본문 바로가기
대메뉴 바로가기
KAIST
Newsletter Vol.25
Receive KAIST news by email!
View
Subscribe
Close
Type your e-mail address here.
Subscribe
Close
KAIST
NEWS
유틸열기
홈페이지 통합검색
-
검색
KOREAN
메뉴 열기
ICA
by recently order
by view order
MOU between KAIST and Sun Medical Center on "Mobile Health Care"
KAIST and Sun Medical Center signed a memorandum of understanding (MOU) in front of 20 attendees including KAIST President Steve Kang and Sun Medical Center Director Seung-Hoon Sun on June 9 at KAIST to expand medical services through medical and electronic telecommunication technology. The two organizations will cooperate on the research and development of mobile healthcare, systems for the medical industry, remote medical treatment for overseas patients, and working toward improving national healthcare. The two parties will also develop wearable devices and mobile sensors which will become a welcome addition to the global healthcare market. KAIST President Steve Kang explained, “With Sun Medical Center’s 50 years of experience in medical technology and KAIST’s World University Ranking of 20th in information technology, a new brainchild in the mobile healthcare field will be produced.” In the meantime, KAIST’s College of Information Science and Technology is making developments in mobile healthcare systems which can accumulate medical information and apply it to medical services by using personal bio-information data. Ambitious new projects are underway, such as the “Dr. M Project“ which launched in March with 28 full-time researchers.
2014.06.14
View 7041
KAIST Featured in the 2014 QS Showcase-AMEA (Asia, Middle East, and Africa)
The QS World University Rankings has released the fourth Edition of QS Showcase-AMEA (Asia, Middle East, and Africa) in January 2014, both in print and online, which is an annual magazine presenting the progress of the top universities in these regions, as well as highlighting their breakthroughs and improvements. The 2014 QS Showcase-AMEA included an interview with President Steve Kang, covering KAIST and its role in Korea, student mobility, as well as Korean higher education. For the interview, please go to: http://qsshowcase.com/main/korea-casts-its-net-more-widely-to-stay-on-top/ .
2014.06.07
View 6711
An Exploratory Study on Smartphone Abuse among College Students
Professor Uichin Lee Professor Uichin Lee of the Department of Knowledge Service Engineering, KAIST, and his research team developed a system that automatically diagnoses the levels of smartphone addiction based on an analysis of smartphone use records. Professor Lee investigated the usage patterns of 95 smartphone users (college students) by conducting surveys and interviews and collecting logged data. The research team divided participants into “risk” and “non-risk” groups based on a self-reported rating scale to evaluate their abuse of smartphones. As a result, 36 students were categorized as “high risk” and 59 were categorized as “low risk.” The researchers collected over 50,000 hours of smartphone use encompassing power levels, screen, battery status, application use, internet use, calling, and texting. The results showed that the “high risk” group used only 1~2 applications, focusing on mobile messengers (Kakotalk, etc.) and SNS (Facebook, etc.). In addition, a relationship was found between alarm function and addiction levels. Users who set alarms for Kakaotalk messages and SNS comments used smartphones for an additional 38 minutes per day on average. Results also showed that “high risk” students were on their smartphones for 4 hours and 13 minutes per day, 46 minutes longer than “low risk” students who used smartphones for 3 hours and 27 minutes. The difference was prevalent during 6 am and noon, and 6pm and midnight. In addition, “high risk” students accessed their smartphones 11.4 times more than “low risk” students. Based on the collected data, Professor Lee developed an automatic system that distinguished users into “high risk” or “low risk” categories with 80% accuracy. The new system is expected to give an early diagnosis of addiction to smartphone users, thereby allowing for early treatment and intervention before the user becomes addicted. Professor Lee commented that, "the conventional addiction analysis based on self-analysis surveys did not provide real-time data and were largely inaccurate. The new system overcomes these limitations through data science and personal big data analysis" and that he is "developing an application that monitors smartphone abuse." Figure 1. Usage amount: overall and application-specific results Figure 2. Usage frequency: overall and application-specific results Figure 3. Overall diurnal usage time and frequency
2014.06.05
View 7123
Professor YongKeun Park Produces Undergraduate Students with International Achievements
Three undergraduate students under the supervision of Professor YongKeun Park from the Department of Physics, KAIST, have published papers in globally renowned academic journals. The most recent publication was made by YoungJu Jo, a senior in physics. Jo’s paper entitled “Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering” was published in the May 28th edition of Scientific Reports. Analyzing bacteria is a very important task in the field of health and food hygiene, but using the conventional biochemical methods of analysis takes days. However, observation with Jo’s newly developed method using light scattering analyzes bacteria within a matter of seconds. SangYeon Cho from the Department of Chemistry also published papers in Cell (2012) and Nature (2013), respectively, under the guidance of Professor Park. SangYeon Cho’s outstanding research achievements were recognized by Harvard and MIT. He was accepted with a full scholarship to Harvard-MIT Health Sciences and Technology Graduate School. He will begin his graduate studies at Harvard-MIT this September. Last March, SeoEun Lee from the Department of Biology was the recipient of the Best Paper Award by the Optical Society of Korea. She plans to pursue a doctoral degree at the College of Physicians and Surgeons, Columbia University in New York. Professor Park said, “Undergraduate students, who are learning a variety of subjects concurrently, are at the most creative time of their lives. KAIST has offered many opportunities to undergraduate students to partake in various research programs.” - Picture (a) and (b): Rod-shaped bacteria’s phase image and light-scattering patterns - Picture (c): Quantitative analysis to illustrate the extraction of information from bacteria
