신경세포의 보상예측에 대한 시간적인 정밀성(The Temporal Precision of Reward Prediction in Dopamine Neurons)’이 2008년 네이처 뉴로사이언스(Nature Neuroscience에 발표되는 등 우수한 연구 성과를 낸 신경생리학자(neurophysiologist)다. 주 연구 분야는 원숭이를 실험에 이용해 신경세포기능을 연구하는 원숭이 신경생리학(Monkey neurophysiology), 계산신경과학(computational neuroscience), 시스템 신경생리학(systems neurophysiology) 등이다.
2013.08.02
조회수 15678
예종철 교수, IEEE TIP 편집위원 선임
예종철 교수 우리 학교 바이오및뇌공학과 예종철 교수가 영상 및 의료영상처리 분야의 저명한 학술지인 ‘IEEE 영상처리 트랜잭션(IEEE TIP, IEEE Transaction on Image Processing)"지 편집위원으로 선임됐다. 예 교수는 2013년 2월부터 2016년 1월까지 3년 간 편집위원으로 활동하면서 의료영상 분야의 논문심사와 편집방향 설정 등에 참여하게 된다. 예종철 교수는 압축센싱(Compressed sensing)을 이용해 높은 분해능을 갖는 의료영상복원 기술을 개발해 자기공명영상(MRI), 컴퓨터 단층촬영(CT), 양전자방출촬영기(PET), 뇌 영상 등에 적용하는 분야를 개척하는 등 의료영상 분야에서 주목할 만한 연구 성과를 낸 점을 인정받았다. 한편, "IEEE TIP"지는 영상처리, 의료영상, 영상 획득, 영상 압축, 출력 등의 분야에서 세계 최고의 권위를 자랑하는 학술지로 1992년 창간됐다.
2013.02.06
조회수 12340
조광현 칼럼 소외받기 쉬운 융합과학
조광현 교수 우리 학교 바이오및뇌공학과 조광현 교수가 서울경제 2012년 12월 6일(목)자 칼럼을 실었다. 제목: 소외받기 쉬운 융합과학 신문: 서울경제 저자: 조광현 교수 일시: 2012년 12월 6일(목) 기사보기 : 소외받기 쉬운 융합과학
2012.12.06
조회수 7021
조영호 바이오및뇌공학과 교수, 우수공학인 1위로 선정
우리 대학 조영호 바이오및뇌공학과 교수(55・사진)가 지난 22일 일산 킨텍스에서 열린 ‘2012 공학교육 페스티벌’에서 학계 우수공학인 1위로 선정됐다. ‘2012 공학교육 페스티벌’은 공학 분야의 우수한 연구 성과를 전시하고 공학교육의 미래를 구상하고자 교과부가 주관한 행사로 올해 처음 개최됐다. 산업계 • 학계 • 사회 저명인사 등 3개 분야에서 추천된 인사들 중 예비로 선발된 35명의 후보를 대상으로 실시한 온라인 투표에서 조영호 교수는 학계 우수공학인 1위의 영예를 안았다. 조영호 교수는 ▲공학교육과 연구개발 ▲산학협력 교류확산 ▲ 과학기술 대중화 등 전 부문에서 높은 평가를 받았으며 특히 융•복합 분야에서 공학교육을 특성화 하고 미국, 스위스 대학과 공연연구로 국제화를 선도해 공학도들이 만나고 싶은 학계 우수공학인 1위로 선정됐다. 끝.
2012.11.27
조회수 9510
유방암 세포의 자살을 유도하는 최적의 약물조합 발견
조광현 교수 - Science 자매지 표지논문 발표,“IT와 BT의 융합연구로 세포내 분자조절네트워크 제어를 통해 가능”- 국내 연구진이 대다수 암 발생에 직접 관여하는 것으로 알려진 암억제 유전자(p53)의 분자조절네트워크를 제어하여 유방암 세포의 사멸을 유도하는 최적의 약물조합을 찾아내, 향후 신개념 암치료제 개발에 새로운 단초를 열었다. 특히 이번 연구는 IT와 BT의 융합연구인 시스템 생물학 연구로 가능했다는 점에서 의미가 크다. 우리 학교 바이오및뇌공학과 조광현 석좌교수가 주도하고 최민수 박사과정생, 주시 박사, 정성훈 교수 및 시첸 박사과정생이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약/도전연구)과 기초연구실사업의 지원으로 수행되었다. 