본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%B4%88%EA%B3%A0%EA%B0%90%EB%8F%84
최신순
조회순
실내 조명 활용해 최고 수준 이산화질소 감지 가능
우리 연구진이 기존까지 전무했던 녹색빛을 가스 센서에 조사하여 상온에서 최고 수준의 이산화질소 감지 성능을 보이는 것을 확인했다. 이를 통해 녹색광이 50% 이상 포함된 실내조명을 통해서도 작동이 가능한 초고감도 상온 가스 센서를 개발했다. 우리 대학 신소재공학과 김일두 교수 연구팀이 가시광을 활용해 상온에서도 초고감도로 이산화질소(NO2)를 감지할 수 있는 가스 센서를 개발했다고 10일 밝혔다. 금속산화물 반도체 기반 저항 변화식 가스 센서는 가스 반응을 위해 300 oC 이상 가열이 필요해 상온 측정에 한계가 있었다. 이를 극복하기 위한 대안으로 최근 금속산화물 기반 광활성 방식 가스 센서가 크게 주목받고 있으나, 기존 연구는 인체에 유해한 자외선 내지는 근자외선 영역의 빛을 활용하는 데에 그쳤다. 김일두 교수 연구팀은 이를 녹색 빛을 포함한 가시광 영역으로 확대해 범용성을 크게 높였으며, 녹색광을 조사했을 때 이산화질소 감지 반응성이 기존 대비 52배로 증가하였다. 특히 실내조명에 사용되는 백색광을 조사해 최고 수준의 이산화질소 가스 감지 반응성(0.8 ppm NO2, 감도 = 75.7)을 달성하는 데에 성공했다. 연구진은 가시광선의 흡수가 어려운 인듐 산화물(In2O3) 나노섬유*에 비스무스(Bi) 원소**를 첨가하여 청색광을 흡수할 수 있도록 중간 밴드 갭***을 형성시켰고, 금(Au) 나노입자를 추가적으로 결착하여 국소 표면 플라즈몬 공명** 현상을 통해 가시광 중 가장 풍부한 녹색광 영역에서의 활성도를 극대화했다. 비스무스와 금 나노입자 첨가 효과와 나노섬유가 갖는 넓은 비표면적 특성을 통해 상온에서 이산화질소 반응성을 기존 센서 대비 52배(0.4 ppm NO2 감도 기준) 증가시켰다. *인듐 산화물 나노섬유: 인듐 산화물은 전기 전도 특성을 지닌 금속 산화물로, 이를 전기방사 공정을 통해 나노섬유 형상으로 제작함 **비스무스(Bi) 원소: 원자번호 83번의 원소로, 주기율표에서는 질소(N), 인(P), 비소(As), 안티모니(Sb)와 함께 15족(질소 족)에 속하는 원소 ***밴드 갭(Band gap): 전자(electron)가 속박 상태에서 자유롭게 벗어나는 데 필요한 에너지 차를 의미하며 물질의 전기적, 광학적 성질을 결정하는 중요 요인 중 하나 ***국소 표면 플라즈몬 공명(LSPR): 빛에 의해 나노입자 표면의 전하 수송체를 들뜬 상태로 만들고 금속산화물로 이동시켜 가스와의 산화-환원 반응을 촉진하는 원리 이번 연구의 연구책임자인 신소재공학과 김일두 교수는 “자동차 배기가스 및 공장 매연 등에서 배출되는 대표적인 대기 환경 유해가스인 이산화질소 가스를 우리 주변에서 일반적으로 접근할 수 있는 녹·청색광(430~570 nm) 영역의 가시광을 활용해 상온에서 초고감도로 감지가 가능한 신소재를 개발했다”라며 “가스 센서의 소비전력 및 집적화 문제를 해결할 수 있어, 향후 실내조명 및 기기와의 결합을 통한 가스 센서의 상용화에 큰 역할을 할 것으로 기대한다”라고 밝혔다. 신소재공학과 졸업생 박세연 박사(現 펜실베니아 대학교 박사 후 연구원), 신소재공학과 김민현 박사과정이 공동 제1 저자로 주도한 이번 연구는 재료 분야 국제권위 학술지인 ‘어드밴스드 머티리얼즈(Advanced Materials)’에 3월 4일 온라인 공개됐으며 6월 13일 24호 전면 속표지(Inside Front Cover) 논문으로 발표 예정이다. (논문명 : Dual-Photosensitizer Synergy Empowers Ambient Light Photoactivation of Indium Oxide for High-Performance NO2 Sensing) 한편 이번 연구는 한국연구재단 중견연구자지원 사업, 중소벤처기업부와 중소기업기술정보진흥원(TIPA)의 소재부품장비 전략협력기술개발사업의 지원을 받아 수행됐다.