2014.06.03
View 11340
Discovery Channel Featured "TransWall" Developed by Professor Woohun Lee
One of the most popular television programs at Discovery Channel in Canada, Daily Planet, a daily science magazine show that delivers a fascinating mix of documentaries and features, aired "TransWall” (http://vimeo.com/70391422) developed by Professor Woohun Lee of Industrial Design at KAIST. TransWall is a two-sided touchable transparent display with a surface transducer incorporated in the display. It enables users to see, hear, or even touch people standing on the other side of the display, thereby enhancing interactive experiences when playing games or communicating. TransWall was introduced at the 2014 ACM (Association for Computing Machinery) Conference on Human Factors in Computing Systems (CHI) held in Toronto, Canada, from April 26 to May 1. The Channel learned about the technology at the conference and produced the show on April 30, 2014. To watch the show, please visit: http://www.youtube.com/watch?v=5GGP59S7T2k&list=PLXmuftxI6pTXuyjjrGFlcN5YFTKZinDhK.
2014.05.29
View 8838
KAIST leaps to 2nd place in 2014 QS Asian University Rankings
The highest record ever made by a Korean university since the rankings were published in 2009 KAIST jumped four places to rank #2 from #6 last year, following the National University of Singapore In the "2014 Quacquarelli Symonds (QS) University Rankings: Asia," KAIST advanced four places compared to 2013 and was ranked 2nd best university in Asia. QS, an English institution for global university evaluation, and Chosun Newspaper, a leading daily newspaper in Korea, announced the results of the QS Asia University Rankings on April 12th. The result was a record high for a Korean University since the start of annual rankings in 2009. KAIST has consistently ranked within the top ten, ranking 7th in 2009 and 2012, and 6th in 2013. The sudden jump from the 6th to the 2nd place was attributed to the increase in the number of published papers per professor and the number of citations per paper. In particular, KAIST received high marks for research contributions, which shows that the young faculty members hired since 2006 is now becoming very productive. For details regarding the 2014 QS University Rankings: Asia, please visit http://www.topuniversities.com/university-rankings-articles/asian-university-rankings/top-10-universities-asia-2014. President Steve Kang of KAIST commented, “We are reaping the rewards of recruiting some of the most promising young professors. KAIST will continue its development towards becoming one of the top ten universities in the world.” The QS Asia University Rankings have evaluated higher education institutions of Asia for the past six years. It evaluates 491 universities across 17 nations. Criterion for evaluation includes academic evaluation (30%), number of published papers per staff (15%), citation frequency (15%), number of students per staff (20%), alumni reputation, and internationalization (10%). Please also refer to the Korean-American Science and Technology News (KASTN), dated June 4, 2014, for further information on the rankings. Another Rankings, Pages 4-5 Chosun Ilbo, May 12, 2014 “Chosun-QS Rankings” KAIST Soars to 2nd Place in Asian Rakings http://www.phy.duke.edu/~myhan/b_14-12.pdf
2014.05.14
View 12877
SPIE (The International Society for Optics and Photonics): Scattering Super-lens
The International Society for Optics and Photonics (SPIE), dedicated to advancing an interdisciplinary approach to the science and application of light, published online a short paper authored by a KAIST research team, Dr. Jung-Hoon Park and Professor YongKeun Park of Physics, introducing a new optical technology to observe sub-wavelength light by exploiting multiple light scattering in complex media. For the article, please go to the link below: SPIE: Nanotechnology May 7th, 2014 "Scattering superlens" by Jung-Hoon Park and YongKeun Park http://spie.org/x108298.xml
2014.05.14
View 6715
Yong-Joon Park, doctoral student, receives the Korea Dow Chemical Award 2014
Yong-Joon Park, a Ph.D. candidate of Materials Science and Engineering at KAIST, received the Korea Dow Chemical Award 2014, a prestigious recognition of the year’s best paper produced by students in the field of chemistry and materials science. The award ceremony took place on April 18, 2014 at Ilsan Kintex, Republic of Korea. The Korea Dow Chemical Award is annually given by Korea Dow Chemical and the Korean Chemical Society to outstanding papers produced by graduate and postdoc students. This year, a total of nine papers were selected out of 148 papers submitted. The title of Park’s paper is “The Development of 3D Nano-structure-based New Concept Super-elastic Materials.” This material could be used in flexible electronic devices such as displays and wearable computers.