연구결과는 세계 최고 과학전문지인 ‘사이언스’의 첫 번째 자매지로서 세포신호전달분야의 권위지인 ‘Science Signaling’지 최신호(11월 20일자) 표지논문으로 선정되었고, 사이언스지의 ‘편집자의 선택(Editor"s Choice)’에 하이라이트 특집기사로 소개되는 영예를 얻었다. (논문명: Attractor Landscape Analysis Reveals Feedback Loops in the p53 Network That Control the Cellular Response to DNA Damage) 유방암은 미국이나 유럽 등 선진국에서 발병하는 여성암 중 가장 흔한 암으로, 40~55세 미국 여성의 사망원인 1위를 차지한다. 지난 10월 15일에는 영국 일간지 ‘데일리메일’이 2040년까지 유방암 환자 수가 현재의 3배가 넘는 168만 명으로 늘어나 일명 “유방암 대란”이 일어날 수도 있다는 충격적인 연구결과를 보도하기도 하였다. 우리나라 보건복지부 자료에 따르면, 국내에서도 미국 등과 같이 유방암 발병빈도가 매년 증가하는 추세인데, 이것은 서구식 식습관과 저출산, 모유수유 기피 등 생활패턴의 변화에 기인한 것으로 알려져 있다. p53은 ‘유전자의 수호자’로도 잘 알려진 암 억제 단백질로서 33년 전 처음 발견된 후 지금까지 암 치료를 위해 집중적으로 연구되는 분자이다. p53은 세포의 증식 조절과 사멸 촉진 등 세포의 운명을 결정하는데 중요한 역할을 한다. 우리 몸의 세포가 손상되거나 오작동하면, p53은 세포주기의 진행을 중단시켜 손상된 DNA의 복제를 억제하고, 손상된 세포의 복구를 시도한다. 이 때 만일 세포가 복구될 수 없다고 판단되면, p53은 세포가 스스로 자살하도록 유도한다. 그러나 암세포는 이러한 p53의 기능이 정상적으로 작동되지 않아 이를 인위적으로 조절하여 암 치료에 응용하려는 시도가 꾸준히 이어져왔다. 그러나 지금까지 임상실험에서는 기대와는 달리 효과가 미미하거나 부작용이 발생하는 등 여러 문제점들이 나타났다. 이는 p53이 단독으로 작동하는 것이 아니라 복잡한 신호전달 네트워크 속에서 다수의 양성과 음성 피드백(positive and negative feedbacks)에 의해 조절되고 있었으나, 지금까지 p53만을 단독으로 집중 연구했기 때문이다. 즉, 다양한 피드백 조절에 의해 p53의 동역학적(dynamics) 변화와 기능이 결정되므로, 네트워크 전체를 이해하고 제어하는 시스템 생물학적 접근이 반드시 필요하다. 조광현 교수가 이끈 융합 연구팀은 p53을 중심으로 관련된 모든 실험 데이터를 집대성하여 p53의 조절 네트워크에 대한 수학모형을 구축하였다. 또한 대규모 컴퓨터 시뮬레이션 분석을 통해 p53의 동역학적 변화 특성에 따른 세포의 운명(증식 또는 사멸) 조절과정을 밝혀내고 이를 효과적으로 제어할 수 있는 방법을 찾아냈다. 그리고 이 방법을 적용한 시뮬레이션 결과를 단일세포실험으로 검증하였다. 조광현 교수팀은 수많은 피드백으로 복잡하게 얽혀 있는 p53 조절 네트워크의 다양한 변이조건에 따른 컴퓨터 시뮬레이션 분석과 세포생물학실험으로, p53의 동역학적 특성과 기능을 결정하는 핵심 조절회로를 발견하고, 이와 같은 p53의 동역학적 특성 변화에 따라 세포의 운명이 달라질 수 있음을 규명하였다. 또한 유방암 세포의 네트워크 모형에서, 위의 분석결과로부터 찾아낸 핵심회로를 억제하는 표적약물(Wip1 억제제)과 기존의 표적항암약물(뉴트린, nutlin-3)을 조합하면 유방암 세포의 사멸을 매우 효율적으로 유도할 수 있음을 발견하였다. 그리고 실제 유방암 세포(MCF7)를 이용한 세포실험을 통해 직접 확인하였다. 조광현 교수는 “세포내 중요한 역할을 담당하는 분자들은 대부분 복잡한 조절관계 속에 놓여있기 때문에 기존의 직관적인 생물학 연구로 그 원리를 밝히는 것은 근본적인 한계가 있다. 이번 연구는 시스템 생물학으로 그 한계를 극복할 수 있음을 보여주는 대표적인 사례로, 특히 암세포의 조절과정을 네트워크 차원에서 분석하여 새로운 치료법을 개발할 수 있는 가능성을 제시하였다”고 연구의의를 밝혔다. 한편, 조 교수의 이번 연구 논문은 23일자 사이언스 편집자의 선택(Editors" Choice)으로 선정되는 영예를 얻기도 했다. 여러 양성 및 음성 피드백으로 복잡하게 구성된 p53 조절네트워크
