본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%B6%A9%EB%B0%A9%EC%A0%84
최신순
조회순
인공지능으로 배터리 원소, 충방전 상태 인식
국제공동연구진이 인공지능 학습을 통해 배터리의 표면 형상만 보고 각 원소의 함량 그리고 충·방전 횟수에 대한 정보를 높은 정확도로 알아내는 영상인식 기술을 개발하여 화제다. 우리 대학 신소재공학과 홍승범 교수가 한국전자통신연구원(ETRI), 미국 드렉셀대학과 공동연구를 통해 다양한 조성과 각기 다른 충·방전 사이클의 NCM 양극재 주사전자현미경 사진을 합성곱 신경망* 기반 인공지능에 학습시켜 주요 원소 함량과 충·방전 상태를 99.6%의 높은 정확도로 맞추는 방법론을 세계 최초로 개발했다고 2일 밝혔다. *합성곱 신경망(콘볼루션 신경망, Convolutional Neural Network, CNN): 시각적 영상을 분석하는 데 사용되는 다층의 피드-포워드적인 인공신경망의 한 종류이다. 연구팀은 반도체 공정에서는 웨이퍼의 불량 검수를 위해 주사전자현미경(SEM)을 사용하는 반면 배터리 공정에서는 그런 경우가 드물고 연구 현장에서만 입자의 크기 분석을 위해 SEM을 활용하고, 열화된 배터리 소재의 경우 입자가 깨지고 부서지는 형상으로부터 신뢰성을 예측하는 것에 착안했다. 연구팀은 반도체 공정에서와 같이 배터리 공정도 자동화된 SEM으로 양극재 표면을 검수해서 원하는 조성대로 합성이 되었는지 수명은 신뢰성 있게 나올 것인지를 확인해 불량률을 줄일 수 있다면 획기적일 것으로 판단했다. 연구진은 자율주행차에 적용가능한 합성곱 신경망 기반 인공지능에 배터리 소재의 표면 영상을 학습시켜서 양극재의 주 원소 함량과 충·방전 사이클 상태를 예측할 수 있게 했다. 이런 방법론이 첨가제가 들어간 양극재에도 적용가능한 지 확인한 결과 함량은 상당히 정확하게 예측하는 반면 충·방전 상태는 정확도가 낮다는 단점을 알게 됐다. 이에 연구팀은 향후 다양한 공정을 통해서 만든 배터리 소재의 형상을 학습시켜 차세대 배터리의 조성 균일성 검수 및 수명 예측에 활용할 계획이다. 연구를 이끈 홍승범 교수는 “이번 연구는 세계 최초로 마이크론 스케일의 주사전자현미경 사진의 소재 구조 데이터를 통해 주 원소 함량과 충·방전 상태를 빠르고 정확하게 예측할 수 있는 인공지능 기반 방법론을 개발한 데 의의가 있고 이번 연구에서 개발된 현미경 영상 기반 배터리 소재의 함량 및 상태 감별 방법론은 향후 배터리 소재의 성능과 품질을 향상하는 데 중요한 역할을 하게 될 것으로 기대된다”고 전망했다. 한편, 이번 연구는 공동 제1 저자인 신소재공학과 졸업생 오지민 박사와 염지원 박사와 공동저자인 ETRI 김광만 박사와 미국 드렉셀 대학교 아가르(Agar) 교수가 참여하였고, 한국연구재단(2020M3H4A3081880, RS-2023-00247245), KAIST 글로벌특이점 사업의 지원 및 미국 연구진과의 국제공동연구를 통해 수행됐으며, 국제 학술지 ‘엔피제이 컴퓨테이셔날 머티리얼즈(npj computational materials)’에 지난 5월 4일 자 출판됐다. (논문 제목: Composition and state prediction of lithium-ion cathode via convolutional neural network trained on scanning electron microscopy images)
2024.07.02
조회수 1746
중대형 이차전지 전극 재료 개발
우리 학교 EEWS 대학원 윌리엄 고다드(William Goddard III) 교수, 정유성 교수, 최장욱 교수 공동연구팀은 고전압에서 구동하고 1000사이클 이상 안정하게 충방전이 가능한 새로운 나트륨 이차전지의 양극을 개발해 미국한림회보 (PNAS) 2013년 12월 30일자 온라인판에 게재됐다. 나트륨 이차전지는 현재 흔하게 쓰이고 있는 리튬이차전지의 차세대 개념으로서 원재료의 가격이 30~40배 가량 낮아, 스마트 그리드용 에너지 저장 수단으로 관심을 받고 있다. 그러나 현재까지 대부분의 나트륨 전지용 전극 재료는 리튬 이온에 비해 큰 나트륨 이온의 특징으로 인해 충방전 거동이 불안정하고, 전압이 명확하게 나타나지 않는 문제를 극복하지 못했다. 이번 연구에서 공동연구팀은 이러한 한계를 뛰어넘은 바나듐 기반의 전극을 개발했다. 특히, 이번 연구에서는 전극 재료를 디자인하고, 전기화학적 특성을 이해하는데 이론 연구가 결정적 역할을 하여, 차세대 이차전지 연구에 이론 연구의 중요성을 보여주는 선례로 자리잡을 것으로 기대된다. 이는 또한 전세계적으로 진행되고 있는 "소재 지놈 이니셔티브(materials genome initiative)"와 같이 이론 연구가 다양한 분야의 재료 발굴에 핵심적 기능을 할 수 있음을 증명하는 것이어서, 재료 연구에서의 확대되고 있는 이론 연구의 역할을 반영한다. 연구팀은 나트륨 이차전지 분야가 아직은 초기단계에 있지만, 이론과 실험을 접목한 연구를 지속하여 해당 분야의 성숙도를 높이는 것이 후속 연구의 목표라고 밝혔다
2014.01.03
조회수 14297
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1