본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%9E%90%EC%97%B0%EA%B3%BC%ED%95%99%EB%8C%80%ED%95%99
최신순
조회순
화학과 임미희 교수, 제2회 에쓰-오일 차세대과학자상 수상
우리 대학 화학과 임미희 교수가 에쓰-오일(대표 후세인 알 카타니)이 설립한 공익재단 에쓰-오일 과학문화재단(이사장 백운규)에서 수여하는 ‘제2회 에쓰-오일 차세대과학자상’ 화학 분야 수상자로 선정돼 2월 16일(화) 서울 마포구 공덕동 에쓰-오일 본사 3층 대강당 시상식에서 수상했다. 2019년 신설된 에쓰-오일 차세대과학자상은 물리학·화학·생리의학·화학및재료공학·에너지·IT 등 총 6개 분야에서 최근 10년 이내 연구개발업적이 탁월한 만 45세 이하 젊은 과학자를 선정한다. 수학·물리학·화학·생명과학·화학공학/재료공학·IT 6개 과학 분야에서 우수학위논문으로 선정된 젊은 과학자 12명과 지도교수 12명에게 연구지원금 1억 3,800만원을 전달하고 물리·화학·생리의학·화학공학/재료공학·에너지·IT 6개 분야에서 차세대과학자로 선정된 중견 연구자 6명에게 2억 4천만원을 전달했다. 임미희 교수는 알츠하이머병 다중위험인자들의 연결 요소들을 찾고 독성 억제에 성공한 연구 성과를 인정받아 차세대과학자 분야에서 수상했다. 알 카타니 CEO는 "기초과학 분야에서 학문적 열정을 갖고 연구하여 세계적으로 인정받은 이 분들이 있기에 한국의 과학 미래는 밝다"며 "앞으로도 과학자들이 안정적으로 연구에 매진할 수 있도록 지원을 지속해 나가겠다"고 밝혔다. 관련 링크: http://www.s-oil.com/relation/NewsView.aspx?BoardDataIndex=14478
2021.02.17
조회수 79088
자연에 없는 고감도 단백질 센서 제작 플랫폼 개발
우리 대학 생명과학과 오병하 교수가 미국 워싱턴주립대학 (University of Washington)과 국제 공동연구를 수행해 고감도의 단백질 센서 플랫폼을 개발했다고 5일 밝혔다. 단백질 센서들은 질병의 진단, 치료 경과의 추적, 병원 미생물의 감지 등에 널리 사용되고 있다. 상용되고 있는 단백질 센서들은 자연계에 존재하는 단백질이거나 이를 약간 변형한 형태이며 개발에는 많은 시간이 소요된다. 공동연구팀은 자연에 존재하는 단백질에 의존하지 않고 계산적 단백질 디자인 방법으로 인공적인 골격 단백질을 창출했으며 이를 두 부분으로 나누고 심해 새우가 만드는 발광 단백질과 재조합해 단백질을 감지하는 기능을 부여했다. 이렇게 만들어진 두 요소(two-component) 단백질 시스템은 그 자체로는 발광하지 않다가 감지하려는 표적 단백질이 존재하면 이와 결합하고 결과적으로 발광하도록 디자인돼있다. 그리고 그 발광 정도는 표적 단백질의 농도에 비례해 빛을 발생하기 때문에 발광의 세기를 측정함으로써 표적 단백질의 존재와 그 농도를 감지할 수 있다. 발생하는 빛은 시료의 전처리 없이도 감지할 수 있고, 발광 반응은 즉각적이며 1시간 안에 종료되기 때문에 기존 발색 반응의 측정보다 쉽다는 장점이 있다. 연구진이 창출한 단백질 시스템은 마치 레고 블록처럼 사용돼 여러 다양한 단백질 센서를 용이하게 제작하는데 쓸 수 있는 플랫폼을 제공한다. 실제로 발표된 논문에는 B형 간염 바이러스 단백질 센서, 코로나바이러스 단백질 센서 등 8개의 고감도 단백질 센서를 실제로 제작해 이 단백질 센서 플랫폼의 높은 응용성을 보여준다. 한편 이 단백질 센서의 작동 방식은 자연계에서는 그 예를 찾을 수 없어 자연의 모방을 넘어 자연에 존재하지 않는 단백질과 기능을 창출할 수 있다는 예를 보여준다. 이번 연구는 LG연암문화재단의 지원으로 오병하 교수가 미국 워싱턴 주립대학 데이비드 베이커(David Baker) 교수 실험실에 1년간 방문한 공동연구로 진행됐으며, 생명과학과 이한솔 박사와 강원대학교 홍효정 교수가 참여했다. 수행된 이번 연구 결과는 연구의 우수성을 인정받아 종합 과학 분야의 국제학술지 `네이처(Nature)'에 1월 27일 字 게재됐다. (논문명 : De novo design of modular and tunable protein biosensors)
2021.02.05
조회수 76323
개교 50주년 기념 세계 대학 총장 정상회의(Summit) 개최
코로나19가 바꾼 경제·금융·문화 지형도는 대학의 전통적인 역할과 가치평가에도 큰 변화를 가져오고 있다. 가속화되는 4차 산업혁명과 포스트 코로나 시대에 대학은 어떻게 변해야 경쟁력을 유지하고 질적 성장(quality growth)을 가져올 수 있을지, 우리 대학을 포함한 세계 명문대학교 총장 4명이 온라인을 통해 심도 있는 의견을 나누는 자리가 마련됐다. 3일(수) 오전 10시부터 12시까지 대전 본원 학술문화관(E9) 5층 정근모콘퍼런스 홀에서 'KAIST 서밋(KAIST Summit)'이 개최된다. 2시간 동안 진행되는 이 행사는 온라인 플랫폼을 통해 전 세계에 실시간으로 방송된다. '글로벌 위기 속 대학의 역할과 책임'이라는 주제로 열리는 이번 총장정상회의(summit)는 KAIST 신성철 총장을 포함해 MIT·도쿄공업대학·노스웨스턴대학 등 4개 대학 총장이 기조 연사로 참여한다. 이번 서밋은 개교 50주년 기념사업의 일환으로 KAIST가 향후 100년을 향해 나아갈 비전을 제시하고 세계 초일류 과학기술대학으로 거듭나기 위한 발전 방향과 전략을 모색하기 위해 마련한 행사다. 또 코로나19와 같은 전염병의 대유행·기후변화·빈부격차·인공지능(AI)의 확산에 따른 사회경제적 변화 등 전 세계가 직면한 중대한 문제들을 짚어보고, 이 같은 위기 속에서 KAIST를 비롯한 대학들의 새로운 역할과 책임에 대해서도 논의할 예정이다. 