2012.11.23
조회수 15638
곤충 눈을 모사한 무반사 미세렌즈 개발
정기훈 교수 - KAIST 정기훈 교수 연구팀, 세계적 물리학회지에 표지논문으로 게재돼, 국내외 특허출원 중 - - 반도체 양산공정 그대로 활용할 수 있어 상용화 기대 커 -- 빛 반사율 1%이하로 낮춰 값비싼 무반사 코팅 대체 가능 - 국내 연구진이 곤충의 눈을 모사해 빛의 반사를 최소화한 무반사 미세렌즈를 개발하는데 성공했다. 이 렌즈는 특히 휴대폰, 디지털카메라 등에 적용된 이미지센서에 활용할 수 있는 데다, 기존 반도체 양산 공정을 그대로 활용할 수 있다는 점에서 상용화에 대한 기대가 크다. 우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 곤충의 눈 표면에 형성된 나노구조를 모사해 저렴하면서도 빛 반사율을 1%이하로 낮춘 무반사 미세렌즈 양산기술을 개발하는 데 성공했다. KAIST는 정 교수 연구팀이 개발한 이번 기술을 카메라 이미지센서용 미세렌즈에 적용할 경우 집광효율이 높기 때문에 대조 효과와 밝기에 대한 특성이 우수한 고감도 카메라를 만들 수 있다는 점에서 국내외로부터 많은 관심을 받을 것으로 예상된다고 설명했다. 특히 정 교수팀이 개발한 공정은 이미 상용화 중에 있는 기존의 반도체공정을 그대로 활용할 수 있다. 따라서 렌즈 표면에 굴절률이 낮은 막을 여러 번 입히는 기존의 무반사 코팅보다 제품 제작비용이 훨씬 줄어들 것으로 기대된다고 강조했다. 나비, 잠자리 등 곤충의 눈은 대부분 겹눈 2개로 구성돼 있다. 이들 곤충은 겹눈을 형성하는 벌집모양의 낱눈을 약 1만~3만 개를 가지고 있는데, 낱눈에는 수많은 나노 돌기가 빛의 투과를 돕는 역할을 한다. 연구팀은 이 같은 특성을 갖는 곤충의 눈이 오랜 진화를 통해 최적의 조건을 만들어 온 것으로 판단해, 컴퓨터 시뮬레이션을 거쳐 빛이 가장 잘 투과되는 나노 구조라는 것을 알아냈다. 이후 이 구조를 모사해 수십 마이크로미터(㎛) 크기의 카메라 미세렌즈에 적용한 결과 반사율이 기존 10%에서 1%이하로 현격히 감소하는 특성을 확인했다. 정 교수 연구팀은 곤충에서 착안한 무반사 구조를 만들기 위해 기존 반도체 생산에 쓰이는 식각공정을 활용했다. 미세렌즈에 은 박막 코팅을 한 후 저온열처리를 통해 은나노 입자를 미세렌즈 표면에 형성시켰다. 이를 마스크로 삼아 렌즈표면을 건식 식각해 무반사 특성을 갖는 나노구조를 렌즈 곡면에 구현하는 데 성공했다. 정기훈 교수는 “곡면 구조의 카메라 미세렌즈 표면에서 빛의 반사가 심해 집광효율이 감소하는 문제가 있었는데, 몰포나비의 눈에 형성된 나노 구조에 착안해 기술개발에 성공했다”며 “기존 반도체공정을 그대로 이용할 수 있기 때문에 고가의 무 반사 코팅보다 훨씬 저렴한 단가로 카메라 이미지센서용 무반사 미세렌즈에 즉시 적용할 수 있다”고 말했다. 한편, 정기훈 교수가 주도하고 정혁진 박사과정 학생이 참여한 이번 연구는 세계적인 물리학회지 ‘어플라이드 피직스 레터스(Applied Physics Letters)’ 최신호(11월 12일자)에 표지논문으로 게재됐으며 현재 국내외 특허 출원중이다. 그림1. 곤충 겹눈(좌), 곤충의 낱눈(우)을 확대한 현미경 사진 그림2. 곤충 겹눈의 나노돌기 구조를 모사한 고효율 미세렌즈 배열. 무반사 렌즈는 일반 렌즈에 비해 표면 반사를 현격히 감소시켜 무반사 렌즈를 통해 맺힌 이미지의 선명도를 증가시킨다. 그림3. 카메라 이미지센서용 미세렌즈 개발 공정 1) 고분자 미세렌즈 배열 전면에 은 박막을 코팅 2) 가열을 통해 은 박막을 은 나노입자로 변형 3) 은 나노입자를 마스크로 삼아 렌즈 식각 4) 은 나노입자 제거하여 무반사 미세렌즈 배열 완성 그림4. 논문표지
