-
드림워크 개발 명현 교수, 올해의 KAIST인 상 수상
우리 대학이 '올해의 KAIST인 상' 수상자로 명현 전기및전자공학부 교수를 선정했다. '올해의 KAIST인 상'은 탁월한 학술 및 연구 실적으로 국내‧외에서 KAIST의 발전을 위해 노력한 구성원에게 수여하는 상으로 지난 2001년에 처음 제정됐다. 23번째 수상자로 선정된 명현 교수는 지난 한 해 동안 로봇 자율보행 신기술 '드림워크(DreamWaQ)' 개발 및 국제 대회에서 우승한 실적과 3D 위치인식 및 맵작성(SLAM) 등의 신기술을 개발한 공로를 인정받았다.
'드림워크(DreamWaQ)'란 별도의 시각이나 촉각 센서의 도움 없이 계단도 성큼 오를 수 있는 보행로봇 제어기다. 이를 장착한 명현 교수 연구팀의 자율보행로봇은 '국제 사족보행 로봇 자율보행 경진대회'에서 MIT 등 세계 유수 대학 소속팀과 경쟁해 4배 이상의 점수를 획득하는 압도적 실력을 선보이며 우승했다. 또한, 대회에서 함께 사용된 주변 환경 인지 및 경로 탐색 기술도 독자적으로 개발했다. 명현 교수는 "저희 연구실에는 창의적이고 공익적인 로봇 기술 개발, 도전의 가치를 되새길 수 있는 경진대회 출전, 영향력 있는 논문 쓰기라는 연구 방향이 있다"라고 전했다. 이어, 명 교수는 "앞으로도 이 세 가지 방향에 더욱 매진하며 연구하고, 부족한 지도교수를 따라준 훌륭한 학생들과 저를 위해 희생해 준 가족들, 그리고 학교 관계자들에게 감사드린다"라고 소감을 밝혔다.'올해의 KAIST인 상' 시상식은 14일 오전 열리는 KAIST의 개교 53주년 기념식에서 진행된다. 이날 기념식에서는 교육, 학술, 국제협력 성과가 탁월하거나 KAIST의 위상에 크게 공헌한 총 39명의 교원에게도 특별 포상이 진행된다. 정원석 생명과학과 교수는 세계 뇌 질환 연구의 중심으로 손꼽히는 뇌 면역 관련 분야에서 창의적인 연구를 수행해 '학술대상'을 수상한다. 정 교수는 뇌 면역을 담당하는 별아교세포와 미세아교세포에 존재하는 면역 관련 분자의 기전과 그 조절 방식이 서로 상이함을 발견하는 등 획기적인 연구 성과를 거듭 달성한 점을 높이 평가받았다. '창의강의대상'은 콘테스트 기반 생명실험교육법을 최초로 개발해 학생들의 자기 주도적인 학습을 이끌어낸 박영균 바이오및뇌공학과 교수가 수상한다. 함자 쿠르트(Hamza Kurt) 전기및전자공학부 교수는 KAIST 교육에 대한 학생들의 만족도와 자부심을 크게 높인 것으로 평가받아 '우수강의대상'을 받는다. '공적대상'은 이창양 경영공학부 교수가 수상한다. 이 교수는 제20대 대통령직 인수위원회 경제 2분과 간사로 임명돼 정부의 산업, 국토, 농림 등 실물 부문 정책의 틀을 만드는 데 주도적인 역할을 했다. 또한, 제6대 산업통상자원부 장관으로 임명되어, 산업, 통상 및 에너지 등 실물 경제를 총괄해 학교의 위상을 강화한 공로다. 윤윤진 건설및환경공학과 교수는 '국제협력대상'을 받는다. UN·세계경제포럼 등에서 지정한 해양 탄소중립분야의 글로벌 어젠다 대응 연구개발 과정에서 새로운 국제 융합연구 기반을 확대하는 동시에 KAIST의 글로벌 기술 역량을 증진한 점을 높게 평가받았다.이광형 총장은 "도전과 혁신을 바탕으로 여러 분야에서 탁월한 학술 및 연구 실적을 보여주고 있는 구성원들의 노력이 KAIST가 세계 10위권 대학의 꿈을 향해 쉬지 않고 정진할 수 있는 원동력"이라고 말하며, "오늘 수상자를 포함해 함께 성과를 만들어 준 모든 구성원이 다 같이 기뻐하고 축하하며 서로를 격려하는 날이 되길 바란다"라고 전했다.
2024.02.14
조회수 2353
-
드림워커, 안 보고도 계단을 성큼성큼 걷다
연기가 자욱해 앞이 안보이는 재난 상황에서 별도의 시각이나 촉각 센서의 도움 없이 계단을 오르내리고 나무뿌리와 같은 울퉁불퉁한 환경 등에서 넘어지지 않고 움직이는 사족보행 로봇 기술이 국내 연구진에 의해 개발됐다.
우리 대학 전기및전자공학부 명현 교수 연구팀(미래도시 로봇연구실)이 다양한 비정형 환경에서도 강인한 `블라인드 보행(blind locomotion)'을 가능케 하는 보행 로봇 제어 기술을 개발했다고 29일 밝혔다.