첫 번째 기조 강연자인 라파엘 라이프(L. Rafael Reif) MIT 총장은 KAIST의 50주년을 축하하고 '대학, 변화를 선도하는 엔진(Universities as Engines of Change)'이라는 주제로 인류의 주요 도전과제 해결에 대학이 기여할 수 있는 역량에 대해 강연한다. 라이프 총장은 특히 미래지향적·인간적·과학 중심적 리더십의 중요성을 강조하며, 교육·연구·산학협력·사회봉사를 중심으로 대학이 변화와 혁신을 선도한 사례들을 소개할 예정이다. 이어, 카즈야 마스(Kazuya Masu) 도쿄공업대학교 총장은 '우리의 미래를 설계하는 방법-도쿄공업대학교의 DLab 사례(Designing Our Future-Tokyo Tech DLab's Approach)'라는 주제로 두 번째 기조연설에 나선다. 대학의 중요한 역할은 사회와 지속적으로 소통하고 혁신을 주도하는 것이라고 주장하는 카즈야 마스 총장은 오늘날처럼 불확실성이 증대되고 급변하는 시대에 도쿄공업대학이 대학의 이해관계자는 물론 대중과 함께 공유하고 있는 미래 비전을 소개할 예정이다. 이와 함께, 미래 설계를 위해 어떻게 소통하고 협력했는지에 관해 DLab의 성공적인 활동 사례도 소개한다. 세 번째 기조 연사인 모턴 샤피로(Morton Schapiro) 노스웨스턴대학교(이하 노스웨스턴대) 총장은 '뉴노멀 시대의 대학(The University in the 'New Normal')'이라는 주제로 대학이 코로나19에 대응하며 얻은 교훈을 중심으로 강연한다. 샤피로 총장은 연구·교육·공공서비스를 포스트 코로나 시대에 부합하도록 개선하기 위해 이제까지의 경험을 어떻게 활용할 것인지에 대해 강조하고 이런 노력이 4차 산업혁명과 관련해 변화하는 노동시장 수요에 대응하는 데 어떤 영향을 미칠지에 관한 의견을 내놓는다. 신성철 총장은 마지막 기조연설자로 나서 'KAIST, 다음 50년의 꿈을 위한 비전과 혁신(Vision & Innovations for the Next Dream of KAIST)'이라는 주제로 강연한다. 개교 50주년을 맞은 KAIST의 역사를 뒤돌아보고 다음 50년 동안 KAIST가 인류의 번영과 행복에 기여하는 '글로벌 가치 창출 선도대학(Global Value -Creative Leading University)'으로 도약하기 위한 비전과 혁신 전략을 제시한다. 신 총장은 교육·연구·기술사업화·국제화·미래전략 등 5개 분야의 목표를 설정하고 이를 달성하기 위해 진행 중인 구체적인 혁신사례들을 소개할 예정이다. 4인의 총장은 기조 강연자로서 각자의 주제로 강연한 후 패널리스트로 참여해 '정보격차', '인공지능의 새로운 도전과제', '사회적 기업가정신과 산학협력' 등의 3개 주제를 다루는 집중토론을 진행한다. 먼저, 4차 산업혁명과 코로나19의 여파로 심화되고 있는 계층·지역·국가 간 '정보격차(digital divide)'를 해소하기 위해 대학이 교육과 연구를 통해 제안할 수 있는 해결방안을 고민한다. 정보격차가 국가나 인종에 대한 불평등으로 확대되지 않으려면 국가 간의 효율적인 국제 공조가 필요한데, 이를 도출하기 위해 대학이 할 수 있는 가교역할이 무엇인지에 대해 서로 의견을 나눌 예정이다. 이어, 최근 사회·경제·윤리적인 측면에서 인류 삶의 패러다임을 크게 변화시키며 눈부신 성장을 보이는 인공지능과 로봇 기술도 화두로 다룬다. 패널리스트들은 '인공지능의 새로운 도전과제(Emerging Challenges in Artificial Intelligence)'라는 주제로 인공지능이 가져올 변화에 대한 대응 방안을 토론한다. 마지막으로, '사회적 기업가정신과 산학협력(Social Entrepreneurship and University-Industry Collaboration)'에 관한 토론도 진행된다. 학생들이 사회의 다양한 문제에 관심을 가지는 일에서 출발해 이를 해결하기 위한 노력의 일환으로 사회적 기업을 창업하는 것과 이러한 창업 기업들을 유기적으로 지속시킬 수 있는 대학의 지원방안에 대해 논의하고 산학협력과 혁신 창업 활성화를 위한 대학의 건설적인 역할도 짚어볼 예정이다. 패널 토론 후에는 KAIST 재학생, 동문 및 교직원과 KAIST 진학을 희망하는 고등학생 등으로 구성된 온라인 청중 150명과 함께하는 질의 및 응답도 준비돼 있다. 신성철 총장은 "과학기술 혁신을 선도하는 글로벌 4개 대학 총장이 모여 위기 극복방안을 논의하고 포스트 코로나 시대에 새롭게 부상하는 표준(new normal) 속에서 대학의 역할과 책임을 재조명하는 뜻 깊은 자리가 될 것ˮ이라고 'KAIST 서밋'의 개최 배경을 밝혔다. 이번 총장 정상회담은 '유튜브 KAIST 채널'을 통해 전 세계에 실시간으로 중계되며 한국어-영어 동시통역과 한글 자막이 제공된다.
2021.02.01
조회수 84442
화학과 이효철 교수, 제62회 3·1문화상 수상자 선정
재단법인 3·1문화재단(이사장 김기영)은 제62회 3·1 문화상 수상자로 우리 대학 화학과 이효철 교수를 선정했다고 31일 밝혔다. 자연과학 부문 학술상을 받는 이효철 교수는 화학반응에서 분자 내 결합 형성의 근본적 원리 규명에 매진하면서 고정관념을 타파하는 혁신적인 연구 결과들을 발표하는 등 구조동역학 분야를 선도하는 세계적 석학으로서 대한민국의 화학 발전에 크게 기여했다. 3·1 문화상은 3·1운동 정신을 이어받아 조국의 문화 향상과 산업 발전의 기반을 제공하는 취지에서 1959년 제정돼 이듬해 3월 1일 첫 시상식을 열었다. 1966년 8월에 재단법인 3·1문화재단 설립으로 이어져, 현재 대한유화 주식회사(회장 이순규)에 의해서 운영되는 공익 포상 제도다. 우리 대학 이효철 교수 외에도 인문·사회과학 부문 학술상에 이성규 서울대 명예교수, 예술상에 윤후명 소설가, 기술·공학상에 안종현 연세대 교수가 선정됐다. 각 수상자에게는 상패, 휘장 및 상금 1억원을 준다. 올해는 코로나19 방역을 위해 3월 1일 시상식을 열지 않기로 했다.