2012.11.21
조회수 14929
반딧불이 모방한 고효율 LED 기술 개발
정기훈 교수 - 반딧불이 모방한 자연모사 연구로 반사 최소화 한 고효율 LED 개발 -- 미국 국립과학원회보지(PNAS) 10월 29일자 온라인 판 게재 - 자기 스스로 빛을 내는 반딧불이를 모방한 고효율 LED 원천기술이 개발됐다. 우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 반딧불이 발광기관 외피에 있는 나노구조를 세계 최초로 모방해 발광효율이 높은 LED 렌즈를 개발했다. 이번에 개발된 기술은 기존에 렌즈의 반사를 방지하기 위해 값비싼 반사방지 코팅을 추가로 처리한 것과는 달리, 렌즈 제작 시 생체모사 나노구조를 주형에서 한 번에 만들어 보다 저렴한 LED를 만들 수 있을 것으로 기대된다. 이와 함께 무반사효과(antireflection)를 내기 위해 모방한 나노구조를 최적화해 발광효율 향상이 기존 반사방지 코팅에 상응하게 만들어, 앞으로 스마트폰, TV, 자동차, 의료기기, 실내외 조명 등에 널리 적용될 것으로 전망된다. 무반사구조(antireflective structures)는 빛의 효율을 향상시키기 위한 대표적인 방법으로 많은 분야에 활용돼 왔다. 그러나 이 구조는 평판에만 국한돼 있어 LED 렌즈와 같은 곡면에 만드는 것은 많은 어려움이 있었다. 정 교수 연구팀은 3차원 미세몰딩 공정을 활용해 이를 해결했다. 연구팀은 실리콘 산화막 위에 나노입자를 단일 층으로 형성하고 식각공정을 통해 나노구조를 형성했다.이후 나노구조를 PDMS(폴리다이메틸실록세인, polydimethylsiloxane) 막에 전사시키고, 이 막에 음압을 가해 곡률을 형성한 다음 자외선경화 고분자를 부은 후 굳혀 반딧불이와 유사한 구조의 렌즈를 만들어 내는 데 성공했다. 이번 기술은 세계 최초로 무반사구조가 형성된 반구형 고효율 LED 렌즈를 개발한 것으로, 이 렌즈는 기존에 사용되는 무반사코팅(antireflection coating)에 상응하는 효과를 나타냈다. 정기훈 교수는 “이 기술은 세계 최초로 생물발광기관을 생체 모사한 기술이라는 것에 의의가 있다”며 “생체모사 기술을 활용한 고효율 LED 렌즈 기술을 통해 기존의 값비싼 무반사코팅을 대신해 저렴하면서도 효율을 극대화할 수 있을 것”이라고 말했다. 한편, 바이오및뇌공학과 정기훈 교수(제1저자 김재준 박사과정 학생)가 주도한 이번 연구는 미국 국립과학원회보지(PNAS) 10월 29일자 온라인 판에 게재됐다. 그림 1 : (A) 반딧불이 사진. (B) 반디불이의 전자현미경 사진 (N)은 비발광기관, (L)은 발광기관. (C) 비발광기관의 미세패턴, 무작위한 패턴을 형성. (D) 발광기관의 나노구조, 잘 정렬된 나노구조를 형성. (E, F) 반딧불이의 발광기관과 고효율 LED 패키징이 대응되는 구조를 형성하고 있음. 본 연구팀은 반딧불이 발광기관 외피층에 형성된 나노구조층을 LED 렌즈 위에 형성시켜 발광효율을 증가시킴. (E) 반딧불이 발광기관의 모식도. 나노구조의 크기는 약 주기가 250 nm, 너비가 150 nm, 높이가 110 nm 정도임. (F) 고효율 LED 패키징의 모식도. 그림2 : 일반 렌즈(좌)와 고효율 LED 렌즈(우) 사진. 연구팀은 3차원 미세몰딩 기술을 이용해 고효율 LED 렌즈를 제작. 그림 3 : (A) 고효율 LED 렌즈의 제작 과정. (step Ⅰ) 나노입자와 식각공정을 이용하여 나노구조 형성. (step Ⅱ) PDMS 막에 나노구조 전사. (step Ⅲ) PDMS 막에 음압을 가하여 곡률 형성. (step Ⅳ) 자외선 경화 고분자를 부은 후 경화. (step Ⅴ) 완성된 고효율 LED 렌즈. (B) 고효율 LED 렌즈의 전자현미경 사진. (C) 곡면 위에 잘 정렬되어 형성되어 있는 나노구조.