연구팀은 사람이 수면 중 깨어서 깜깜한 상태에서 화장실을 갈 때 시각적인 도움이 거의 없이 보행이 가능한 것처럼, 블라인드 보행이 가능하다고 해서 붙여진 ‘드림워크(DreamWaQ)’기술을 개발하였고 이 기술이 적용된 로봇을 ‘드림워커(DreamWaQer)’라고 명명했다. 즉 이 기술을 탑재하면 다양한 형태의 사족보행 로봇 드림워커를 만들어낼 수 있게 되는 것이다.
기존 보행 로봇 제어기는 기구학 또는 동역학 모델을 기반으로 한다. 이를 모델 기반 제어 방식이라고 표현하는데, 특히 야지와 같은 비정형 환경에서 안정적인 보행을 하기 위해서는 모델의 특징 정보를 더욱 빠르게 얻을 수 있어야 한다. 그러나 이는 주변 환경의 인지 능력에 많이 의존하는 모습을 보여 왔다.
이에 비해, 명현 교수 연구팀이 개발한 인공지능 학습 방법 중 하나인 심층 강화학습 기반의 제어기는 시뮬레이터로부터 얻어진 다양한 환경의 데이터를 통해 보행 로봇의 각 모터에 적절한 제어 명령을 빠르게 계산해 줄 수 있다. 시뮬레이션에서 학습된 제어기가 실제 로봇에서 잘 작동하려면 별도의 튜닝 과정이 필요했다면, 연구팀이 개발한 제어기는 별도의 튜닝을 요구하지 않는다는 장점도 있어 다양한 보행 로봇에 쉽게 적용될 수 있을 것으로 기대된다.
연구팀이 개발한 제어기인 드림워크는 크게 지면과 로봇의 정보를 추정하는 상황(context) 추정 네트워크와 제어 명령을 산출하는 정책(policy) 네트워크로 구성된다. 상황추정 네트워크는 관성 정보와 관절 정보들을 통해 암시적으로 지면의 정보를, 명시적으로 로봇의 상태를 추정한다. 이 정보는 정책 네트워크에 입력돼 최적의 제어 명령을 산출하는 데 사용된다. 두 네트워크는 시뮬레이션에서 함께 학습된다.
상황추정 네트워크는 지도학습을 통해 학습되는 반면, 정책 네트워크는 심층 강화학습 방법론인 행동자-비평자(actor-critic) 방식을 통해 학습된다. 행동자 네트워크는 주변 지형 정보를 오직 암시적으로 추정할 수 있다. 시뮬레이션에서는 주변 지형 정보를 알 수 있는데, 지형 정보를 알고 있는 비평자 네트워크가 행동자 네트워크의 정책을 평가한다.
이 모든 학습 과정에는 단 1시간 정도만 소요되며, 실제 로봇에는 학습된 행동자 네트워크만 탑재된다. 주변 지형을 보지 않고도, 오직 로봇 내부의 관성 센서(IMU)와 관절 각도의 측정치를 활용해 시뮬레이션에서 학습한 다양한 환경 중 어느 환경과 유사한지 상상하는 과정을 거친다. 갑자기 계단과 같은 단차를 맞이하는 경우, 발이 단차에 닿기 전까지는 알 수 없지만 발이 닿는 순간 빠르게 지형 정보를 상상한다. 그리고 이렇게 추측된 지형 정보에 알맞은 제어 명령을 각 모터에 전달해 재빠른 적응 보행이 가능하다.
드림워커(DreamWaQer) 로봇은 실험실 환경뿐 아니라, 연석과 과속방지턱이 많은 대학 캠퍼스 환경, 나무뿌리와 자갈이 많은 야지 환경 등에서 보행 시 지면으로부터 몸체까지 높이의 3분의 2 (2/3) 정도의 계단 등을 극복함으로써 강인한 성능을 입증했다. 또한 환경과 무관하게, 0.3m/s의 느린 속도부터 1.0m/s의 다소 빠른 속도까지도 안정적인 보행이 가능함을 연구팀은 확인했다.
이번 연구 결과는 이 마데 아스윈 나렌드라(I Made Aswin Nahrendra) 박사과정이 제1 저자로, 유병호 박사과정이 공동 저자로 참여했으며, 오는 5월 말 영국 런던에서 개최되는 로보틱스 분야의 세계 최고 권위 학회인 ICRA(IEEE International Conference on Robotics and Automation)에 채택되어 발표될 예정이다. (논문명: DreamWaQ: Learning Robust Quadrupedal Locomotion With Implicit Terrain Imagination via Deep Reinforcement Learning)
개발된 드림워크를 탑재한 보행 로봇 드림워커의 구동 및 보행 영상은 아래 주소에서 확인할 수 있다.
메인 영상: https://youtu.be/JC1_bnTxPiQ
쿠키 영상: https://youtu.be/mhUUZVbeDA0
한편, 이번 연구는 산업통상자원부 로봇산업핵심기술개발 사업의 지원을 받아 수행되었다. (과제명: 동적, 비정형 환경에서의 보행 로봇의 자율이동을 위한 이동지능 SW 개발 및 실현장 적용)
2023.03.29
조회수 6699