2021.02.01
조회수 72552
인공지능 이용 면역항암 세포 3차원 분석기술 개발
우리 대학 물리학과 박용근, 생명과학과 김찬혁 교수 공동연구팀이 면역항암 세포의 활동을 정밀하게 측정하고 분석할 수 있는 새로운 3차원 인공지능 분석기술을 개발했다고 28일 밝혔다. 체내에서 면역세포를 추출한 후, 외부에서 면역 능력을 강화시키고 다시 환자에게 주입해 암을 치료하는 방식을 `입양전달 면역세포 치료(adoptive immune cell therapy)'라고 부른다. 이 치료방식은 면역세포 치료법 중 가장 많은 주목을 받는 기술이다. `키메릭 항원 수용체' 또는 `CAR(Chimeric Antigen Receptor)'라고도 불리는 데 유전자 재조합기술을 이용해 T세포와 같은 면역세포를 변형해 암세포와의 반응을 유도해 사멸시키는 치료 방법이다. 특히 CAR-T세포 치료는 높은 치료 효과를 보여 차세대 암 치료제로 급부상하고 있다. 2017년 난치성 B세포 급성 림프구성 백혈병 치료제 판매 승인을 시작으로 현재 3종의 CAR-T 치료제가 판매 승인을 받았으며, 전 세계적으로 약 1,000건 이상의 임상 시험이 진행 중이다. 그러나 아직 우리나라에서는 진행 중인 임상 시험이 전무한 실정이다. CAR-T 기술을 이용한 암 치료 방법들이 속속 개발되고 있지만, CAR-T세포에 대한 세포‧분자 생물학적 메커니즘은 아직 많은 부분이 알려지지 않았다. 특히, CAR-T세포가 표적 암세포를 인지해 결합한 후 `면역 시냅스 (immunological synapse, 이하 IS)'를 형성해 물질을 전달하고 암세포의 사멸을 유도하는데, 두 세포 간의 거리와 같은 IS의 형태 정보는 T세포 활성화 유도와 관련이 높다고 알려져 있지만 구체적인 내용을 파악하기 어렵기 때문에 이에 대한 연구가 활발히 진행 중이다. 우리 대학 물리학과 박용근, 생명과학과 김찬혁 교수 공동연구팀은 CAR-T세포의 IS를 정밀하고 체계적으로 연구할 수 있는 새로운 기술을 개발했다. 3D 홀로그래피 현미경 기술을 이용해, 염색이나 전처리 없이 살아있는 상태의 CAR-T세포와 표적 암세포 간의 상호작용을 고속으로 측정하고 기존에는 관찰하기 어려운 CAR-T와 암세포 간의 IS를 고해상도로 실시간 측정했다. 또한 이렇게 측정한 3D 세포 영상을 인공지능 신경망(Convolutional Neural Network, CNN)을 이용해 분석하고, 3차원 공간에서 정확하게 IS 정보를 정량적으로 추출할 수 있는 기술을 자체 개발했다. 공동연구팀은 또 이 기술을 활용해 빠른 CAR-T 면역 관문 형성 메커니즘을 추적할 수 있었을 뿐만 아니라, IS의 형태학적 특성이 CAR-T의 항암 효능과 연관이 있음을 확인했다. 연구팀은 3차원 IS 정보가 새로운 표적 항암 치료제의 초기 연구에 필요한 정량적 지표를 제공할 것이라고 기대하고 있다. 이번 연구에는 우리 대학 기술을 바탕으로 창업한 2개 기업이 공동으로 참여했다. 3차원 홀로그래픽 현미경을 상업화한 토모큐브 社의 현미경 장비를 이용해 면역세포를 측정하는 한편 토모큐브 社의 인공지능 연구팀이 알고리즘 개발에 참여했다. 이밖에 국내 최초 CAR-T 기반 치료제 기업인 ㈜큐로셀도 연구에 함께 참여해 이 같은 성과를 거두는 데 성공했다. 물리학과 이무성 박사과정 학생, 생명과학과 이영호 박사, 물리학과 송진엽 학부생 (現 메사추세츠 공과대학(MIT) 물리학과 박사과정)이 공동 제1 저자로 참여한 이번 연구는 국제적으로 권위를 인정받는 생물학술지인 `이라이프(eLife)' 12월 17일 字 온라인판을 통해 공개됐으며 지난 21일 字에 공식 게재됐다. (논문명 : Deep-learning based three-dimensional label-free tracking and analysis of immunological synapses of CAR-T cells) 한편 이번 연구는 한국연구재단 리더연구사업, 바이오·의료기술개발사업, 중견연구자지원사업, KAIST Up program의 지원을 받아 수행됐다.
2021.01.29
조회수 75995
신소재 레이저 제작기술 개발
우리 대학 물리학과 박용근 교수, 이상민 교수, 신소재공학과 김도경 교수 공동연구팀이 기존에는 활용할 수 없었던 소자와 재료로 레이저를 구현할 수 있는 새로운 비공진 방식의 레이저 제작기술을 개발했다고 12일 밝혔다. 일반적인 레이저는 거울 등을 이용해 빛을 가두는 구조(공진기) 내부에 빛을 증폭시키는 레이저 소재(이득 물질)을 배치하는 방식이다. 하지만 공진기 내부에서 빛의 경로가 일정하게 유지돼야 레이저가 작동하기 때문에, 매우 투명한 크리스탈 구조의 이득 물질에서만 레이저가 구현될 수 있었다. 따라서 자연계에 존재하는 많은 재료 중에 투명한 크리스탈로 제작할 수 있는 특수한 레이저 소재들만 활용됐다. 연구팀은 불투명한 이득 물질에서도 빛을 가둘 수 있는 공진기 구조를 내부에 만드는 새로운 방식의 레이저를 개발했다. 마치 `통발' 형태의 공간에서 빛이 갇힌 채로 주변 이득 물질에 의해 계속 산란되면서 증폭되는 원리다. 이 새로운 레이저는 이득 물질이 꼭 투명할 필요가 없으므로 기존에 이득 물질로 사용되지 못했던 다양한 불투명 소재들을 활용해 새로운 레이저를 만들 수 있다. 우리 대학 물리학과 이겨레 박사, 신소재공학과 마호진 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 1월 4일 字 출판됐다. (논문명 : Non-resonant power-efficient directional Nd:YAG ceramic laser using a scattering cavity). 