2012.10.30
조회수 16212
Open KAIST 2012 개최
- 11월 1일~2일, 교내 17개 생생한 연구현장 경험할 수 있어 -- 수술로봇 이용한 가상 시술 등 다채로운 체험행사 마련 - KAIST의 생생한 연구현장이 일반인에게 공개된다. 우리 학교는 오는 11월 1일과 2일 양일간 교내 17개 학과·전공·연구센터를 직접 둘러볼 수 있는 ‘Open KAIST 2012’를 개최한다. KAIST의 대표적인 일반인 참여행사인 Open KAIST는 See KAIST와 번갈아가며 매년 가을에 격년제로 열린다. See KAIST가 교내 한정된 전시공간에서 연구결과물들을 전시하고 설명하는 것과는 달리, Open KAIST는 학교의 실험실을 직접 찾아가 볼 수 있다. 또 학과소개와 각종 실험시연, 동아리 소개 등을 비롯한 풍부한 볼거리가 제공된다. 이번 행사에서 눈에 띄는 것은 기계공학전공 권동수 교수가 최근 개발을 완료한 소화기 내시경 훈련용 시뮬레이터를 참가자들이 직접 체험할 수 있다는 것이다. 이 시스템은 의사가 수술하기 전에 수술 기구를 미리 훈련하는 것으로 내시경의 조작감각을 느끼게 해주는 햅틱 장치 기술과 대장 내부의 모델링 모습을 보여주는 가상환경기술을 이용해 만든 소화기 내시경 시뮬레이터 장치를 조작해 참가자들은 가상의 의사가 되어 내시경 시술을 체험하게 된다. 이와 함께 참가자들은 ▲대형 멀티 디스플레이에 조종 스틱을 이용해 스스로 가상으로 우주탐사를 하는 ‘하늘로, 우주로’ ▲최근 각광을 받고 있는 대기압 바이오 플라즈마 소스를 만질 수 있는 ‘저온 플라즈마 장치’ ▲대형 입체 영상을 보면서 바람, 연기, 조명 및 진동 등의 4D효과를 느낄 수 있는 ‘4D 시뮬레이션’ ▲전자현미경을 이용한 나노 표면 관찰 등 KAIST에서 만든 다양한 최신 연구물들을 직접 체험할 수 있다. 신소재공학과에서는 양일간 오전 10시, 오후 1시, 오후 3시에 각각 학과 소개, 연구실 방문, 나노세계 체험을 한 후 응용공학동 옆 잔디밭에서 O, X 퀴즈 대회를 진행해 참가자들에게 기념품을 증정하는 행사를 준비했다. KAIST 공식 응원단인 엘카(ELKA, Encouraging Leaders of KAIST)는 1일 오후 1시 30분부터 교내 대강당에서 학교에 대한 자부심과 사랑으로 단결할 수 있도록 구심점 역할을 하는 열정적인 공연을 보여 줄 예정이다. 바이오및뇌공학과 이광형 교수는 1일 오후 2시 40분부터 창의학습관 2층 201호에서 20년 넘게 창의 인성 교육에 투자한 결과물을 바탕으로 연구해온 ‘3차원 창의력 개발법’이라는 주제로 특강을 마련했다. 이번 행사를 주관하는 박승빈 공과대학장은 “올해로 7회째 열리는 ‘Open KAIST’는 우리나라의 미래를 이끌어갈 청소년들에게 생생한 과학기술 현장의 감동과 과학인들의 노력을 직접 현장에서 체험할 수 있게 하는 귀중한 기회가 될 것”이라고 말했다. 더불어 “일반인과 청소년에게 이틀 동안 개방되는 이 행사는 우리가 생활에서 쉽게 만날 수 없는 과학적 지식과 예술적 향기로 결실의 계절 가을을 더욱 풍요롭고 낭만적으로 가꾸어줄 것”이라고 행사의 의의를 소개했다. 이번 행사에 대한 문의는 KAIST 공과대학 교학팀으로 전화(042-350-2491~4)하거나 홈페이지(http://so-kaist.ac.kr)를 참고하면 된다. Open KAIST 2010에 참가한 학생들이 휴보와 악수를 나누고 있다.
2012.10.29
조회수 13038
미래전략대학원 석사과정 내년 신설
- 미래학 선구자 짐 데이터(Jim Dator) 하와이대 교수, 초빙교수로 참여 - - 미래전략 전문가 양성 목표, 11월 14일부터 19일까지 학생모집 - 우리 대학이 국가나 기업이 필요로 하는 미래전략 전문가의 양성을 위해 ‘미래전략대학원 석사과정 프로그램’을 2013학년도 봄 학기부터 운영한다 국내 주요 정책대학원들의 경우 공공정책 • 경제 등에 관한 5년 이내의 단기적인 현안에 맞춰 프로그램을 운영한 적은 있지만, 지구적 관점에서 인류의 미래를 해결할 국가적인 장기 전략과 대형 정책과제를 발굴하는 방법을 교육한 사례는 많지 않았다. KAIST 미래전략대학원은 불확실성 시대를 대비해 정부・기업이 필요로 하는, 미래에 대한 통찰력과 전략기획능력을 겸비한 전문가를 양성하는 데 초점을 맞춰 교육할 예정이다. 