본문 바로가기 대메뉴 바로가기

research

Successful development and analysis of mesoporous quasicrystal structures​
View : 7585 Date : 2012-08-01 Writer : ed_news

Professor Osamu Terasaki’s research team from the EEWS Graduate School at KAIST successfully synthesized mesoporous quasicrystalline silica and developed a new method of analyzing its growth. The theory proposed by the team laid the foundation for the scientific examination of quasicrystal phenomena during the formation of micelles particles, a type of soft matter. The paper was published in the July edition of Nature magazine.

Scientists have faced difficulty in systematically explaining the mesoporous quasicrystal structures that are found in solidified versions of soft matter systems. However, the theoretical foundation from this research is expected to help promote the research and development of new nano-structured materials.

Mesoporous quaicrystals are soft matters that have high symmetry and a larger characteristic length scale than the nanoscale, thereby making it possible to develop materials that have controllable optical properties. This technology can be applied to the sustainable storage, use, and reproduction of energy.

Professor Terasaki’s team succeeded in synthesizing mesoporous quasicrystalline silica and proved the formation of dodecagonal column-shaped crystals as well as dodecagonal, rotationally symmetric electron diffraction patterns near the crystals using Transmission Electron Microscopy. 

Quasicrystals are an abbreviation of ‘quasiperiodic crystals’ and have what is called the ‘third solid’ property; they have a structural arrangement that is between arranged crystal structures, such as metals, and non-crystalline structures, such as glass. This crystalline structure was only recently found, and the 2011 Nobel Chemistry Award was given to research in this field.

When porous materials are synthesized into quasicrystals, the crystalline structures of the pores can be designed and controlled in any way, making it possible to create new materials for a wide range of fields.

Professor Terasaki said that ‘The discovery of highly symmetric quasicrystals can lead to the alteration of a material’s optical properties, allowing the development of photonic crystals in the visible spectra.’ He also explained that this control of a material’s optical energy absorption could be the core technology behind energy harvesting.

This research was jointly conducted by Professor Terasaki from the EEWS Graduate School at KAIST and Stockholm University in Sweden.
 

Releated news
  • No Data