박용근 교수 연구팀은 크리스탈 구조로 만들 수 없는 소재로 레이저를 구현하기 위해 공진기 사방을 모두 산란체로 막는 아이디어를 구상했다. 물고기 통발의 구조처럼 산란체로 사방이 막혀있고 좁은 입구를 가진 `빛 통발' 형태의 텅 빈 공간을 공진기로 활용하는 아이디어다. 연구팀은 불투명한 이득 물질로 제작된 산란체 내부에 작은 공간을 파내어 레이저 공진 공간을 만들었다. 이렇게 만들어진 구형 공간의 벽면에서 빛이 반사될 때마다 증폭하도록 만들어졌다. 연구팀은 제안한 형태의 `빛 통발'에서 성공적인 레이저 발진을 구현하는 데 성공했다. 3차원 공간에서 무작위로 형성되는 공동 내 빛의 경로 때문에, 구현된 레이저는 일반적인 공진(resonant) 기반 레이저와 다르게 비공진(non-resonant) 형태로 발진 됐다. 연구팀이 개발한 레이저의 가장 큰 특징은 투명한 이득 물질을 필요로 하지 않는다는 점이다. 불투명한 성질 때문에 기존 레이저 이득 물질로 활용되지 못했던 소재들을 활용해 더욱 다양한 레이저 개발이 가능할 것으로 기대된다. 기존에 활용되지 못하던 새로운 소재를 레이저 이득 물질로 활용할 수 있으므로 레이저에서 나오는 빛의 파장을 크게 확장할 수 있고, 국방 목적과 같은 고출력 레이저로도 활용될 수 있다. 공동 제1 저자이자 교신저자인 물리학과 이겨레 박사는 "구현한 레이저는 비공진 레이저이면서 동시에 높은 에너지 효율과 방향성을 가지는 것이 장점이다. 또한, 고된 소재의 결정화 과정 없이도 효율적인 레이저를 제작할 수 있다면 이득 물질로 사용될 수 있는 소재의 폭이 월등히 넓어질 것ˮ이라며 "기존에는 레이저로 활용하지 못했던 새로운 재료로 레이저를 발진시킬 수 있어 다양한 파장과 광 특성을 가진 새로운 레이저 소자 개발이 가능하고 이를 활용하면 의료, 생명과학, 산업기술, 국방 등 여러 분야로 적용이 가능할 것으로 기대한다ˮ라고 말했다. 한편 이번 연구는 한국연구재단 리더연구사업의 지원을 받아 수행됐다.
2021.01.12
조회수 61552
핫전자(뜨거운 전자) 이용, 온실가스 저감원리 규명
우리 연구진이 금속-산화물 계면에서의 촉매 화학 반응 과정에 대한 메커니즘을 직접 밝히고, *핫전자(뜨거운 전자)가 촉매 선택도를 향상시키는 데 결정적인 요소임을 실시간 핫전자 검출을 통해 입증했다. ☞ 핫전자(Hot electron): 분자의 흡착, 화학 촉매 반응, 빛의 흡수와 같은 외부 에너지가 금속 표면에 전달될 때, 화학 에너지의 순간적인 전환과정에서 에너지가 올라간(물질의 자유전자보다 약 100배 높은) 상태의 전자를 말한다. 태양광을 전기에너지로 전환하는 데 사용되는 매개체로도 사용된다. 우리 대학 화학과 박정영 교수(기초과학연구원(IBS) 나노물질 및 화학반응 연구단 부연구단장), 신소재공학과 정연식 교수, 생명화학공학과 정유성 교수 공동연구팀이 차세대 고성능 촉매 설계에 활용할 수 있는 반응성 향상 원리의 기틀을 마련했다고 8일 밝혔다. 현재 에너지 사용량 절감과 친환경 화학 공정 개발이라는 글로벌 도전 과제를 해결하기 위해 새로운 고효율 촉매 소재 개발은 필수적이다. 친환경 화학을 위한 불균일 촉매의 궁극적인 목표는 원하는 생성물에 대해 높은 선택성을 가진 재료를 설계하는 것이다. 많은 화학 촉매 반응 중 알코올의 선택적 산화는 에너지 변환 및 화학 합성에서 중요한 변환 과정이며, 특히 메탄올의 부분 산화를 통해 생성되는 메틸 포르메이트는 포름알데히드 및 포름산과 같은 귀중한 화학 물질의 화학연료로 사용되는 고부가 가치 생성물이다. 따라서 지구온난화 문제의 핵심인 이산화탄소의 저감과 고부가 가치 화학연료 생성의 향상을 위해서는 열역학적인 장벽을 뛰어넘어 높은 선택도를 가지는 우수한 성능의 촉매 개발이 필요하다. 공동연구팀은 이를 해결하는 방안으로, 백금 나노선을 티타늄 산화물에 접합시켜 `금속 나노선-산화물 계면'이 정밀하게 제어되는 신개념의 촉매를 개발했고, 더 나아가 금속 나노선-산화물 계면 기반의 `핫전자 촉매소자'를 활용해 실시간으로 핫전자의 이동을 관찰했다. 연구진은 금속-산화물 계면이 형성되면 메틸 포르메이트의 생성효율이 향상되는 동시에 이산화탄소의 생성이 현저히 감소하는 점을 관찰했으며, 이 높은 선택도는 촉매 표면에 형성된 계면에서의 증폭된 핫전자의 생성과 연관이 있음을 규명했다. 또한 연구진은 계면에서의 증가된 촉매 성능을 실험뿐 아니라 이론적으로도 입증했다. 연구진은 금속 나노선-산화물 계면에서의 증폭된 촉매 선택도가 계면에서의 완전히 다른 촉매 반응 메커니즘에서 기인하는 것임을 양자역학 모델링 계산 결과 비교를 통해 증명했다. 연구를 주도한 화학과 박정영 교수는 "핫전자와 금속 나노선-산화물 계면을 이용해 온실가스인 이산화탄소의 생성을 줄이고 고부가 가치 화학연료의 생성을 증대시킬 수 있다ˮ며 "촉매의 선택도를 핫전자와 금속-산화물 계면을 통해서 제어할 수 있다는 개념은 에너지 전환 및 차세대 촉매 개발에 이용될 수 있고 지구온난화의 주원인인 온실가스의 저감 등의 응용성을 가질 거라고 예상된다ˮ고 말했다. 나노선과 산화물의 접합 연구를 주도한 신소재공학과 정연식 교수는 "기존의 촉매 소자 시스템에서는 기술적으로 어려웠던 금속-산화물 계면에서의 핫전자 검출을 아주 정밀한 나노선 프린팅 기술로 인해 가능하게 만든 연구며, 이 기술은 향후 다양한 차세대 하이브리드 촉매 개발에 활용할 수 있으리라 기대된다ˮ고 말했다. 이론적인 계산으로 계면과 촉매 선택도 간 관계 입증을 주도한 생명화학공학과 정유성 교수 역시 "촉매 화학 반응에서의 선택도를 높이기 위해 금속-산화물 계면이 중요한 역할을 할 수 있음을 실험적 관찰과 이론적인 양자 계산을 통해 증명한 연구로, 불균일 촉매를 이용한 화학 공정 개발에 활용될 수 있을 것으로 기대된다ˮ 라고 언급했다. 우리 대학 화학과 이시우 박사가 제1 저자로 참여하고 기초과학연구원(IBS) 및 한국연구재단의 지원으로 수행된 이번 연구 결과는 종합 과학분야의 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)에 1월 4일 字 게재됐다. (논문명 : Controlling hot electron flux and catalytic selectivity with nanoscale metal-oxide interfaces)