2014.05.03
View 8079
Binding Regulatory Mechanism of Protein Biomolecules Revealed
Professor Hak-Sung Kim A research team led by Professor Hak-Sung Kim of Biological Sciences, KAIST, and Dr. Mun-Hyeong Seo, KAIST, has revealed a regulatory mechanism that controls the binding affinity of protein’s biomolecules, which is crucial for the protein to recognize molecules and carry out functions within the body. The research results were published in the April 24th online edition of Nature Communications. The protein, represented by enzyme, antibody, or hormones, specifically recognizes a variety of biomolecules in all organisms and implements signaling or immune response to precisely adjust and maintain important biological processes. The protein binding affinity of biomolecules plays a crucial role in determining the duration of the bond between two molecules, and hence to determine and control the in-vivo function of proteins. The researchers have noted that, during the process of proteins’ recognizing biomolecules, the protein binding affinity of biomolecules is closely linked not only to the size of non-covalent interaction between two molecules, but also to the unique kinetic properties of proteins. To identify the basic mechanism that determines the protein binding affinity of biomolecules, Professor Kim and his research team have made mutation in the allosteric site of protein to create a variety of mutant proteins with the same chemical binding surface, but with the binding affinity vastly differing from 10 to 100 times. The allosteric site of the protein refers to a region which does not directly bind with biomolecules, but crucially influences the biomolecule recognition site. Using real-time analysis at the single-molecule level of unique kinetic properties of the produced mutant proteins, the researchers were able to identify that the protein binding affinity of biomolecules is directly associated with the protein’s specific kinetic characteristics, its structure opening rate. Also, by proving that unique characteristics of the protein can be changed at the allosteric site, instead of protein’s direct binding site with biomolecules, the researchers have demonstrated a new methodology of regulating the in-vivo function of proteins. The researchers expect that these results will contribute greatly to a deeper understanding of protein’s nature that governs various life phenomena and help evaluate the proof of interpreting protein binding affinity of biomolecules from the perspective of protein kinetics. Professor Kim said, “Until now, the protein binding affinity of biomolecules was determined by a direct interaction between two molecules. Our research has identified an important fact that the structure opening rate of proteins also plays a crucial role in determining their binding affinity.” [Picture] A correlation graph of opening rate (kopening) and binding affinity (kd) between protein’s stable, open state and its unstable, partially closed state.
2014.05.02
View 9313
Hidden Mechanism for the Suppression of Colon Cancer Identified
Published in Cell Reports : cells at the risk of causing colorectal cancer due to genetic mutation are discharged outside the colon tissue Korean researchers have successfully identified the cancer inhibitory mechanism of the colon tissue. The discovery of the inherent defense mechanism of the colon tissues is expected to provide understanding of the cause of colorectal cancer. The research was led by Kwang-Hyun Cho, a professor of Bio and Brain Engineering at KAIST (corresponding author) and participated by Dr. Jehun Song (the first author), as well as Dr. Owen Sansom, David Huels, and Rachel Ridgway from the Beatson Institute for Cancer Research in the UK and Dr. Walter Kolch from Conway Institute in Ireland. The research was funded by the Ministry of Science, ICT and Future Planning and the National Research Foundation of Korea, and its results were published in the 28th March online edition of Cell Reports under the title of “The APC network regulates the removal of mutated cells from colonic crypts.” The organism can repair damaged tissues by itself, but genetic mutations, which may cause cancer, can occur in the process of cell division s for the repair. The rapid cell division s and toxic substances from the digestive process cause a problem especially in colon crypt that has a high probability for genetic mutation. The research team was able to find out that the colon tissues prevent cancer by rapidly discharging carcinogenic cells with genetic mutations from the colon crypt durin ga frequent tissue repair process. This defense mechanism, which inhibits abnormal cell division s by reducing the time mutated cells reside in the crypt, is inherent in the colon. Extensive mathematical simulation results show that the mutated cells with enhanced Wnt signaling acquire increased adhesion in comparison to the normal cells, which therefore move rapidly toward the upper part of the crypt and are discharged more easily. If beta-catenine, the key factor in Wnt signal transduction pathway, is not degraded due to genetic mutation, the accumulated beta-catenine activates cell proliferation and increases cell adhesion. The special environment of crypt tissue and the tendency of the cells with similar adhesion to aggregate will therefore discharge the mutated cell, hence maintaining the tissue homeostasis. In vivo experiment with a mouse model confirms the simulation results that, in the case of abnormal crypt, the cells with high proliferation in fact move slower. Professor Cho said, “This research has identified that multicellular organism is exquisitely designed to maintain the tissue homeostasis despite abnormal cell mutation. This also proves the systems biology research, which is a convergence of information technology and bio-technology , can discover hidden mechanisms behind complex biological phenomena.” Crypt: Epithelium, consisting of approximately 2,000 cells, forms a colon surface in the shape of a cave. Wnt Signaling: A signal transduction pathway involved in the proliferation and differentiation of cells that are particularly important for the embryonic development and management of adult tissue homeostasis.