교과과정은 ▲다양한 과학적 예측방법을 통해 국제적 이슈는 물론 국지적 이슈에 관한 해결방안을 교육할 ‘미래학’ 분야와 ▲ 과학기술 • 경제 • 국제관계 등에 대한 전략과 각 전략에 따른 세부정책을 상호 연계시킬 수 있는 정형화된 전략도구를 제시하는 ‘미래전략’ 분야로 구성했다. 교수진으로는 KAIST의 각 분야 권위자가 겸임교수로, 세계적으로 저명한 미래학자를 포함해 산·학·연 전문가들이 초빙교수로 참여한다. KAIST에서는 프로그램 책임교수인 이광형 바이오및뇌공학과 교수를 비롯해 이용훈 교수(전기및전자공학과), 오준호 특훈교수(기계공학과), 이상엽 특훈교수(생명과학과), 정재승 교수(바이오및뇌공학과), 임춘택 교수(원자력및양자공학과) 등 20 여명이 겸임교수로 참여한다. 외부 교수진으로는 전 세계미래학회 회장인 짐 데이터(Jim Dator) 미 하와이대 교수를 비롯해 김진현 前 과기부장관, 유명희 대통령실 미래전략기획관, 서용석 박사(행정연구원), 박병원 박사(과학기술정책연구원), 박성원 박사(하와이대) 등이 참여한다. 특히 세계 미래학연구의 선구자인 짐 데이터 교수는 지난 9월 한국을 방문해 대학원 참여에 대한 기본적인 협의를 마쳤다. 현재는 KAIST 미래전략대학원 교과목 설계에도 참여하고 있는데 연간 2개 과목을 직접 강의할 예정이다. 짐 데이터 교수는 “한국은 새로운 미래를 준비하고 도전해야 하며, KAIST가 그 역할을 해야 한다”라며 “KAIST가 미래전략을 연구하고 교육하는 것은 한국과 세계 미래학 발전에 중요한 일이며 그 일에 참여하게 돼 기쁘다”라고 말했다. KAIST가 미래전략 전문가 양성을 본격화한 데는 정부 및 기업 CEO가 바뀔 때마다 수시로 변경되는 정책을 뛰어넘어, 중장기적이고 초당파적인 정책과제를 발굴하고 기획할 인재가 절실하다는 필요성 때문이다. 이광형 미래전략대학원 설립추진위원장은 “대한민국이 한 단계 더 큰 도약을 위해서는 정부•기업이 20~30년의 장기적인 미래전략을 세우고 일을 진행해야 한다”며 “선진국형 중장기 국가정책을 수립할 수 있는 미래에 대한 통찰력과 전략기획능력을 겸비한 인재를 길러 내겠다”라고 말했다. 한편 제1기 학생모집은 11월 14일부터 19일까지 인터넷(http://admission.kaist.ac.kr/)을 통해 접수받는데 기업체 임직원과 출연연 연구원, 정부부처 공무원, 언론인, 군인 등을 대상으로 25명 이내에서 선발할 예정이다. 수업은 주 2일 야간제 강의로 이뤄지며 KAIST 대전 본원과 세종시에서 진행된다.
2012.10.24
조회수 13137
총동문회, ‘제 1회 KAIST 멘토링 콘서트 개최’
- 15일까지 재학생 대상 신청 받은 후 22일 대전 본원에서 열어 -- “고민 많은 후배들에게 현장 노하우와 인생의 경험 전달할 것”- 우리 대학 동문들이 미래를 고민하는 후배들을 위해 멘토링 프로그램을 개설하고 올해부터 본격적인 운영에 들어간다. 총동문회(회장 임형규)는 22일 오후 2시부터 8시까지 대전 본원 창의학습관에서 ‘제 1회 KAIST 멘토링 콘서트’를 개최한다. 이번 행사는 학부총학생회와 대학원총학생회가 재학생을 대상으로 실시한 설문조사에서 선배에게 가장 도움을 받고 싶은 것이 무엇인지 묻는 질문에 재학생들이‘선배들이 참여하는 멘토링 시스템’을 마련해 달라는 요청에 의해 마련됐다. 총동문회는 학부 및 대학원 총학생회의 요청을 받고 주요사업으로 추진해오던 멘토링 사업 ‘선목카페’를 확대, 발전시켜 선・후배 간에 끈끈한 정과 유대감을 느낄 수 있는 이번 ‘KAIST 멘토링 콘서트’를 기획, 마련했다. 이 행사는 학계・산업계・정부기관・컨설팅・금융・예술・벤처Ⅰ・Ⅱ 등 8개 세션으로 나눠 진행되는데 각 분야에 종사하는 졸업생 선배 40여명이 멘토로, 그리고 400여명의 재학생이 멘티로 참여할 것으로 예상된다. 따라서 1개 세션별로 각각 5명의 선배와 50여명 후배들이 자리를 함께한다. 선배 멘토들은 각각 10분 동안 인생의 가치, 현장의 생생한 업무 경험, 직업 선택 동기 등을 발표한 후 후배들과 질의응답 시간을 갖는다. 이번 KAIST 멘토링 콘서트에는 김명준 한국전자통신연구원 본부장(전산 석사78), 이도헌 KAIST 교수(전산 학사86), 정택수 특허법원 판사(지식재산 석사10), 나찬기 창원지방검찰청 부장검사(지식재산 석사10), 송승헌 맥킨지그룹 파트너(물리 학사88), 차기철 (주)바이오스페이스 대표(기계 석사80), 박성동 (주)쎄트렉아이 대표(전기 학사86), 강병준 전자신문 벤처과학부장(과학저널 석사10), 고영준 EBS 교육방송 차장(과학저널 석사10)등 40여명의 동문이 멘토로 참여한다. 