2021.01.11
조회수 64845
세계 최대 규모의 3차원 암 게놈 지도 구축
우리 대학 생명과학과 정인경 교수가 한국생명공학연구원 국가생명연구자원정보센터(KOBIC) 이병욱 박사 연구팀과 공동연구를 통해 전 세계 최대 규모의 3차원 암 게놈 지도 데이터베이스를 구축해 공개했다고 28일 밝혔다. (데이터베이스 주소: 3div.kr) 공동연구팀은 인체 정상 조직과 암 조직, 그리고 다양한 세포주 대상 3차원 게놈 지도를 분석 및 데이터베이스화 해, 약 400여 종 이상의 3차원 인간 게놈 지도를 구축했으며, 이를 통해 암세포에서 빈번하게 발생하는 대규모 유전체 구조 변이(structural variation)의 기능을 해독할 수 있는 신규 전략을 제시했다. 정인경 교수, 이병욱 박사가 공동 교신 저자로 참여한 이번 연구 결과는 국제 학술지 `핵산 연구(Nucleic Acid Research)' 저널 11월 27일 字 온라인판에 게재됐다. (논문명 : 3DIV update for 2021: a comprehensive resource of 3D genome and 3D cancer genome) 현재까지 많은 연구를 통해 암세포 유전체에서 발생하는 돌연변이를 규명해 암의 발병 기전을 이해하려는 시도가 있었다. 최근에는 유전자에서 발생하는 점 돌연변이뿐 아니라 대규모 구조 변이에 관한 연구가 활발하게 이루어지고 있으며, 이들을 활용한 신규 암세포의 특이적 유전자 발현 조절 기전 규명의 중요성이 제시되고 있다. 하지만, 대다수의 구조 변이는 DNA가 단백질을 생성하지 않는 비 전사 지역에 존재해, 1차원적 게놈 서열 분석만으로 이들의 기능을 규명하는 데는 한계가 있었다. 한편 지난 10년간 비약적으로 발전한 3차원 게놈 구조 연구는 비 전사 지역에 존재하는 대규모 구조 변이로 인해 생성되거나 소실되는 염색질 고리 구조(chromatin loop)를 3차원 게놈 구조 해독을 통해 규명하면 유전자 조절 기능을 해독할 수 있다는 모델을 제시하고 있다. 이에 정인경 교수 연구팀은 지금까지 공개된 모든 암 유전체의 3차원 게놈 지도를 확보해 전 세계 최대 규모의 3차원 암 유전체 지도를 작성했다. 그리고 대규모 구조 변이와 3차원 게놈 지도를 연결할 수 있는 분석 도구들을 개발했다. 그 결과 연구팀은 대규모 암 유전체 구조 변이에 따른 3차원 게놈 구조의 변화 그리고 이들의 표적 유전자를 규명할 수 있었다. 공동 교신 저자 이병욱 박사는 "최근 세포 내 3차원 게놈 구조 변화가 다양한 질병, 특히 암의 원인이 된다는 것이 밝혀지고 있는데, 이번 연구를 통해 이를 연구할 수 있는 도구들을 세계 최초로 개발했다ˮ라며 "이번 연구 결과를 활용하면 암의 발병 원리를 이해하고 더 나아가 항암제 개발에도 중요한 정보를 제공할 것으로 기대된다ˮ라고 말했다. 정인경 교수는 "암에서 빈번하게 발생하는 대규모 구조 변이의 기능을 3차원 게놈 구조 해독을 통해 정밀하게 규명 가능함을 보여줬다ˮ라며 "이번 연구 결과는 아직 해독이 완벽하게 이루어지고 있지 않은 암 유전체를 정밀하게 해독하는 기술을 한 단계 더 발전시키는 계기가 될 것이다”라고 말했다. 이번 연구는 한국연구재단 기반산업화 인프라 그리고 서경배과학재단의 지원을 통해 수행됐다.
2020.12.28
조회수 51505
초소형·저전력·저잡음 브릴루앙 레이저 구현 성공
우리 대학 물리학과 이한석, 이용희 교수 공동연구팀(초세대협업연구실)이 경북대학교 최무한 교수, 호주국립대학교 최덕용 교수 연구팀과 공동연구를 통해 초소형·저전력·저잡음 *브릴루앙 레이저를 구현하는 데 성공했다고 23일 밝혔다. 주파수의 흔들림이 거의 없는 초소형·저전력·저잡음 광원은 차세대 초정밀 광센서 구성에 필요한 핵심 소자다. ☞ 브릴루앙 레이저(Brillouin laser): *브릴루앙 산란에 기반해 레이저 빛을 생성 증폭하며, 따라서 레이저의 매질이 브릴루앙 산란을 쉽게 일으킬수록 더 작은 에너지로도 작동할 수 있다. 출력 레이저 빛은 입력된 펌프 빛보다 주파수의 흔들림이 작고 매우 낮은 잡음을 갖는다. ☞ 브릴루앙 산란(Brillouin scattering): 빛이 매질과 상호작용을 통해 음파(acoustic phonon)를 생성하고 산란되는 현상. 산란된 빛은 음파의 에너지에 대응되는 주파수 감소를 겪으며, 유도 방출(stimulated emission) 즉 동일한 특성의 빛을 복제하는 것이 가능해 레이저 구성에 이용될 수 있다. 공동연구팀은 기존에 주로 사용돼온 물질보다 브릴루앙 산란 현상이 수백 배 잘 일어나는 칼코겐화합물 유리를 기반으로 브릴루앙 레이저를 개발함으로써 성능을 극대화했다. 칼코겐화합물 유리는 화학적 불안정성으로 인해 칩 상에서 식각을 통한 성형이 어렵다는 근본적인 약점이 있지만 연구팀은 증착 과정에서 자발적으로 광소자가 구성되는 새로운 제작 기법을 개발해 이런 문제를 해결했다. 연구팀이 개발한 제작 기법은 겨울철 지붕 위에 쌓인 눈의 형태가 지붕의 형태에 의해 정해지므로 눈을 직접 만지지 않고서도 지붕의 형태만을 조절해 원하는 눈의 형태를 얻는 것에 비유할 수 있다. 