2024.06.10
조회수 2354
미세 유체의 회전 운동을 활용한 현장 진단용 초고감도 바이오센서 개발
우리 대학 기계공학과 윤용진 교수팀이 뉴캐슬 대학(Newcastle University in Singapore) 김누리 교수와 공동연구를 통해 미세 유체의 회전력을 이용해 극소량의 분자 샘플로 현장 진단(Point-of-Care)이 가능한 바이오센서 칩을 개발했다고 18일 밝혔다. 윤용진 교수 연구팀은 미세 유체(microfluidics) 기술과 광 초소형 정밀기계 기술 바이오센서(Optical MEMS BioSensor)를 융합해 특정 용액의 0.19 펨토 몰(fM) 농도까지 감지할 수 있는 것으로 기존의 단일 유동 방법보다 1억(108)배 이상 향상된 감지력을 보여주는 `다상 유동 바이오센서(Rotationally Focused Flow (RFF) Biosensor)'의 연구 개발에 성공했다. 이와 관련해 윤용진 교수는 "이번 연구를 통해 T자형 미세 유체 채널 내에 유체의 회전 운동을 발생시키는 현상을 적용함으로서, 현재까지 알려진 분자 진단의 최소 샘플 농도로, 극소량의 피분석물(target analyte)의 검진이 가능하여 현장 진단 테스트 (PoC, Point Of Care testing) 개념의 바이오센서를 구현했다ˮ며, "이번 연구는 앞으로 코로나19와 같은 바이러스의 조기 발견을 통한 빠른 진단과 분자 진단 기기의 소형화를 통한 PoC 실시간 현장 진단을 가능하게 할 것이고, 나아가 차세대 랩 온어 칩(Lab-on-a-chip)을 이용한 바이오 분석학(bioanalytics)의 새로운 돌파구가 될 수 있을 것이다ˮ라고 설명했다. 뉴캐슬 대학 김누리 교수가 제1 저자로 참여하고 윤용진 교수가 교신저자로 진행된 해당 연구 결과는 국제적 권위 학술단체 `네이처(nature)'의 퍼블리셔 그룹인 `사이언티픽 레포트(scientific reports)'에 지난 4월 29일 자 게재됐다. 한편 이번 연구는 한국연구재단과(NRF-2020R1A2C1011859)과 한국교육재단BK21+ 프로그램 지원을 부분적으로 받아 수행됐다. (논문명: A rotationally focused flow (RFF) microfluidic biosensor by density difference for early‑stage detectable diagnosis)
2021.10.19
조회수 7022
김일두 교수, 에이씨에스 나노(ACS Nano) 紙 부편집장 선임
〈 김일두 교수 〉 우리 대학 신소재공학과 김일두 교수가 나노과학분야 권위 학술지인 ‘에이씨에스 나노(ACS Nano)’ 지 부편집장으로 선임됐다. 김 교수는 부편집장 임무를 통해 투고 논문의 심사 여부를 판단하고 심사하기로 결정된 논문의 심사자(reviewer) 선정 및 게재 승인 여부를 결정하게 된다. KI 첨단나노센서 연구센터장을 맡고 있는 김 교수는 2018년 43편 (평균 Impact Factor: 8.8)의 SCI 논문 발표를 포함해 지금까지 242편 이상의 논문을 전문 학술지에 발표했고, 200여 편에 달하는 특허 출원 등 탁월한 연구 성과를 낸 업적을 인정받았다. 김 교수는 2018년도 송곡과학기술상을 수상을 비롯해 2018 국가연구개발 우수성과 100선에서 ‘자기조립 유기체 복합촉매 커플링 기반 초고감도 가스센서 플랫폼소재 개발’로 과학기술정보통신부 최우수 과제로 선정된 바 있다. 김 교수는 현재 세라믹 분야의 학술지인 저널오브 일렉트로세라믹스(Journal of Electroceramics) 의 부편집장 (Deputy Editor)도 맡고 있다. 김 교수는 “2017년도 13.709의 피인용지수와 134,596회에 달하는 인용횟수를 갖는 세계적인 권위 학술지 ACS Nano의 부편집장으로 선임돼 영광이다”라며 “나노센서 및 에너지 분야에 투고된 논문들에 대한 에디터 활동을 통해 우리 대학의 위상을 높이고, 연구실에서 주력으로 연구하는 나노섬유 응용 기술의 다변화 및 실용화 기여를 통해 과학발전에 기여하겠다”라고 말했다.