또, 임형규 총동문회장(전기 석사76)과 고정식 광물자원공사 사장(생명화공 석사77)이 특별 참석해 동문들과 후배들을 격려할 예정이다. 임형규 총동문회장은 “올해 처음 개최되는 멘토링 콘서트를 통해 전해지는 선배들의 진심 어린 충고는 후배들의 미래 진로에 대한 고민과 인생의 가치를 생각해 볼 수 있는 소중한 기회가 될 것”이라며 “총동문회 역점사업으로 매년 정기적으로 개최하겠다”고 말했다. KAIST 총동문회는 이번 행사와 별도로 현재 멘토의 이력・경력과 이메일 주소 등을 온라인에 통합하는 ‘온라인 멘토 시스템’도 구축중인데 추후에 멘토 정보를 후배들에게 알려 선배들의 조언이 필요할 경우 언제든 이메일로 소통할 수 있도록 할 계획이다. 한편 이번 행사에 멘토로 참가를 원하는 KAIST 동문은 총동문회 사무국(02-3498-7551)에, 멘티 참가를 원하는 재학생은 9월 15일까지 대학원 및 학부 총학생회 담당자 메일로 신청하면 된다. 문 의 : KAIST 총동문회 사무국장 전진환 jjh7235@gmail.com : 대학원 총학생회 남재현 medyboy@kaist.ac.kr : 학부 총학생회 정화영 jhy1268@kaist.ac.kr
2012.09.12
조회수 15280
바이오및뇌공학과 출신 박사들, ‘사이언스’에 잇따라 논문 게재
- 이은정, 남호정 박사, 8월 24일, 31일자 ‘사이언스’에 연달아 논문 게재 -- 학과 창립 10주년, 교수・졸업생 활발한 연구 성과 내- 최근 우리 학교 바이오및뇌공학과 출신 박사들이 세계 최고 권위를 자랑하는 학술지인 사이언스(Science)에 연구 성과를 잇따라 게재해 화제가 되고 있다. 우리 학교 바이오및뇌공학과에서 박사학위를 취득한 여성과학자 이은정(39세), 남호정 박사(34세)가 8월 24일과 31일자 사이언스지에 연구 논문을 게재했다. 두 여성과학자들은 바이오및뇌공학과 이도헌 교수의 지도 아래 생물학적 문제를 대량의 데이터와 다양한 컴퓨터기법을 이용해 분석하는 ‘바이오정보학(Bioinformatics)’을 전공했다. 이 박사와 남 박사는 각각 2008년과 2009년 KAIST에서 박사학위를 취득한 후 현재 하버드 의대와 샌디에고 캘리포니아 주립대에서 박사 후 연구원으로 일하고 있다. 이은정 박사는 하버드 의대, 배일러 의대, 브로드 연구소 등의 연구팀들과 공동으로 ‘점핑유전자(jumping gene)’라고 불리는 인간 유전체 내에 존재하는 트랜스포존(transposon)과 종양과의 관계를 세계 최초로 차세대 염기서열 분석과 바이오정보학 기술을 이용해 연구했다. 연구팀은 종양 세포의 전유전체서열 데이터로부터 트랜스포존의 삽입 위치를 개별 핵산 단위 해상도로 추적할 수 있는 기술인 Tea(Transposable Element Analyzer)를 개발하는 데 성공했다. 이 박사의 논문은 지난 6월 28일 사이언스 온라인판에 먼저 게재됐으며, 이후 의학 및 생물학 분야 상위 2%의 중요 논문을 추천 및 평가하는 ‘천 명의 논문 검토자(Faculty of 1000)’들로부터 최고 점수인 10점을 받는 등 높은 주목을 받아 연구 가치를 입증했다. 남호정 박사는 바이오정보학과 시스템생물학적인 접근 방식을 이용해 세포 안에서 대사활동에 관여하는 효소 단백질이 높은 특이성과 높은 효율성을 갖는 방향으로 진화하는 이유를 발견했다. 두 여성과학자가 박사 학위를 받은 바이오및뇌공학과는 정문술 미래산업 창업주의 기부로 2002년에 설립되었으며, 바이오정보학, 뇌공학, 바이오영상, 나노바이오공학과 같은 학제 간 융합학문을 개척해 현재까지 164명의 석사와 65명의 박사를 배출했다. 의학・약학・바이오공학・생명공학・물리학・전기전자공학・컴퓨터공학・기계공학 등 다양한 학문적인 배경을 갖추고 있는 이 학과 소속 19명의 교수들은 적극적인 교류와 협력을 통해 단일학문의 범위를 벗어나는 융합연구를 통해 KAIST의 글로벌 경쟁력을 키워나가고 있다. 바이오및뇌공학과는 특히 설립된지 10년 남짓한 소규모 학과임에도 불구하고 올 들어 ▲나노선기반 세포내시경 개발(1월, 박지호 교수) ▲나노안테나를 갖는 테라헤르츠 발생기 개발(4월, 정기훈 교수) ▲단백질 분해조절 효소정보를 담은 바이오마커 발굴 시스템 개발(5월, 이관수 교수) ▲표적항암제 내성원리 규명(6월, 조광현 교수) ▲C형 간염 바이러스의 간 손상 기전 규명(9월, 최철희 교수) 등 우수한 성과를 내고 있다. 