즉, 현재 반도체 공정 기술로 가공하기 쉬운 산화규소를 이용해 바닥구조를 적절히 형성하면, 그 위에 칼코겐화합물 유리를 증착하는 것만으로도 우수한 성능의 광소자가 자발적으로 형성되는 현상을 최초로 입증한 것이다. 공동연구팀은 자체 개발한 이 제작 기법을 활용해서 칼코겐화합물 유리 기반 고성능 브릴루앙 레이저를 반도체 칩 상에 초소형 광소자의 형태로 구현하는 데 성공했다. 또 기존 기록보다 100배 이상 낮은 펌프 에너지로도 레이저 구동이 가능함을 밝혔다. 공동연구팀 관계자는 "소형화 및 저전력 구동은 상용화를 위한 필수적인 요소ˮ라면서 "공동연구팀의 브릴루앙 레이저 광원 개발은 자율주행에 필요한 거리뿐만 아니라 회전관성 센서의 감도를 획기적으로 개선하는 등 차세대 광센서 개발에 널리 활용될 것으로 기대가 크다ˮ고 말했다. 그는 또 "연구 과정에서 개발한 신공정 기법은 지금껏 활용할 수 없었던 다양한 물질을 미세 광학소자 분야에 도입, 가능케 했다는 점에서 매우 의미가 클 뿐 아니라 향후 널리 활용될 가능성이 큰 원천기술이다ˮ라고 의미를 부여했다. 이번 연구를 주도한 교신저자 이한석 교수는 "칼코겐화합물 유리는 다양한 분자의 흡수선이 존재하는 중적외선 대역에도 적용 가능해 분자 분광에 기반한 환경감시 및 헬스케어 분야까지 그 응용범위를 넓힐 수 있을 것ˮ이라고 내다봤다. 또 다른 교신저자인 최덕용 교수는 "연구 과정에서 개발된 공정기법은 다양한 물질의 이종 결합(hybrid integration)을 가능하게 해 미래 양자 인터넷의 핵심 소자인 고효율 양자 광원 및 양자 메모리 분야에도 응용될 수 있다ˮ고 강조했다. 우리 대학 물리학과 김대곤 박사과정 학생과 한상윤 박사후연구원(現 대구경북과학기술원 교수)이 공동 제1 저자로 참여한 공동연구팀의 이번 논문은 국제학술지 `네이쳐 커뮤니케이션스(Nature Communications)' 11월 23일 字에 실렸다. (논문명: Universal light-guiding geometry for on-chip resonators having extremely high Q-factor) 한편 이번 연구는 2018년 삼성미래기술육성사업에 선정돼 지속적인 지원을 받아 수행됐다.
2020.12.23
조회수 54002
차세대 양자광원을 위한 반도체 양자점 대칭성 제어기술 개발
우리 대학 물리학과 조용훈 교수 연구팀이 LED에 널리 사용되는 질소화합물 반도체를 이용해 대칭성이 매우 높은 삼각형 형태의 양자점(퀀텀닷)을 형성하고 제어하는 데 성공, 광자들 사이에 얽힘을 발생시키는 차세대 양자광원 개발에 핵심적인 양자점 제어 기술을 갖추게 됐다고 13일 밝혔다. ‘얽힘(entanglement)’은 입자들이 쌍으로 상관관계를 가져 거리에 상관없이 얽혀 있는 쌍의 한쪽 특성을 측정하면 나머지 한쪽의 특성을 즉시 알게 되는 현상으로, 전문가들은 얽힘이라는 양자역학적인 현상을 활용하면 양자통신과 양자컴퓨팅과 같은 양자정보에 필요한 기술 개발과 함께 물리학적으로 새로운 주제들이 개척될 것으로 기대하고 있다. 반도체 양자점(Quantum Dot)은 원하는 순간에 광자를 한 개씩 방출하는 대표적인 고체 기반의 양자광 방출 소자로써 널리 연구되고 있다. 특히, 반도체 양자점의 대칭성을 제어해 양자점 내부의 미세 에너지 구조를 정교하게 조절할 수 있다면, 두 개의 광자를 양자얽힘 상태로 만드는 편광얽힘 광자쌍 방출이 원리적으로 가능하므로 이를 이용한 양자통신 및 양자컴퓨팅 분야에서 주목받고 있다. 격자구조를 갖는 반도체는 일반적으로 원자들을 한 층씩 천천히 쌓아 올리는 박막 증착기술을 통해 제작된다. 이때 발광층을 형성하기 위해 격자크기가 다른 층을 쌓게 돼 반도체 내부에 응력이 발생하게 되는데, 발광층이 갖는 응력을 에너지로 사용해 양자점이 무작위적으로 형성되므로 양자점의 크기의 균질성과 대칭성이 떨어지고 근본적으로 양자점의 위치와 모양을 제어할 수 없는 한계를 가진다. 따라서 얽힘 광자쌍 방출소자를 제작하기 위해서는 제작단계에서 위치와 대칭성을 제어할 수 있는 기술이 필수적이다. 한편, 청⦁녹색 LED에 사용되는 물질로 잘 알려진 질소화합물 반도체는 상온에서도 양자적인 특성을 유지할 수 있어 상온에서 안정적으로 구현할 수 있는 양자광원 소자의 후보 물질로도 주목받고 있다. 그러나, 이 물질계는 양자점의 대칭성이 조금만 무너져도 양자역학적 얽힘 특성을 쉽게 잃어버리게 되므로 높은 수준의 대칭성 제어 기술을 확보하지 않고는 실질적으로 구현이 쉽지 않은 한계가 있었다. 조용훈 교수 연구팀은 양자점의 위치와 대칭성을 높은 수준으로 제어하기 위해, 삼각형 형태의 나노 배열 패턴을 갖는 기판 위에 삼각 피라미드 형태를 갖는 질소화합물 반도체 나노 구조를 우선 제작했다. 이후 양자점을 성장하는 단계에서 나노 피라미드 꼭지점 부분의 기하학적 형태를 조절하면서, 열역학적 안정성에 의해 자체적으로 성장 방식이 조절되는 자기제한적 성장메커니즘을 적용했다. 그 결과 육각형 결정구조를 갖는 질소화합물 반도체에서 일반적으로 나타나는 육각 대칭성을 갖는 비균일한 양자점 대신, 삼각 대칭성을 갖는 고품위의 양자점을 최초로 구현함으로써 질소화합물 반도체 양자점의 대칭성을 정교하게 제어하는 데 성공했다. 연구팀은 제작된 나노 구조체의 발광을 분석하기 위해 공간분해능이 수 나노미터 수준으로 좋은 주사전자현미경을 이용해 발광을 측정, 삼각 피라미드의 꼭지점에 양자점이 안정적으로 형성되었음을 확인했고, 시간에 따른 광자 간 상관관계 측정을 통해 양자광이 방출되는 것을 실험적으로 관측했다. 