2018.11.21
조회수 9830
정기훈 교수, 눈물 성분 분석해 통풍 예방하는 기술 개발
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 종이에 금속 나노입자를 증착한 저렴하고 정교한 통풍 종이 검사지(Strip)를 개발했다. 이 기술은 눈물 속의 생체 분자를 분석해 비침습적 진단이 가능하고 소요 시간을 크게 단축시킬 수 있다. 진단 의학, 약물 검사 뿐 아니라 현장 진단 등 특정 성분의 신속하고 정확한 진단이 필요한 다양한 분야에 응용 가능할 것으로 기대된다. 박문성 박사과정이 1저자로 참여한 이번 연구는 나노분야 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 2016년 12월 14일 온라인 판에 게재됐다. 통풍은 바늘 모양의 요산 결정이 관절에 쌓이면서 통증을 유발하는 병이다. 일반적으로 통증의 완화와 요산 배출, 요산 강하제 복용 등이 치료법으로 이용된다. 이러한 치료법은 일시적인 통풍 증상 완화에는 도움이 되지만 완치에는 한계가 있어 지속적인 요산 농도 측정과 식이요법이 병행돼야 한다. 따라서 간편하게 요산을 측정할 수 있다면 통풍 예방율을 크게 높일 수 있고 통풍 환자의 병 관리에 큰 도움을 줄 수 있다. 하지만 기존의 통풍 진단 기술은 혈액을 채취해 요산 농도를 측정하거나 관절 윤활액을 채취해 요산 결정을 현미경으로 관찰하는 방식이다. 이처럼 침습적 시술이 대부분이고 시간이 오래 걸리는 등의 한계가 있다. 연구팀은 문제 해결을 위해 눈물을 쉽게 채집할 수 있는 종이의 표면에 나노플라즈모닉스 특성을 갖는 금 나노섬을 균일하게 증착했다. 나노플라즈모닉스 기술은 금속의 나노구조 표면에 빛을 모으는 기술로 질병 및 건강 진단 지표, 유전 물질 검출 등에 응용할 수 있다. 또한 금과 같은 금속은 빛을 조사했을 때 기존보다 강한 빛을 받아들이는 특성을 갖기 때문에 종이의 특성을 유지하면서도 기판 표면의 빛 집광도를 최고 수준으로 끌어올릴 수 있었다. 연구팀이 개발한 금속 나노구조 제작 기술은 넓은 면적에 자유자재로 나노구조를 제작할 수 있기 때문에 빛의 집광도를 자유롭게 조절할 수 있다. 연구팀은 종이 검사지에 표면증강 라만 분광법(Surface-enhanced Raman spectroscopy)을 접목시켜 별도의 표지 없이도 눈물 속 요산 농도를 측정하고 이를 혈중 요산 농도와 비교해 통풍을 진단했다. 1저자인 박문성 박사과정은 “통풍 진단을 위한 새로운 방법으로 눈물을 이용해 진단이 가능한 종이 통풍 검사지를 제작했다”며 “신속하고 간단하게 현장 진단이 가능하고 일반적인 반도체 공정을 이용한 대면적 양산이 가능하다”고 말했다. 정 교수는 “이번 결과를 바탕으로 향후 눈물을 이용해 낮은 가격의 무표지 초고감도 생체분자 분석 및 신속한 현장 진단이 가능할 것이다”며 “눈물 뿐 아니라 다양한 체액을 이용해 질병 진단, 생리학적 기능 연구 등에 기여할 수 있을 것이다”고 말했다. □ 그림 설명 그림1. 금으로 덮인 종이 통풍 검사지의 광학 사진 그림2. 종이 통풍 검사지의 주사전자현미경 사진 그림3. 금나노섬으로 코팅된 셀룰로오스 섬유의 주사전자현미경 사진 그림4. 눈물을 이용한 통풍 진단표
2017.01.17
조회수 15887
초고감도 나노바이오센서 원천기술 개발
KAIST 바이오시스템학과 박제균(朴濟均, 42) 교수팀이 나노자성입자를 이용 단백질, DNA 등의 생체분자(生體分子)를 초고감도로 검출할 수 있는 바이오센서 기술 개발에 성공했다. 이 기술은 나노(10억분의 일)그램 이하 수준으로 존재하는 극미량 물질을 검출할 수 있는 새로운 센서기술로 특정 자기장(磁氣場)하에서 생체분자의 정량적 및 고감도 분석이 가능하다. 황사 알레르기 등 많은 질환의 표지가 되는 생체분자들은 일반적으로 극미량 만으로도 인체에 심각한 영향을 미치기 때문에 이를 검출할 수 있는 센서기술은 차세대 나노바이오기술의 핵심분야에 속한다. 기존의 바이오센서 기술은 극미량 검출에는 본질적인 한계가 있는데 이번에 개발된 나노입자를 이용한 극미량 검출기술은 그러한 한계를 뛰어넘은 새로운 원천기술로서 향후 바이오센서, 랩온어칩(Lab on a chip, 손톱만한 크기의 칩으로 실험실에서 할 수 있는 연구를 수행할 수 있도록 만든 장치)개발 등에 크게 기여할 것으로 보인다. 이 연구결과는 최근 나노바이오분야의 세계적인 학술지인“랩온어칩”誌 인터넷 판에 발표되었고, 관련기술은 현재 특허 출원중에 있다.
2005.05.20
조회수 20207
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1