2014.04.17
View 11208
An Electron Cloud Distribution Observed by the Scanning Seebeck Microscope
All matters are made of small particles, namely atoms. An atom is composed of a heavy nucleus and cloud-like, extremely light electrons. Korean researchers developed an electron microscopy technique that enables the accurate observation of an electron cloud distribution at room-temperature. The achievement is comparable to the invention of the quantum tunneling microscopy technique developed 33 years ago. Professor Yong-Hyun Kim of the Graduate School of Nanoscience and Technology at KAIST and Dr. Ho-Gi Yeo of the Korea Research Institute of Standards and Science (KRISS) developed the Scanning Seebeck Microscope (SSM). The SSM renders clear images of atoms, as well as an electron cloud distribution. This was achieved by creating a voltage difference via a temperature gradient. The development was introduced in the online edition of Physical Review Letters (April 2014), a prestigious journal published by the American Institute of Physics. The SSM is expected to be economically competitive as it gives high resolution images at an atomic scale even for graphene and semiconductors, both at room temperature. In addition, if the SSM is applied to thermoelectric material research, it will contribute to the development of high-efficiency thermoelectric materials. Through numerous hypotheses and experiments, scientists now believe that there exists an electron cloud surrounding a nucleus. IBM's Scanning Tunneling Microscope (STM) was the first to observe the electron cloud and has remained as the only technique to this day. The developers of IBM microscope, Dr. Gerd Binnig and Dr. Heinrich Rohrer, were awarded the 1986 Nobel Prize in Physics. There still remains a downside to the STM technique, however: it required high precision and extreme low temperature and vibration. The application of voltage also affects the electron cloud, resulting in a distorted image. The KAIST research team adopted a different approach by using the Seebeck effect which refers to the voltage generation due to a temperature gradient between two materials. The team placed an observation sample (graphene) at room temperature (37~57℃) and detected its voltage generation. This technique made it possible to observe an electron cloud at room temperature. Furthermore, the research team investigated the theoretical quantum mechanics behind the electron cloud using the observation gained through the Seebeck effect and also obtained by simulation capability to analyze the experimental results. The research was a joint research project between KAIST Professor Yong-Hyun Kim and KRISS researcher Dr. Ho-Gi Yeo. Eui-Seop Lee, a Ph.D. candidate of KAIST, and KRISS researcher Dr. Sang-Hui Cho also participated. The Ministry of Science, ICT, and Future Planning, the Global Frontier Initiative, and the Disruptive Convergent Technology Development Initiative funded the project in Korea. Picture 1: Schematic Diagram of the Scanning Seebeck Microscope (SSM) Picture 2: Electron cloud distribution observed by SSM at room temperature Picture 3: Professor Yong-Hyun Kim
2014.04.04
View 12936
Press release from the Association to Advance Collegiate Schools of Business (AACSB International): Eighty-five business schools extend their AACSB accreditation in business or accounting
The Association to Advance Collegiate Schools of Business (AACSB International) released a news announcement on April 1, 2014, saying that 85 business schools around the world extended their AACSB accreditation in business or accounting. KAIST is one of the 85 schools which is renewing its business accreditation for another five years. Founded in 1916, AACSB International is a global accrediting organization for business schools that offer undergraduate, master’s, and doctorate degrees in business and accounting. The release said, “AACSB Accreditation is the hallmark of excellence in business education and has been earned by less than five percent of the world’s business schools. Today, there are 694 business schools in 45 countries and territories that have earned the accreditation.” For the entirety of the release, please go to: http://www.aacsb.edu/en/newsroom/2014/4/eighty-five-b-schools-extend-accreditation/
2014.04.02
View 6131
<<
첫번째페이지
<
이전 페이지
21
22
23
24
25
26
27
28
29
30
>
다음 페이지
>>
마지막 페이지 52