또한, 성장된 양자점의 비대칭성 정도를 가늠할 수 있는 양자광의 편광도와 미세구조 분리 정도를 측정해 높은 대칭성을 갖는 삼각 양자점이 형성되었음을 실험적으로 확인했으며, 이를 이론적 계산 결과와 비교함으로써 측정 결과의 타당성을 확보했다. 이번 연구에서는 기존에 질화물 반도체 양자점의 비대칭성과 높은 편광도를 이용해 상온 단일광자 방출기 제작에 집중해 오던 방식에서 벗어나, 양자점의 대칭성을 정밀하게 조절해 편광얽힘 광자쌍 방출기로도 응용 가능함을 제안했다. 또한 범용 반도체 박막 증착장비와 미세 패턴 기술을 사용했기 때문에 산업적인 측면에서 확장성이 높을 것으로 기대된다. 연구를 주도한 조용훈 교수는 "반도체 양자점을 제작하는 과정에서 발생하는 양자점의 비대칭성을 효과적으로 제어하여 양자점 내부의 미세 에너지 구조를 정교하게 조절할 수 있음을 보여준 결과”라며, “상온에서도 동작이 가능한 질소화합물 반도체 양자점을 이용해 편광얽힘 광자쌍 방출소자와 같은 차세대 양자광원 개발에 활용될 수 있을 것”이라고 의미를 말했다. 우리 대학 물리학과 여환섭 박사가 제1 저자로 참여한 이번 연구 결과는 삼성미래기술육성사업 등의 지원을 받아 수행됐으며, 나노분야 국제 학술지인 `나노 레터스(Nano Letters)' 12월 9일 字에 보충 표지와 함께 정식 출간됐다. (논문명: Control of 3-fold symmetric shape of group III-nitride quantum dots: Suppression of fine structure splitting / 질소화합물 반도체 양자점의 삼각 대칭적 모양 제어: 미세구조 분리현상의 완화)
2020.12.14
조회수 49846
수학 모델로 불안정한 수면 사이클 원인 밝혀
우리 대학 연구진이 수학적 모델을 이용해 세포질 혼잡을 유발하는 비만과 치매, 노화가 어떻게 불안정한 수면을 유발하는지를 밝히고 해결책을 제시했다. 수리과학과 김재경 교수 연구팀은 수학적 모델을 이용해 세포 내 분자 이동을 방해하는 세포질 혼잡(Cytoplasmic congestion)이 불안정한 일주기 리듬(Circadian rhythms)과 수면 사이클을 유발함을 예측하고, 미국 플로리다 주립대학 이주곤 교수 연구팀과 실험을 통해 검증하는 데 성공했다고 9일 밝혔다. 수리과학과 김대욱 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `미국국립과학원회보(PNAS)' 10월 26일 字 온라인판에 실렸다. (논문명 : Wake-sleep cycles are severely disrupted by diseases affecting cytoplasmic homeostasis) 우리 뇌 속에 있는 생체시계(Circadian clock)는 인간이 24시간 주기에 맞춰 살아갈 수 있도록 행동과 생리 작용을 조절하는 역할을 한다. 생체시계는 밤 9시경이 되면 우리 뇌 속에서 멜라토닌 호르몬의 분비를 유발해 일정 시간에 수면을 취할 수 있도록 하는 등 운동 능력이나 학습 능력에 이르기까지 거의 모든 생리 작용에 관여한다. 2017년 노벨생리의학상을 수상한 마이클 영, 제프리 홀 그리고 마이클 로스바쉬 교수는 *PER 단백질이 매일 일정한 시간에 세포핵 안으로 들어가 PER 유전자의 전사를 일정 시간에 스스로 억제하는 음성피드백 루프를 통해 24시간 주기의 리듬을 만드는 것이 생체시계의 핵심 원리임을 밝혔다. ☞ PER 단백질: 포유류의 일주기 리듬을 통제하는 핵심 생체시계 단백질이다. 세포질에서 번역(translation)된 PER 단백질은 핵 안으로 들어가 자기 자신의 DNA 전사(transcription)를 조절한다. 이로 인해 세포 내 PER 단백질의 농도는 24시간 주기로 변화한다. 하지만 다양한 물질이 존재하는 복잡한 세포 내 환경에서 어떻게 수천 개의 PER 단백질이 핵 안으로 일정한 시간에 들어갈 수 있는지는 오랫동안 생체시계 분야의 난제로 남아있었다. 이는 서울 각지에서 출발한 수천 명의 직원이 혼잡한 도로를 통과해서 매일 같은 시간에 회사에 들어갈 수 있는 방법을 찾는 것과도 같은 문제다. 김 교수 연구팀은 난제 해결을 위해 세포 내 분자의 움직임을 묘사하는 시공간적 확률론적 모형(Spatiotemporal Stochastic model)을 자체 개발했다. 또 이를 이용해 분석한 결과, PER 단백질이 세포핵 주변에서 충분히 응축돼야만 동시에 인산화돼 핵 안으로 함께 들어간다는 사실을 알아냈다. 김 교수는 "인산화 동기화 스위치 덕분에 수천 개의 PER 단백질이 일정한 시간에 함께 핵 안으로 들어가 안정적인 일주기 리듬을 만들어낼 수 있음을 확인했다ˮ고 설명했다. 김 교수팀은 또 PER 단백질의 핵 주변 응축을 방해하는 지방 액포와 같은 물질들이 세포 내에 과도하게 많아져 세포질이 혼잡해지면 인산화 스위치가 작동하지 않아 불안정한 일주기 리듬과 수면 사이클이 유발된다는 사실도 확인했다. 김재경 교수팀의 수리 모델 예측은 미국 플로리다 주립대학 이주곤 교수 팀과 협업을 통해 실험으로 검증하는 한편 한 발짝 더 나가 비만·치매·노화가 세포질 혼잡을 일으킴으로써 수면 사이클의 불안정을 가져오는 핵심 요인임을 규명하는 데도 성공했다. 세포질 혼잡 해소가 수면 질환 치료의 핵심이기 때문에 김 교수팀의 이번 연구는 수면 질환 치료의 새로운 패러다임을 제시했다는 점에서 큰 의미가 있다. 김재경 교수는 "비만과 치매, 그리고 노화가 불안정한 수면을 유발하는 원인을 수학과 생명과학의 융합 연구를 통해 밝힌 연구ˮ라고 소개하면서 "이번 성과를 통해 수면 질환의 새로운 치료법이 개발되기를 기대한다ˮ라고 말했다.