이은정・남호정 박사의 지도교수이자 현재 학과장을 맡고 있는 이도헌 교수는 “연구를 하다보면 각자의 분야에서 해결하지 못한 난제가 다른 분야 전문가를 통해서 아주 쉽게 풀리거나, 혹은 이미 다른 분야에서는 해결돼 있는 것들이 많다”며 융합연구의 이점을 강조했다. 이 교수는 또 “이은정・남호정 박사를 시작으로 앞으로 더 많은 훌륭한 과학자를 배출해 작지만 세계적인 경쟁력을 갖춘 최강의 바이오및뇌공학과로 만들어 나갈 것이라고”고 각오를 다졌다. 이은정 박사 남호정 박사
2012.09.11
조회수 20905
C형 간염 바이러스의 간 손상 메카니즘 규명
- 부작용 없이 간세포 손상 억제하는 치료제 개발 길 열어 -- 의학분야 세계 최고수준 학술지 ‘헤파톨로지’ 9월호 표지논문 장식 - 의사출신으로 구성된 KAIST 연구진이 C형 간염 바이러스 기전을 밝혀내 치료제 개발에 탄력을 받게 됐다. 우리 학교 바이오및뇌공학과 최철희 교수와 의과학대학원 신의철 교수팀이 공동으로 C형 간염 바이러스에 감염된 환자의 간 손상에 대한 메카니즘을 세계 최초로 규명했다. 이번 연구결과로 앞으로 부작용이 없으면서도 간세포 손상이 적은 C형 간염 바이러스 치료제가 개발될 수 있을 것으로 기대된다. C형 간염은 C형 간염 바이러스(HCV, Hepatitis C virus)에 감염되었을 때 이에 대응하기 위한 신체의 면역반응으로 인해 간에 염증이 생기는 질환이다. C형 간염 바이러스는 전 세계적으로 약 1억 7천만 명, 그리고 우리나라에서도 1%정도가 감염되어 있는 것으로 추정된다. 감염되면 대부분 만성으로 변하며, 간경변증이나 간암을 유발해 사망할 수 있는 무서운 질병이다. 하지만 2005년 시험관 내 세포에서 C형 간염 바이러스의 감염이 성공하기 전까지는 세포실험이 불가능했고, 침팬지 이외에는 감염시키는 동물이 없어 동물실험이 어려워 연구에 한계가 있었다. 연구팀은 C형 간염 바이러스에 감염시킨 세포주를 이용해 바이러스가 면역을 담당하는 세포에 의해 분비되는 단백질인 종양괴사인자(TNF-α)에 의한 세포의 사멸이 크게 증가하는 메카니즘을 세계 최초로 밝혀냈다. 이와 함께 이러한 작용을 일으키는 바이러스 구성 단백질도 규명에도 성공했다. 기존에는 C형 간염 바이러스가 간 손상을 일으키는 기전을 밝혀내지 못해 주로 바이러스의 증식을 억제하는 데 초점을 맞춰 신약이 개발돼 부작용이 많았다. 이번 연구결과를 통해 바이러스에 의한 간세포 손상을 억제하는 부작용 없는 신약개발이 가능하게 될 것으로 전망된다. 최철희 교수는 “이번 연구를 통해 C형 간염 바이러스가 숙주의 간세포와 어떤 상호 작용을 하는지 밝혀내 감염 환자의 치료법을 획기적으로 개선할 수 있을 것”이라고 말했다. 신의철 교수는 “이번 연구는 기초의학과 응용의학의 융합연구가 성공한 대표적 사례”라며 “앞으로도 다학제간 융합연구를 실시하면 그동안 풀지 못했던 난제들을 효율적으로 해결할 수 있을 것”이라고 강조했다. 한편, 교육과학기술부 미래기반기술개발사업(신약타겟검증연구사업)의 지원을 받아 수행된 이번 연구 결과는 의학 분야의 세계적 학술지인 헤파톨로지(Hepatolog, Impact Factor=11.665) 9월호 표지 논문으로 선정됐다. □ 연구 세부사항 설명 TNF-α(종양괴사인자)는 면역을 담당하는 세포에 의해 분비되는 단백질이다. HCV에 감염되면 바이러스의 증식을 억제하기 위해 체내의 면역작용이 활발해지고 TNF-α의 분비도 늘어난다. TNF-α는 세포의 생존을 담당하는 NF-κB 신호전달과 세포의 죽음을 담당하는 JNK 신호 전달을 동시에 활성화시킨다. HCV에 감염되면, 세포의 생존을 담당하는 NF-κB 쪽 신호전달 경로만 선택적으로 활성을 억제하게 되고, TNF-α의 역할은 세포의 죽음 쪽으로 균형이 기울게 된다. 바이러스의 증식을 억제하기 위해 분비된 TNF-α가 오히려 간세포를 죽이게 되는 것이다. 이는 곧 간 손상을 뜻하며, HCV를 구성하는 10가지의 단백질 중 core, NF4B, NS5B 라는 단백질이 이러한 작용을 한다고 규명해냈다.
2012.09.04
조회수 15190
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
>
다음 페이지
>>
마지막 페이지 17