2020.11.09
조회수 38741
서양 미술사 빅데이터 분석으로 회화 속 구도 변화 규명
우리 대학 물리학과 정하웅 교수 연구팀이 충북대학교 물리학과 한승기 교수 연구팀과 공동연구를 통해 르네상스부터 동시대 미술에 이르기까지 약 500년에 걸친 풍경화 1만 5천여 점을 정보이론과 네트워크 이론으로 분석해 서양 미술사 속 풍경화의 구도와 구성 비율의 점진적 변화를 수치적으로 규명했다. 우리 대학 물리학과 이병휘 박사과정 학생과 충북대 서민경 학생이 주도한 이번 연구는 세계적인 학술지 ‘미국 국립과학원회보(Proceedings of the National Academy of Sciences of the USA, 이하 PNAS)’에 10월 117권 43호에 출판됬다. (논문명: Dissecting Landscape Art History with Information Theory, 정보이론으로 해부한 풍경화의 역사). 해당 논문은 PNAS의 In this issue 섹션에 이번 호의 대표 논문으로 선정되었고, 코멘터리와 함께 게재됐다. 화가는 그림을 그릴 때 선, 색, 형태, 모양 등 여러 가지 시각적 구성 요소들을 다양한 ‘구성 원리’를 바탕으로 조화로운 최종 작품을 완성한다. 미술사와 미학 연구자들은 작가들이 작품을 생성할 때 잠재적으로 적용한 구성 원리가 시대와 문화를 초월하는 공통적인 특징을 가지는지, 혹은 시대나 문화적 환경에 따라 어떻게 달라지는지 이해하고자 시도해왔다. 특별히 대표적인 구성 원리중 하나인 작품구도 속 사용된 ‘비례’와 ‘비율’은 미술사가들과 미학자들의 오랜 관심사였다. 역사적으로 많은 논란을 일으킨 사례로는 황금비(Golden ratio)가 있다. 기원전 300년 전 유클리드의 원론에 의해 처음 제시된 황금비는 1500년대 초 이탈리아의 수학자 루카 파치올리의 책을 통해 ‘신성한 비율’이라는 이름으로 대중적으로 소개되며 유명해졌다. 최근까지도 황금비의 미적 선호도에 관한 논란은 계속되어 왔는데, 파르테논 신전이나 밀로의 비너스 등 여러 아름다운 미술 작품 속에 황금비가 발견되었다는 대부분의 주장들은 오늘날 근거가 부족한 것으로 밝혀지고 있다. 그렇다면 미술사 속에서 화가들이 특별히 선호한 비율은 과연 존재했을까? 혹은 시대에 따라 선호한 비율은 어떻게 변해왔을까? 연구팀은 회화 속 색상의 공간적 배치를 특징짓는 정보이론적 분할 방법론을 적용해 서양 미술사 풍경화 역사 속에서 사용된 구도와 구성 비율을 수치화하는 방법을 제시했다. (그림1 참조) *두 가지 대규모 온라인 갤러리 로부터 16세기 르네상스 시대부터 20세기 미술까지 500년 이상의 시간에 걸친 서양 미술사 속 풍경화 1만 5천여 점을 수집하여 분석한 결과, 화가들이 선호한 거시적 작품 구도와 구성 비율이 시대에 따라 일정하거나 무작위적이지 않고, 점진적이고 체계적인 변화과정을 거쳐왔음을 확인했다. * 온라인 시각 예술 백과사전인 위키 아트(‘WikiArt’)와 헝가리 부다베스트 물리학 컴퓨터 네트워킹 연구센터에서 운영하는 온라인 갤러리인 웹 갤러리 오브 아트(‘Web Gallery of Art’)의 풍경화 데이터를 활용 연구팀은 먼저 정보이론적 분할 방법론을 이용해 풍경화 구도를 특징지었는데, 16세기부터 19세기 중반까지의 풍경화는 지배적인 수평 구조와 수직 구조가 함께 존재하는 ‘수평-수직’ 형태의 구도가 가장 빈번하게 사용되었으나, 시간이 흐를수록 전경-중경-후경과 같이 두 개의 수평 구조가 존재하는 ‘수평-수평’ 형태의 구도 사용이 점차 증가해 19세기 중반 이후부터는 ‘수평-수평’ 형태의 구도가 가장 지배적인 구도가 되었음을 확인했다. (그림 2 참조) 흥미롭게도 이러한 시간에 따른 구도 변화 패턴은 여러 국적에 걸쳐서도 유사하게 나타났다. 또한 연구팀은 색상 사용 패턴이 급격하게 달라지는 지배적인 수평선의 위치를 기반으로 시대와 작가별로 풍경 구도를 잡는데 자주 사용한 구성 비율을 측정했는데, 선호된 구성 비율은 시간에 따라 매우 점진적이고, 부드러운 변화 과정을 보였다. 작가들의 선호한 풍경화 속 지배적인 수평선은 바로크 시대 17세기 무렵 그림의 절반 아래에 해당하는 낮은 위치에서 발견되었으나, 그 후 점차 위쪽으로 움직여 19세기 이후에는 작품 위에서부터 1/3 지점에서 가장 많은 빈도로 발견됐다. 신기하게도 1/3 구성 비율을 가장 빈번하게 사용하는 특징은 다양한 현대 미술 주의(ism)에 걸쳐 유사하게 발견됐는데, 이러한 발견은 미술 양식의 폭발적인 다양성을 대표하는 현대 미술의 여러 주의들이 색채 사용과 표현 방법에선 다양성과 차별성을 추구했으나, 구도와 구성 비율의 관점에서는 유사한 사용 패턴을 보였다는 점에서 새로운 발견이다. 연구팀은 또한 네트워크 과학 방법론을 적용해 서로 유사한 구도를 적용한 작가들과 사조들로 이루어진 네트워크를 구축하여 분석했다. 이 작가-사조 네트워크는 크게 세 가지 거대 군집으로 구성돼 있었는데, 신기하게도 구도 사용의 유사성만을 바탕으로 한 작가들과 사조 속 군집은 시기적으로도 근접한 시기에 활동을 보인 작가들과 사조들로 이루어져 있었다. 이는 기존 알려진 개별 작가들의 생애와 개별 사조의 시간 범위를 초월하는 미술사 구도 양식 속 거대 군집이 있음을 시사한다. 정하웅 교수는 ‘이 같이 시대에 따른 깔끔하고 체계적인 서양 미술사 속 구도변화는 미술의 실제 역사의 모습을 반영하고 있을 수도 있지만, 동시에 높을 확률로 그동안 미술사가들과 비평가들에 의해 평가되고 정리돼 온 주류 미술사의 편향을 나타내고 있을 수 있음을 주의해야 한다’고 지적했다. 한편 이번 연구는 한국연구재단의 지원을 통해 수행됐다.
2020.11.02
조회수 31978
<<
첫번째페이지
<
이전 페이지
11
12
13
14
15
16
17
18
19
20
>
다음 페이지
>>
마지막 페이지 32